梗阻性DO逼尿肌细胞兴奋性变化及其离子通道机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景及目的:逼尿肌过度活动(DO)是一种常见的膀胱功能障碍,可以引起尿急、尿频甚至急迫性尿失禁等临床表现,严重影响了患者的正常生活和身心健康,同时也日益成为社会公共医疗系统的沉重负担。正常膀胱在储尿期处于一种“安静”的状态,并且由于良好的顺应性,在一定容量范围内都保持很低的腔内压,这有利于尿液从上尿路的输送以及避免尿液的膀胱-输尿管反流。这个过程是下尿路器官在一系列复杂的神经、体液、心理意识以及自身等因素的调控下完成的协调过程。一旦由于某种原因,此种和谐遭到破坏,膀胱出现了不受意识控制的收缩,就会出现上述的临床表现,这些症候群被统称为膀胱过度活动症(overactive bladder,OAB),而这种自发性膀胱收缩则被称为逼尿肌过度活动(DO)并可以被临床尿动力学检查所记录和诊断。DO在西方国家发病率很高,被列为10种最常见的慢性疾病之一;国内虽然没有大规模的临床流行病学报告确切的发病率,然而就泌尿临床诊治情况来看,属于非常常见的疾病。
     DO目前尚无理想的治疗方法,最常用抗胆碱能药物进行治疗,但由于副作用过大,疗效有限,患者的治疗依从性非常差。因此,迫切需要寻找新的有效的替代疗法。关于DO的发病机制已经进行了大量的基础研究。综合来看,原因复杂,可能系多因素参与致病,不同病因导致的DO可能有不同的发病机理,但确切的发病机制还远未明了。目前,主要学说可归纳成神经源性和肌源性两种。按照ICS的分类,DO可分成特发性(idiopathic detrusor overactivity)和神经源性(neurogenic detrusor overactivity)两种。具有相关联的神经系统病变者称为神经源性,其余归为特发性,而后者最常继发于BOO性疾病,其中以BPH最为多见。尽管DO可能是多因素疾病,但目前已有大量证据表明,继发于梗阻后的膀胱逼尿肌本身结构和功能的改变在BOO所致DO的发生中占有极为重要的地位,即“肌源性”机理。针对不同病因所致DO可能具有不同发病机理这一特点,并且考虑到BOO所致DO为临床最为常见的类型,本课题拟针对BOO性DO的发生机理展开研究。在“肌源性”学说所提出的重要机理方面,认为“逼尿肌兴奋性升高与DO有着密切的关系”。但我们广泛查阅了相关文献后发现,这一重要的机理尚缺乏直接的证据支持。为此,以此做为课题的切入点。首先,第一部分应用目前研究细胞兴奋性最好的技术-穿孔膜片钳全细胞记录,在具有“真电流钳”功能的新型膜片钳放大器EPC-10上,选取评价兴奋性的可靠指标,对BOO性DO大鼠逼尿的兴奋性与正常逼尿肌进行检测与比较。然后,进一步研究这种高兴奋状态的具体分子机理(离子通道机制),选取在调控正常逼尿肌兴奋性中具有最重要作用的电压依赖性钙通道(VDCC)和大电导钙激活钾通道(BKca)作为主要研究对象,对逼尿肌兴奋的启动和抑制这两个层面进行考察。沿着这条主线,在第二部分中主要针对VDCC中的L型和T型的变化进行探索。综合应用膜片钳技术、激光共聚焦逼尿肌钙荧光探针浓度测量并结合相应的药理学工具,对BOO性DO逼尿肌VDCC中的L和T性钙通道的电学特性及其在细胞静息钙浓度调控进行检测并与正常逼尿肌进行比较,明确钙通道活动的改变及其与高兴奋性的关系;在第三部分,应用膜片钳技术,从单通道、全细胞电流密度以及瞬时外向钾电流(STOCs)三个方面对BKca通道的活性改变进行观察和比较,同时应用免疫印迹技术对BKca通道α、β亚单位的蛋白表达改变进行比较,明确BKca蛋白表达和功能活动的改变以及与高兴奋状态的关系。
     材料和方法
     1.采用近端尿道不全结扎法制作PBOO性雌性大鼠DO动物模型;
     2.模型制作后6-8周应用尿流动力仪充盈性膀胱测压筛选DO模型和对照。出现膀胱非排尿性收缩的尿道结扎大鼠作为DO组,无非排尿性收缩表现的正常同龄大鼠作为对照组;
     3.采用消化酶法急性分离适合膜片钳技术的单个逼尿肌细胞;
     4.用以两性霉素B为穿孔剂的穿孔膜片钳电流钳下记录逼尿肌细胞的静息电位、输入膜阻抗、阈刺激、动作电位阈电位等指标;
     5.用穿孔膜片钳全细胞电压钳下记录逼尿肌L和T型钙通道的峰值电流密度以及激活曲线、稳态失活曲线,及药理学特性;
     6.观察L和T型钙通道阻断剂对Fluo-4AM钙荧光探针标记的逼尿肌细胞静息钙浓度的影响;
     7.在穿孔膜片钳全细胞电压钳模式下记录BKca全细胞电流和STOCs电流,分析全细胞电流密度,STOCs平均电流幅度及平均发放频率。
     8.应用inside-out膜片记录逼尿肌BKca单通道电流,并对单通道特性进行电学和药理学鉴定,分析开放概率、平均开放时间、平均关闭时间、电导等参数;
     9.应用western blot技术对BKcaα、β亚单位蛋白表达情况进行比较。
     结果:
     (一)成功建立了大鼠BOO性DO动物模型,模型成功率高达82.3%。
     (二)成功建立了一种逼尿肌细胞急性酶分离方法,具有重复性好、操作简单的优点,并且适于膜片钳研究。
     (三)成功地将穿孔膜片钳技术技术应用在大鼠逼尿肌膜电位记录上,最大程度地反应了逼尿肌的电生理特性。
     (四)对DO和正常逼尿肌细胞兴奋性进行了各预设指标的检查,结果分析表明,BOO性DO逼尿肌细胞兴奋性较正常显著增加,这可能是DO发生的重要原因。
     (五)首次成功地进行了逼尿肌细胞的穿孔膜片钳电压依赖性钙通道电流的记录
     (六) DO逼尿肌L型钙通道发生变化,表现为:
     1.通道的密度显著增加,激活后可引起更多的钙内流,这可能是DO后逼尿肌收缩力增强的原因之一。
     2.通道失活曲线右移,处于失活状态的L型钙通道比例减少,提示:L型钙通道阻断剂需要使用更大的浓度才能将其完全抑制。
     (七) DO逼尿肌T型钙通道发生变化,表现为:
     1.通道的密度显著增加。
     2.通道失活曲线右移,激活曲线左移使得静息状态下T通道的“window current”(窗电流)增大,这是DO逼尿肌静息钙浓度增加的重要原因之一;
     3.通道激活曲线左移,这可能是DO兴奋性增加的重要原因。
     4.T型钙通道对于正常和DO逼尿肌中的静息钙浓度均有显著的调控作用,这是通过其窗电流实现的。使用T型钙通道阻断剂后,钙荧光的前后变化率DO逼尿肌大于正常逼尿肌,证明T型钙通道形成窗电流在DO逼尿肌是上调的。
     (八) DO逼尿肌BKca全细胞电流密度显著下降。
     (九) DO逼尿肌BKca单通道活动显著下降,具体为开放概率、平均开放时间下降而平均关闭时间以及单通道电导未发生改变。同时,单通道对钙敏感性下降。
     (十) DO逼尿肌瞬时外向钾电流(STOCs)的幅度以及频率显著下降.。
     (十一) DO逼尿肌BKca通道α、β亚单位蛋白表达显著下降.
     结论
     一、梗阻性DO逼尿肌细胞兴奋性显著高于正常逼尿肌,这可能是BOO后发生DO的重要原因。
     二、DO逼尿肌细胞L和T性钙通道密度增加,动力学发生诸多改变。这些改变易化了DO逼尿肌产生动作电位的能力,是其兴奋性升高的重要离子基础。
     三、DO逼尿肌中BKCa通道的蛋白表达和通道活动均出现显著的削弱,这使得其抑制细胞兴奋的能力严重减弱,这些变化也是DO逼尿肌兴奋性升高重要的离子基础。
Background and Objective
     Detrusor overactivity (DO) is a very common urinary dysfunction which could give rise to a variety of irritating symptoms such as urgency ,frequency with or without urge incontinence .DO could seriously affect the suffers’life quality or even mental health and it now apparently becomes a heavy burden to the social medical system.When in the filling stage,the healthy urinary bladder is kept in“quiescence”and low intravesical pressure is maintained due to the excellent compliance of the urinary bladder which is of help to the urine transmission from the upper urinary tract to the bladder and in preventing vesico-ureteric reflux .This physiological process is under complex control of central nervous system,body humour and consciousness along with the low urinary organ themselves.However,whatever reason,if the above harmonious interactions are interrupted ,the urinary bladder could exhibit uninhibited involuntary contractions during the filling stage which in turn induces the above mentioned symptoms complex.This symptoms complex is termed as the overactive bladder syndrome (OAB) ,whilst the involuntary urinary bladder contraction is referred to as detrusor overactivity (DO) which could be recorded and diagnosed by a cystometry assay.In accordance with the latest clinical epidemiology report,the incidence of DO is very high and it is among the top 10 most common chronic diseases in western world .Though the corresponding investigation is lacking regarding Chinese population ,it is however indeed occupy a big portion of urological clinic workload suggesting similarly high incidentce in China. Unfortunately,there is few effective therapeutic means available to treat DO patients .The anticholinergic agents are now the first line drug,however,because of their seriously unpleasant side-effects such as dry mouth and constipation ,also mild and limited effectiveness in relieving OAB symptoms,few patients can comply with this drug for long period of time,therefore , more effective strategies with less side effects must be come up with in a short time in order to deal with this trying situation.
     Though a lot have been done regarding the pathophysiology of DO,unfortunately, it is still largely unknown.The currnt opinions are that DO is caused by multifaceted etiologies and the responsible mechanisms might vary among DO with distinctive origins but the only thing with certainty is that the exact pathological mechanism is not uncovered yet.If they could be summed up ,the mainstay theories can be attributable to two main categories ,ie,one is the neurogenic displine and the other is myogenic one with strikingly contrasting arguments stressing on nerve drive or musle drive respectively.The newest definition about DO from the authoritative ICS is that this disease entity could follow into two categories.One is the neurogenic DO if the suffers are demonstrated with a related neurological impairment and however,if not it is called the idiopathetic DO which is commonly secondary to BOO with the BPH as the most frequent reason. Accumulating evidence has now indicate that the morphological and functional detrusor remolding after BOO play a pivotal role in the DO’s pathophysiology .Given that DO with distinctive etiology may vary in pathological mechanisms and the DO caused by BOO is the most common type ,we decided to choose the DO arising from BOO as our working model. According to myogenic displine of DO,the hyperexcitability of detrusor myocytes is closely associated with DO but however,the direct evidence is lacking after our painstaking literature reviewing,so it is reasonable to choose this myth as our focus because this is an extremely important issue and might bear fruitful results by resolving it.Our study has 3 parts.In the first part ,we firstly establish the PBOO rat model and then measured the cellular excitability index by the aid of the perforated patch clamp recording which is the best one in the physiologists’disposal when addressing the excitability investigation.In the second part,we investigate the L and T type VDCC channels change by using a combined methods,ie.the perforated whole cell patch clamp and calcium concentration measurement under LSCM using the fluo-4AM calcium sensitive fluorescence dye in the hope to reflect the VDCC channel activities change in DO detrusor myocytes from different perspectives.In the last part,the BKca channel activity changes were measured by patch clamp technique and its protein expression changes were assayed by western blot .
     Materials and methods
     1. The PBOO animal model was established by proximal urethral ligation in the female SD rats.
     2. Between the sixth and eighth week after animal model ,the validation of DO was performed by a cystometry assay and based on results of this investigation,the rats were grouped as DO and control(healthy rat with matching age but without DO)
     3. The detrusor myocytes were dispersed by enzymatic digestion.
     4. The resting membrane potential ,input resistance ,action potential voltage etc were measured by the whole cell perforated patch clamp configuration under the current clamp mode.
     5. The L and T type VDCC currents were recorded by perforated patch clamp and peak current density and channel kinetic curve were obtained .
     6. The modulation roles of L and T VDCC on the resting detrusor free calcium concentration were probed by the VDCC antagonists through LCSM calcium concentration measurement method.
     7. The whole cell BKca currents and STOCs were recorded by perforated patch clamp.
     8. The single BKca channel activities were measured by patch clamp under inside-out patch configuration.
     9. The protein level of BKcaα、βsubunits were assayed by western blot .respectively.
     Results
     1.The DO rat model induced by PBOO is successfully established and the incidence is as high as 82.3%.
     2 . A simple and highly reproducible detrusor myocytes dispersion method is successfully established and they are proved to be suitable for patch clamp study.
     3.The perforated patch clamp configuration which is the most physiological method for cellular electrophysiological study is successfully applied in recording the single detrusor membrane potential
     4.The results by comparing excitability index between DO and normal detrusor myocytes indicate that the DO detrusor myocytes have much higher excitability than the normal control ,which is a possible reason for DO .
     5.The first perforated patch recording of voltage gated calcium currents on detrusor myocytes is successfully done .
     6.The L type calcium channels have changed in DO myocytes as follows
     (1) The current density increase significantly which will result in more calcium influx after activation
     (2) The inactivation curve shifts to the depolarization direction and the percentage of channels in inactivating state decrease implying that it needs much higher concentration of calcium channel blockers to completely inhibit the channel opening .
     7.The T type calcium channels have changed in DO myocytes as follows
     (1) The current density increase significantly .
     (2) The window currents of the T channels widen as a result of shift of both activation and inactivation curve.,which would increase the resting free calcium concentration.
     (3) The activation curve shifts to the hyperpolarization direction which might underly the hyperexcitability of DO detrusor myocytes.
     (4) T type calcium channels play a vital role in modulating the resting free calcium concentration of both normal and DO detrusor myocytes through the window currents pathway.The change ratio of RCFI is higher in DO detrusor than that in normal after adding the T channel antagonist mibefradil suggesting that the window currents are up-regulated in DO state .
     8.The whole cell BKca current density decrease in DO detrusor.
     9.The single channel activities also decrease in DO detrusor myocytes significantly manifested by decrease of both open probability and mean open time.
     10.Both the frequency and amplitude of detrusor STOCs decrease significantly.
     11.The protein expression level of bothαandβsubunites of BKca channels decreases significantly.
     Conclusions
     1.The detrusor from DO model exhibit hyperexcitability which maybe a key reason for DO .
     2.Both the L and T type calcium channels have profound changes such as increase of current density and shift of kinetic curve which will facilitate the action potential firing and may be one of the important ionic mechanisms underlying DO detrusor hyperexcitability.
     3.Both the protein expression and channel activities of BKca channels decrease significantly in DO detrusor which will impair its capacity to antagonize the excitability and may be one of the important ionic mechanisms underlying DO detrusor hyperexcitability.
引文
1 de Groat, WC. A neurologic basis for the overactive bladder[J]. Urology, 1997,50(6A Suppl):36-52.
    2 Brading, AF. A myogenic basis for the overactive bladder[J]. Urology, 1997,50(6A Suppl):57-67.
    3宋波,李新.逼尿肌不稳定的机制研究—神经源性?肌源性?[J].解放军医学杂志, 2003,28(002): 131-133.
    4 Abrams P. Describing bladder storage function: overactive bladder syndrome and detrusor overactivity[J]. Urology, 2003,62(5 Suppl 2):28-37; discussion 40-2.
    5宋波.逼尿肌兴奋性及逼尿肌不稳定[J].第三军医大学学报, 2003,25(022): 1969-1971.
    6邱功阔,宋波.膀胱出口梗阻对逼尿肌兴奋性,收缩性及顺应性影响的实验研究[J].中华泌尿外科杂志, 2000,21(007): 421-423.
    7 Mills IW, Greenland JE, McMurray G, et al. Studies of the pathophysiology of idiopathic detrusor instability: the physiological properties of the detrusor smooth muscle and its pattern of innervation[J]. J Urol, 2000,163(2):646-51.
    8 Pandita, RK, Andersson, KE. Effects of intravesical administration of the K channel opener, ZD6169, in conscious rats with and without bladder outflow obstruction[J]. J Urol, 1999,162:943-948.
    9 STRENG, T, CHRISTOPH, T, ANDERSSON, KE. URODYNAMIC EFFECTS OF THE K+ CHANNEL (KCNQ) OPENER RETIGABINE IN FREELY MOVING, CONSCIOUS RATS[J]. J Urol, 2004,172(5 Pt 1):2054-8.
    10 Herrera, GM, Pozo, MJ, Zvara, P, et al. Urinary bladder instability induced by selective suppression of the murine small conductance calcium-activated potassium (SK3) channel[J]. The Journal of Physiology, 2003,551(3):893-903.
    11 Sigworth, FJ, Affolter, H, Neher, E. Design of the EPC-9, a computer-controlled patch-clamp amplifier. 2. Software[J]. J Neurosci Methods, 1995,56(2):203-15.
    12 SIGWorth FJ. Design of the EPC-9, a computer-controlled patch-clamp amplifier. 1. Hardware[J]. J Neurosci Methods, 1995,56(2):ES/*ME2.
    13 Andersson, KE, Arner, A. Urinary Bladder Contraction and Relaxation: Physiologyand Pathophysiology[J]. Physiological Reviews, 2004,84(3):935-986.
    14 Meredith AL, Thorneloe KS, Werner ME, et al. Overactive bladder and incontinence in the absence of the BK large conductance Ca2+-activated K+ channel[J]. J Biol Chem, 2004,279(35):36746-52.
    15 Thorneloe KS, Meredith AL, Knorn AM, et al. Urodynamic properties and neurotransmitter dependence of urinary bladder contractility in the BK channel deletion model of overactive bladder[J]. Am J Physiol Renal Physiol, 2005,289(3):F604-10.
    16 Hashitani H, Brading AF. Ionic basis for the regulation of spontaneous excitation in detrusor smooth muscle cells of the guinea-pig urinary bladder[J]. Br J Pharmacol, 2003,140(1):159-69.
    17 Di Lazzaro, V, Oliviero, A, Pilato, F, et al. Motor cortex hyperexcitability to transcranial magnetic stimulation in Alzheimer's disease[J]. Journal of Neurology, Neurosurgery & Psychiatry, 2004,75(4):555-559.
    18 Basso, MA, Powers, AS, Evinger, C. An Explanation for Reflex Blink Hyperexcitability in Parkinson's Disease. I. Superior Colliculus[J]. Journal of Neuroscience, 1996,16(22):7308-7317.
    19 Zheng, JH, Walters, ET, Song, XJ. Dissociation of Dorsal Root Ganglion Neurons Induces Hyperexcitability That Is Maintained by Increased Responsiveness to cAMP and cGMP[J]. Journal of Neurophysiology, 2007,97(1):15.
    20 Zhang, JM, Song, XJ, LaMotte, RH. Enhanced Excitability of Sensory Neurons in Rats With Cutaneous Hyperalgesia Produced by Chronic Compression of the Dorsal Root Ganglion[J]. Journal of Neurophysiology, 1999,82(6):3359-3366.
    21 Yao, H, Donnelly, DF, Ma, C, et al. Upregulation of the Hyperpolarization-Activated Cation Current after Chronic Compression of the Dorsal Root Ganglion[J]. Journal of Neuroscience, 2003,23(6):2069.
    22 Kitamura, N, Konno, A, Kuwahara, T, et al. Nerve growth factor-induced hyperexcitability of rat sensory neuron in culture[J]. Biomed Res, 2005,26(3):123-30.
    23 Sakmann, B, Neher, E. Patch Clamp Techniques for Studying Ionic Channels in Excitable Membranes[J]. Annual Review of Physiology, 1984,46(1):455-472.
    24 Spruston, N, Johnston, D. Perforated patch-clamp analysis of the passive membraneproperties of three classes of hippocampal neurons[J]. Journal of Neurophysiology, 1992,67(3):508-529.
    25 Polder, HR, Weskamp, M, Linz, K, et al. Voltage-Clamp and Patch-Clamp Techniques[J].
    26 Magistretti, J, Mantegazza, M, Guatteo, E, et al. Action potentials recorded with patch-clamp amplifiers: are they genuine?[J]. Trends Neurosci, 1996,19(12):530-4.
    27张川,樊枫,瞿安连.一种改进型膜片钳放大器真电流钳的研究[J].现代科学仪器, 2005: 04.
    28 Hamill OP, Marty A, Neher E, et al. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches[J]. Pflugers Arch, 1981,391(2):85-100.
    29 Pei X, Volgushev M, Vidyasagar TR, et al. Whole cell recording and conductance measurements in cat visual cortex in-vivo[J]. Neuroreport, 1991,2(8):485-8.
    30 Margrie, TW, Meyer, AH, Caputi, A, et al. Targeted Whole-Cell Recordings in the Mammalian Brain In Vivo[J]. Neuron, 2003,39(6):911-918.
    31杨胜,周文霞,张永祥.在体膜片钳技术的新进展[J].生物化学与生物物理进展, 2004,31(010): 870-873.
    32 Lee AK, Manns ID, Sakmann B, et al. Whole-cell recordings in freely moving rats[J]. Neuron, 2006,51(4):399-407.
    33 Tang G, Wang R. Differential expression of KV and KCa channels in vascular smooth muscle cells during 1-day culture[J]. Pflugers Arch, 2001,442(1):124-35.
    34 Kuga T, Kobayashi S, Hirakawa Y, et al. Cell cycle--dependent expression of L- and T-type Ca2+ currents in rat aortic smooth muscle cells in primary culture[J]. Circ Res, 1996,79(1):14-9.
    35 Bean BP, Sturek M, Puga A, et al. Calcium channels in muscle cells isolated from rat mesenteric arteries: modulation by dihydropyridine drugs[J]. Circ Res, 1986,59(2):229-35.
    36 Taylor MS, Bonev AD, Gross TP, et al. Altered expression of small-conductance Ca2+-activated K+ (SK3) channels modulates arterial tone and blood pressure[J]. Circ Res, 2003,93(2):124-31.
    37 Welsh DG, Morielli AD, Nelson MT, et al. Transient receptor potential channelsregulate myogenic tone of resistance arteries[J]. Circ Res, 2002,90(3):248-50.
    38 Wu, C, Sui, G, Fry, CH. The role of the L-type Ca2+ channel in refilling functional intracellular Ca2+ stores in guinea-pig detrusor smooth muscle[J]. The Journal of Physiology, 2002,538(2):357-369.
    39 McCloskey KD, Gurney AM. Kit positive cells in the guinea pig bladder[J]. J Urol, 2002,168(2):832-6.
    40 Shafik A, El-Sibai O, Shafik AA, et al. Identification of interstitial cells of Cajal in human urinary bladder: concept of vesical pacemaker[J]. Urology, 2004,64(4):809-13.
    41 Bradley, JE, Anderson, UA, Woolsey, SM, et al. Characterization of T-type calcium current and its contribution to electrical activity in rabbit urethra[J]. American Journal of Physiology- Cell Physiology, 1078,286(5):1078-1088.
    42 Hollywood, MA, Woolsey, S, Walsh, IK, et al. T-and L-type Ca2+ currents in freshly dispersed smooth muscle cells from the human proximal urethra[J]. The Journal of Physiology, 2003,550(3):753-764.
    43 Hollywood MA, Woolsey S, Walsh IK, et al. T- and L-type Ca2+ currents in freshly dispersed smooth muscle cells from the human proximal urethra[J]. J Physiol, 2003,550(Pt 3):753-64.
    44 Conte Camerino D, Tricarico D, Desaphy JF. Ion channel pharmacology[J]. Neurotherapeutics, 2007,4(2):184-98.
    45 Catterall WA, Cestele S, Yarov-Yarovoy V, et al. Voltage-gated ion channels and gating modifier toxins[J]. Toxicon, 2007,49(2):124-41.
    46 Lambert RC, Bessaih T, Leresche N. Modulation of neuronal T-type calcium channels[J]. CNS Neurol Disord Drug Targets, 2006,5(6):611-27.
    47 Hayashi K, Wakino S, Sugano N, et al. Ca2+ channel subtypes and pharmacology in the kidney[J]. Circ Res, 2007,100(3):342-53.
    48 Khosravani H, Zamponi GW. Voltage-gated calcium channels and idiopathic generalized epilepsies[J]. Physiol Rev, 2006,86(3):941-66.
    49 Wu SN, Wu AZ, Lin MW. Pharmacological roles of the large-conductance calcium-activated potassium channel[J]. Curr Top Med Chem, 2006,6(10):1025-30.
    50 Ghatta S, Nimmagadda D, Xu X, et al. Large-conductance, calcium-activated potassium channels: structural and functional implications[J]. Pharmacol Ther,2006,110(1):103-16.
    51 Vassort G, Talavera K, Alvarez JL. Role of T-type Ca2+ channels in the heart[J]. Cell Calcium, 2006,40(2):205-20.
    52 Autret L, Mechaly I, Scamps F, et al. The involvement of Cav3.2/alpha1H T-type calcium channels in excitability of mouse embryonic primary vestibular neurones[J]. J Physiol, 2005,567(Pt 1):67-78.
    53 Fry CH, Sui G, Wu C. T-type Ca2+ channels in non-vascular smooth muscles[J]. Cell Calcium, 2006,40(2):231-9.
    54 Sui GP, Wu C, Fry CH. Inward calcium currents in cultured and freshly isolated detrusor muscle cells: evidence of a T-type calcium current[J]. J Urol, 2001,165(2):621-6.
    55 Shkryl VM, Nikolaenko LM, Kostyuk PG, et al. High-threshold calcium channel activity in rat hippocampal neurones during hypoxia[J]. Brain Res, 1999,833(2):319-28.
    56 Lambert RC, Feltz A. Maintained L-type Ca2+ channel activity in excised patches of PTX-treated granule cells of the cerebellum[J]. J Neurosci, 1995,15(9):6014-22.
    57 Ishikawa T, Hume JR, Keef KD. Regulation of Ca2+ channels by cAMP and cGMP in vascular smooth muscle cells[J]. Circ Res, 1993,73(6):1128-37.
    58 Kajioka S, Nakayama S, McMurray G, et al. Ca(2+) channel properties in smooth muscle cells of the urinary bladder from pig and human[J]. Eur J Pharmacol, 2002,443(1-3):19-29.
    59 Kepplinger KJ, Forstner G, Kahr H, et al. Molecular determinant for run-down of L-type Ca2+ channels localized in the carboxyl terminus of the 1C subunit[J]. J Physiol, 2000,529 Pt 1:119-30.
    60 Kowark P, Huneke R, Jungling E, et al. Oxygen Tension Modulates Inhibition of L-type Calcium Currents by Isoflurane in Human Atrial Cardiomyocytes[J]. Anesthesiology, 2007,106(4):715-722.
    61 Fu LY, Wang F, Chen XS, et al. Perforated patch recording of L-type calcium current with beta-escin in guinea pig ventricular myocytes[J]. Acta Pharmacol Sin, 2003,24(11):1094-8.
    62 Almanza A, Navarrete F, Vega R, et al. Modulation of voltage-gated Ca2+ current investibular hair cells by nitric oxide[J]. J Neurophysiol, 2007,97(2):1188-95.
    63 Hashitani H, Brading AF. Electrical properties of detrusor smooth muscles from the pig and human urinary bladder[J]. Br J Pharmacol, 2003,140(1):146-58.
    64 Wegener JW, Schulla V, Lee TS, et al. An essential role of Cav1.2 L-type calcium channel for urinary bladder function[J]. FASEB J, 2004,18(10):1159-61.
    65 Tomoda T, Aishima M, Takano N, et al. The effects of flavoxate hydrochloride on voltage-dependent L-type Ca2+ currents in human urinary bladder[J]. Br J Pharmacol, 2005,146(1):25-32.
    66 Fry CH, Gallegos CR, Montgomery BS. The actions of extracellular H+ on the electrophysiological properties of isolated human detrusor smooth muscle cells[J]. J Physiol, 1994,480 ( Pt 1):71-80.
    67 Sui GP, Wu C, Fry CH. A description of Ca2+ channels in human detrusor smooth muscle[J]. BJU Int, 2003,92(4):476-82.
    68 Perez-Reyes, E. Molecular Physiology of Low-Voltage-Activated T-type Calcium Channels[J]. Physiological Reviews, 2003,83(1):117-161.
    69 Montgomery BS, Fry CH. The action potential and net membrane currents in isolated human detrusor smooth muscle cells[J]. J Urol, 1992,147(1):176-84.
    70张武合,宋波.钙通道阻滞剂对大鼠离体不稳定逼尿肌收缩性和自律性的影响[J].第三军医大学学报, 2005,27(21): 2142-2144.
    71 Bean BP. Nitrendipine block of cardiac calcium channels: high-affinity binding to the inactivated state[J]. Proc Natl Acad Sci U S A, 1984,81(20):6388-92.
    72 Lory P, Bidaud I, Chemin J. T-type calcium channels in differentiation and proliferation[J]. Cell Calcium, 2006,40(2):135-46.
    73 Panner A, Wurster RD. T-type calcium channels and tumor proliferation[J]. Cell Calcium, 2006,40(2):253-9.
    74 de Castro Sasahara TH, Mayhew TM, Rahal SC, et al. Partial urethral obstruction of rabbit urinary bladder: stereological evidence that the increase in muscle content is mostly driven by changes in number, rather than size, of smooth muscle cells[J]. J Anat, 2007.
    75 Yu G, Bo S, Xiyu J, et al. Effect of bladder outlet obstruction on detrusor smooth muscle cell: an in vitro study[J]. J Surg Res, 2003,114(2):202-9.
    76 Azadzoi KM, Tarcan T, Kozlowski R, et al. Overactivity and structural changes in the chronically ischemic bladder[J]. J Urol, 1999,162(5):1768-78.
    77 Sui GP, Wu C, Severs N, et al. The association between T-type Ca2+ current and outward current in isolated human detrusor cells from stable and overactive bladders[J]. BJU Int, 2007,99(2):436-41.
    78 Chow KY, Wu C, Sui GP, et al. Role of the T-type Ca2+ current on the contractile performance of guinea pig detrusor smooth muscle[J]. Neurourol Urodyn, 2003,22(1):77-82.
    79 Lin AD, Levin RM, Kogan BA, et al. Alteration of contractile and regulatory proteins in estrogen-induced hypertrophy of female rabbit bladder[J]. Urology, 2006,68(5):1139-43.
    80 Peters SL, Schmidt M, Michel MC. Rho kinase: a target for treating urinary bladder dysfunction?[J]. Trends Pharmacol Sci, 2006,27(9):492-7.
    81 Bezanilla, F, Armstrong, CM. Inactivation of the sodium channel. I. Sodium current experiments[J]. J. Gen. Physiol, 1977,70:549-566.
    82 Barry PH. JPCalc, a software package for calculating liquid junction potential corrections in patch-clamp, intracellular, epithelial and bilayer measurements and for correcting junction potential measurements[J]. J Neurosci Methods, 1994,51(1):107-16.
    83 Petkov GV, Bonev AD, Heppner TJ, et al. Beta1-subunit of the Ca2+-activated K+ channel regulates contractile activity of mouse urinary bladder smooth muscle[J]. J Physiol, 2001,537(Pt 2):443-52.
    84 Werner ME, Knorn AM, Meredith AL, et al. Frequency encoding of cholinergic- and purinergic-mediated signaling to mouse urinary bladder smooth muscle: modulation by BK channels[J]. Am J Physiol Regul Integr Comp Physiol, 2007,292(1):R616-24.
    85 Wellman GC, Nelson MT. Signaling between SR and plasmalemma in smooth muscle: sparks and the activation of Ca2+-sensitive ion channels[J]. Cell Calcium, 2003,34(3):211-29.
    86 Morimoto T, Sakamoto K, Sade H, et al. Voltage-sensitive oxonol dyes are novel large-conductance Ca2+-activated K+ channel activators selective for beta1 and beta4 but not for beta2 subunits[J]. Mol Pharmacol, 2007,71(4):1075-88.
    87 Brenner R, Perez GJ, Bonev AD, et al. Vasoregulation by the beta1 subunit of the calcium-activated potassium channel[J]. Nature, 2000,407(6806):870-6.
    88 Pluger S, Faulhaber J, Furstenau M, et al. Mice with disrupted BK channel beta1 subunit gene feature abnormal Ca(2+) spark/STOC coupling and elevated blood pressure[J]. Circ Res, 2000,87(11):E53-60.
    89 Herrera GM, Nelson MT. Differential regulation of SK and BK channels by Ca(2+) signals from Ca(2+) channels and ryanodine receptors in guinea-pig urinary bladder myocytes[J]. J Physiol, 2002,541(Pt 2):483-92.
    90 Heppner TJ, Herrera GM, Bonev AD, et al. Ca2+ sparks and K(Ca) channels: novel mechanisms to relax urinary bladder smooth muscle[J]. Adv Exp Med Biol, 2003,539(Pt A):347-57.
    91 Collier ML, Ji G, Wang Y, et al. Calcium-induced calcium release in smooth muscle: loose coupling between the action potential and calcium release[J]. J Gen Physiol, 2000,115(5):653-62.
    92 Cheng H, Lederer WJ, Cannell MB. Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle[J]. Science, 1993,262(5134):740-4.
    93 Klein MG, Cheng H, Santana LF, et al. Two mechanisms of quantized calcium release in skeletal muscle[J]. Nature, 1996,379(6564):455-8.
    94 Nelson MT, Cheng H, Rubart M, et al. Relaxation of arterial smooth muscle by calcium sparks[J]. Science, 1995,270(5236):633-7.
    95 Bolton TB, Imaizumi Y. Spontaneous transient outward currents in smooth muscle cells[J]. Cell Calcium, 1996,20(2):141-52.
    96 Jiang, HH, Song, B, Lu, GS, et al. Loss of ryanodine receptor calcium-release channel expression associated with overactive urinary bladder smooth muscle contractions in a detrusor instability model[J]. BJU Int, 2005,96(3):428-33.
    97 Chang T, Wu L, Wang R. Altered expression of BK channel beta1 subunit in vascular tissues from spontaneously hypertensive rats[J]. Am J Hypertens, 2006,19(7):678-85.
    98 Lu R, Alioua A, Kumar Y, et al. MaxiK channel partners: physiological impact[J]. J Physiol, 2006,570(Pt 1):65-72.
    99 Amberg GC, Bonev AD, Rossow CF, et al. Modulation of the molecular composition of large conductance, Ca(2+) activated K(+) channels in vascular smooth muscleduring hypertension[J]. J Clin Invest, 2003,112(5):717-24.
    100 Bratz IN, Swafford AN Jr, Kanagy NL, et al. Reduced functional expression of K(+) channels in vascular smooth muscle cells from rats made hypertensive with N{omega}-nitro-L-arginine[J]. Am J Physiol Heart Circ Physiol, 2005,289(3):H1284-90.
    101 Amberg GC, Santana LF. Downregulation of the BK channel beta1 subunit in genetic hypertension[J]. Circ Res, 2003,93(10):965-71.
    102 Bratz IN, Dick GM, Partridge LD, et al. Reduced molecular expression of K(+) channel proteins in vascular smooth muscle from rats made hypertensive with N{omega}-nitro-L-arginine[J]. Am J Physiol Heart Circ Physiol, 2005,289(3): H1277-83.
    103 Zhou XB, Wang GX, Ruth P, et al. BK(Ca) channel activation by membrane- associated cGMP kinase may contribute to uterine quiescence in pregnancy[J]. Am J Physiol Cell Physiol, 2000,279(6):C1751-9.
    104 Khan RN, Smith SK, Morrison JJ, et al. Ca2+ dependence and pharmacology of large-conductance K+ channels in nonlabor and labor human uterine myocytes[J]. Am J Physiol, 1997,273(5 Pt 1):C1721-31.
    105 Werner ME, Zvara P, Meredith AL, et al. Erectile dysfunction in mice lacking the large-conductance calcium-activated potassium (BK) channel[J]. J Physiol, 2005,567 (Pt 2):545-56.
    106 Spektor M, Rodriguez R, Rosenbaum RS, et al. Potassium channels and human corporeal smooth muscle cell tone: further evidence of the physiological relevance of the Maxi-K channel subtype to the regulation of human corporeal smooth muscle tone in vitro[J]. J Urol, 2002,167(6):2628-35.
    107 Melman A, Zhao W, Davies KP, et al. The successful long-term treatment of age related erectile dysfunction with hSlo cDNA in rats in vivo[J]. J Urol, 2003,170(1): 285-90.
    108 Christ GJ, Day N, Santizo C, et al. Intracorporal injection of hSlo cDNA restores erectile capacity in STZ-diabetic F-344 rats in vivo[J]. Am J Physiol Heart Circ Physiol, 2004,287(4):H1544-53.
    109 Christ GJ, Rehman J, Day N, et al. Intracorporal injection of hSlo cDNA in ratsproduces physiologically relevant alterations in penile function[J]. Am J Physiol, 1998,275(2 Pt 2):H600-8.
    110 Melman A, Bar-Chama N, McCullough A, et al. hMaxi-K gene transfer in males with erectile dysfunction: results of the first human trial[J]. Hum Gene Ther, 2006,17(12):1165-76.
    111 Melman A, Bar-Chama N, McCullough A, et al. The first human trial for gene transfer therapy for the treatment of erectile dysfunction: preliminary results[J]. Eur Urol, 2005,48(2):314-8.
    112 Noe' F, Nissinen J, Pitkanen A, et al. Gene therapy in epilepsy: the focus on NPY[J]. Peptides, 2007,28(2):377-83.
    113 Tomasoni S, Benigni A. Gene therapy: how to target the kidney. Promises and pitfalls[J]. Curr Gene Ther, 2004,4(1):115-22.
    114 Jazwa A, Jozkowicz A, Dulak J. New vectors and strategies for cardiovascular gene therapy[J]. Curr Gene Ther, 2007,7(1):7-23.
    115 Wu Z, Asokan A, Samulski RJ. Adeno-associated virus serotypes: vector toolkit for human gene therapy[J]. Mol Ther, 2006,14(3):316-27.
    116 Grieger JC, Samulski RJ. Adeno-associated virus as a gene therapy vector: vector development, production and clinical applications[J]. Adv Biochem Eng Biotechnol, 2005,99:119-45.
    117 van Gaal EV, Hennink WE, Crommelin DJ, et al. Plasmid engineering for controlled and sustained gene expression for nonviral gene therapy[J]. Pharm Res, 2006,23(6):1053-74.
    118 Ratanamart J, Shaw JA. Plasmid-mediated muscle-targeted gene therapy for circulating therapeutic protein replacement: a tale of the tortoise and the hare?[J]. Curr Gene Ther, 2006,6(1):93-110.
    1. Andersson KE. Storage and voiding symptoms: pathophysiologic aspects[J]. Urology, 2003,62(5 Suppl 2):3-10.
    2. Andersson, KE, Arner, A. Urinary Bladder Contraction and Relaxation: Physiology and Pathophysiology[J]. Physiological Reviews, 2004,84(3):935-986.
    3. Brading AF. Spontaneous activity of lower urinary tract smooth muscles: correlation between ion channels and tissue function[J]. J Physiol, 2006,570(Pt 1):13-22.
    4. Fry CH, Wu C, Sui GP. Electrophysiological properties of the bladder[J]. Int Urogynecol J Pelvic Floor Dysfunct, 1998,9(5):291-8.
    5. Sui GP, Wu C, Fry CH. A description of Ca2+ channels in human detrusor smooth muscle[J]. BJU Int, 2003,92(4):476-82.
    6. Sui GP, Wu C, Fry CH. Inward calcium currents in cultured and freshly isolated detrusor muscle cells: evidence of a T-type calcium current[J]. J Urol, 2001,165(2):621-6.
    7.程文,高建平,张征宇,等. Q及N型Ca2+通道在兔不全梗阻性不稳定膀胱中功能的初探[J].南京医科大学学报(自然科学版), 2005,25(3).
    8. Hansen, PB, Jensen, BL, Andreasen, D, et al. Vascular Smooth Muscle Cells Express theα1A Subunit of a P-/Q-Type Voltage-Dependent Ca2+ Channel, and It Is Functionally Important in Renal Afferent Arterioles:Am Heart Assoc,2000.
    9. Andreasen D, Friis UG, Uhrenholt TR, et al. Coexpression of voltage-dependent calcium channels Cav1.2, 2.1a, and 2.1b in vascular myocytes[J]. Hypertension, 2006,47(4):735-41.
    10. Ishiguro M, Wellman TL, Honda A, et al. Emergence of a R-type Ca2+ channel (CaV 2.3) contributes to cerebral artery constriction after subarachnoid hemorrhage[J]. CircRes, 2005,96(4):419-26.
    11. Bean BP, Sturek M, Puga A, et al. Calcium channels in muscle cells isolated from rat mesenteric arteries: modulation by dihydropyridine drugs[J]. Circ Res, 1986,59(2): 229-35.
    12. Klockner U, Isenberg G. Calcium currents of cesium loaded isolated smooth muscle cells (urinary bladder of the guinea pig)[J]. Pflugers Arch, 1985,405(4):340-8.
    13. Sui GP, Wu C, Fry CH. The electrophysiological properties of cultured and freshly isolated detrusor smooth muscle cells[J]. J Urol, 2001,165(2):627-32.
    14. Fukuta H, Kito Y, Suzuki H. Spontaneous electrical activity and associated changes in calcium concentration in guinea-pig gastric smooth muscle[J]. J Physiol, 2002,540(Pt 1):249-60.
    15. An, JY, Yun, HS, Lee, YP, et al. The intracellular pathway of the acetylcholine-induced contraction in cat detrusor muscle cells[J]. British Journal of Pharmacology, 2002, 137(7):1001-1010.
    16. Marsh, KA, Harriss, DR, Hill, SJ. Desensitization of muscarinic receptor-coupled inositol phospholipid hydrolysis in human detrusor cultured smooth muscle cells[J]. J Urol, 1996,155:1439-1443.
    17. Welsh DG, Morielli AD, Nelson MT, et al. Transient receptor potential channels regulate myogenic tone of resistance arteries[J]. Circ Res, 2002,90(3):248-50.
    18. Wu, C, Sui, G, Fry, CH. The role of the L-type Ca2+ channel in refilling functional intracellular Ca2+ stores in guinea-pig detrusor smooth muscle[J]. The Journal of Physiology, 2002,538(2):357-369.
    19. Bartke A. New findings in transgenic, gene knockout and mutant mice[J]. Exp Gerontol, 2006,41(12):1217-9.
    20. Mansouri A. Determination of gene function by homologous recombination using embryonic stem cells and knockout mice[J]. Methods Mol Biol, 2001,175:397-413.
    21. Wegener JW, Schulla V, Lee TS, et al. An essential role of Cav1.2 L-type calcium channel for urinary bladder function[J]. FASEB J, 2004,18(10):1159-61.
    22. Schneider T, Hein P, Michel MC. Signal transduction underlying carbachol-induced contraction of rat urinary bladder. I. Phospholipases and Ca2+ sources[J]. J Pharmacol Exp Ther, 2004,308(1):47-53.
    23. Schneider T, Fetscher C, Krege S, et al. Signal transduction underlying carbachol-induced contraction of human urinary bladder[J]. J Pharmacol Exp Ther, 2004,309(3): 1148-53.
    24. Fleichman M, Schneider T, Fetscher C, et al. Signal transduction underlying carbachol-induced contraction of rat urinary bladder. II. Protein kinases[J]. J Pharmacol Exp Ther, 2004,308(1):54-8.
    25. Anderson, KE. Pharmacology of lower urinary tract smooth muscles and penile erectile tissues[J]. Pharmacological Reviews, 1993,45(3):253-308.
    26. O'Reilly, BA, Kosaka, AH, Chang, TK, et al. A quantitative analysis of purinoceptor expression in the bladders of patients with symptomatic outlet obstruction[J]. BJU International, 2001,87(7):617-622.
    27. O'Reilly, BA, Kosaka, AH, Knight, GF, et al. P2X receptors and their role in female idiopathic detrusor instability[J]. J Urol, 2002,167(1):157-164.
    28. de Groat WC. A neurologic basis for the overactive bladder[J]. Urology, 1997,50(6A Suppl):36-52; discussion 53-6.
    29. Naglie G, Radomski SB, Brymer C, et al. A randomized, double-blind, placebo controlled crossover trial of nimodipine in older persons with detrusor instability and urge incontinence[J]. J Urol, 2002,167(2 Pt 1):586-90.
    30. Andersson KE, Wein AJ. Pharmacology of the lower urinary tract: basis for current and future treatments of urinary incontinence[J]. Pharmacol Rev, 2004,56(4):581-631.
    31. Perez-Reyes, E. Molecular Physiology of Low-Voltage-Activated T-type Calcium Channels[J]. Physiological Reviews, 2003,83(1):117-161.
    32. YANAI, Y, HASHITANI, H, KUBOTA, Y, et al. The role of Ni 2-sensitive T-type Ca 2 channels in the regulation of spontaneous excitation in detrusor smooth muscles of the guinea-pig bladder[J]. BJU International, 2006,97:182.
    33. Hamill, OP, Martinac, B. Molecular Basis of Mechanotransduction in Living Cells[J]. Physiological Reviews, 2001,81(2):685-740.
    34. Wellner, MC, Isenberg, G. Properties of stretch-activated channels in myocytes from the guinea-pig urinary bladder[J]. The Journal of Physiology, 1993,466(1):213-227.
    35. Wellner, MC, Isenberg, G. Stretch effects on whole-cell currents of guinea-pig urinary bladder myocytes[J]. The Journal of Physiology, 1994,480(3):439-448.
    36. Wickenden A. K(+) channels as therapeutic drug targets[J]. Pharmacol Ther,2002,94(1-2):157-82.
    37. Werner ME, Knorn AM, Meredith AL, et al. Frequency encoding of cholinergic- and purinergic-mediated signaling to mouse urinary bladder smooth muscle: modulation by BK channels[J]. Am J Physiol Regul Integr Comp Physiol, 2007,292(1):R616-24.
    38. Ohya S, Kimura S, Kitsukawa M, et al. SK4 encodes intermediate conductance Ca2+-activated K+ channels in mouse urinary bladder smooth muscle cells[J]. Jpn J Pharmacol, 2000,84(1):97-100.
    39. Uchida H, Shishido K, Nomiya M, et al. Involvement of cyclic AMP-dependent and -independent mechanisms in the relaxation of rat detrusor muscle via beta-adrenoceptors[J]. Eur J Pharmacol, 2005,518(2-3):195-202.
    40. Thorneloe KS, Meredith AL, Knorn AM, et al. Urodynamic properties and neurotransmitter dependence of urinary bladder contractility in the BK channel deletion model of overactive bladder[J]. Am J Physiol Renal Physiol, 2005,289(3):F604-10.
    41. Malmgren A, Andersson KE, Sjogren C, et al. Effects of pinacidil and cromakalim (BRL 34915) on bladder function in rats with detrusor instability[J]. J Urol, 1989,142(4):1134-8.
    42. Fryer RM, Preusser LC, Calzadilla SV, et al. (-)-(9S)-9-(3-Bromo-4- fluorophenyl)- 2,3,5,6,7,9-hexahydrothieno[3,2-b]quin olin-8(4H)-one 1,1-dioxide (A-278637), a novel ATP-sensitive potassium channel opener: hemodynamic comparison to ZD-6169, WAY-133537, and nifedipine in the anesthetized canine[J]. J Cardiovasc Pharmacol, 2004,44(2):137-47.
    43. Aishima M, Tomoda T, Yunoki T, et al. Actions of ZD0947, a novel ATP-sensitive K+ channel opener, on membrane currents in human detrusor myocytes[J]. Br J Pharmacol, 2006,149(5):542-50.
    44. Heppner, TJ, Herrera, GM, Bonev, AD, et al. Ca2+ sparks and K (Ca) channels: novel mechanisms to relax urinary bladder smooth muscle[J]. Adv Exp Med Biol, 2003,539(Pt A):347-57.
    45. Petkov GV, Bonev AD, Heppner TJ, et al. Beta1-subunit of the Ca2+-activated K+ channel regulates contractile activity of mouse urinary bladder smooth muscle[J]. J Physiol, 2001,537(Pt 2):443-52.
    46. Herrera, GM, Pozo, MJ, Zvara, P, et al. Urinary bladder instability induced by selectivesuppression of the murine small conductance calcium-activated potassium (SK3) channel[J]. The Journal of Physiology, 2003,551(3):893-903.
    47. Thorneloe KS, Nelson MT. Properties and molecular basis of the mouse urinary bladder voltage-gated K+ current[J]. J Physiol, 2003,549(Pt 1):65-74.
    48. Davies AM, Batchelor TJ, Eardley I, et al. Potassium channel KV alpha1 subunit expression and function in human detrusor muscle[J]. J Urol, 2002,167(4):1881-6.
    49. Gutman GA, Chandy KG, Grissmer S, et al. International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels[J]. Pharmacol Rev, 2005,57(4):473-508.
    50. Guo W, Jung WE, Marionneau C, et al. Targeted deletion of Kv4.2 eliminates I(to,f) and results in electrical and molecular remodeling, with no evidence of ventricular hypertrophy or myocardial dysfunction[J]. Circ Res, 2005,97(12):1342-50.
    51. Kopp-Scheinpflug C, Fuchs K, Lippe WR, et al. Decreased temporal precision of auditory signaling in Kcna1-null mice: an electrophysiological study in vivo[J]. J Neurosci, 2003,23(27):9199-207.
    52. Xu J, Koni PA, Wang P, et al. The voltage-gated potassium channel Kv1.3 regulates energy homeostasis and body weight[J]. Hum Mol Genet, 2003,12(5):551-9.
    53. Hashitani H, Brading AF. Electrical properties of detrusor smooth muscles from the pig and human urinary bladder[J]. Br J Pharmacol, 2003,140(1):146-58.
    54. Hashitani H, Brading AF. Ionic basis for the regulation of spontaneous excitation in detrusor smooth muscle cells of the guinea-pig urinary bladder[J]. Br J Pharmacol, 2003,140(1):159-69.
    55. Heppner TJ, Bonev AD, Nelson MT. Ca(2+)-activated K+ channels regulate action potential repolarization in urinary bladder smooth muscle[J]. Am J Physiol, 1997,273(1 Pt 1):C110-7.
    56. Petkov GV, Heppner TJ, Bonev AD, et al. Low levels of K(ATP) channel activation decrease excitability and contractility of urinary bladder[J]. Am J Physiol Regul Integr Comp Physiol, 2001,280(5):R1427-33.
    57. Thorneloe KS, Nelson MT. Properties of a tonically active, sodium-permeable current in mouse urinary bladder smooth muscle[J]. Am J Physiol Cell Physiol, 2004,286(6): C1246-57.
    1. Hashitani H, Brading AF. Ionic basis for the regulation of spontaneous excitation in detrusor smooth muscle cells of the guinea-pig urinary bladder[J]. Br J Pharmacol, 2003,140(1):159-69.
    2. Hashitani H, Brading AF, Suzuki H. Correlation between spontaneous electrical, calcium and mechanical activity in detrusor smooth muscle of the guinea-pig bladder[J]. Br J Pharmacol, 2004,141(1):183-93.
    3. McCloskey KD, Gurney AM. Kit positive cells in the guinea pig bladder[J]. J Urol, 2002,168(2):832-6.
    4. Gillespie JI. Noradrenaline inhibits autonomous activity in the isolated guinea pig bladder[J]. BJU Int, 2004,93(3):401-9.
    5. Gillespie JI. Modulation of autonomous contractile activity in the isolated whole bladder of the guinea pig[J]. BJU Int, 2004,93(3):393-400.
    6.宋波.逼尿肌兴奋性及逼尿肌不稳定[J].第三军医大学学报, 2003,25(022): 1969-1971.
    7.宋波,李新.逼尿肌不稳定的机制研究—神经源性?肌源性?[J].解放军医学杂志, 2003,28(002): 131-133.
    8. Hashitani, H, Brading, AF. Ionic basis for the regulation of spontaneous excitation in detrusor smooth muscle cells of the guinea-pig urinary bladder[J]. British Journal of Pharmacology, 2003,140:159-169.
    9. Drake MJ, Hedlund P, Harvey IJ, et al. Partial outlet obstruction enhances modular autonomous activity in the isolated rat bladder[J]. J Urol, 2003,170(1):276-9.
    10. Mills IW, Greenland JE, McMurray G, et al. Studies of the pathophysiology of idiopathic detrusor instability: the physiological properties of the detrusor smooth muscle and its pattern of innervation[J]. J Urol, 2000,163(2):646-51.
    11. Brading, AF. A myogenic basis for the overactive bladder[J]. Urology, 1997,50(6A Suppl):57-67.
    12. Fry CH, Hussain M, McCarthy C, et al. Recent advances in detrusor muscle function[J]. Scand J Urol Nephrol Suppl, 2004(215):20-5.
    13. Jiang, HH, Song, B, Lu, GS, et al. Loss of ryanodine receptor calcium-release channelexpression associated with overactive urinary bladder smooth muscle contractions in a detrusor instability model[J]. BJU Int, 2005,96(3):428-33.
    14. Fukuta H, Kito Y, Suzuki H. Spontaneous electrical activity and associated changes in calcium concentration in guinea-pig gastric smooth muscle[J]. J Physiol, 2002,540(Pt 1):249-60.
    15. Biers SM, Reynard JM, Brading AF. The effects of a new selective beta3-adrenoceptor agonist (GW427353) on spontaneous activity and detrusor relaxation in human bladder[J]. BJU Int, 2006,98(6):1310-4.
    16. Van Duyl, WA, van der Hoeven, AAM, de Bakker, JV. Synchronization of spontaneous contraction activity in smooth muscle of urinary bladder[J]. Neurourol Urodyn, 1990,9:547-550.
    17. Herrera GM, Heppner TJ, Nelson MT. Regulation of urinary bladder smooth muscle contractions by ryanodine receptors and BK and SK channels[J]. Am J Physiol Regul Integr Comp Physiol, 2000,279(1):R60-8.
    18. Buckner, SA, Milicic, I, Daza, AV, et al. Spontaneous phasic activity of the pig urinary bladder smooth muscle: characteristics and sensitivity to potassium channel modulators[J]. British Journal of Pharmacology, 2002,135(3):639-648.
    19. Imai, T, Tanaka, Y, Okamoto, T, et al. Evidence that action potential generation is not the exclusive determinant to trigger spontaneous myogenic contraction of guinea-pig urinary bladder smooth muscle[J]. Acta Physiologica Scandinavica, 2002,176(1):57-63.
    20. Tanaka Y, Okamoto T, Imai T, et al. Phospholipase C inhibitors suppress spontaneous mechanical activity of guinea pig urinary bladder smooth muscle[J]. Biol Pharm Bull, 2003,26(8):1192-4.
    21. Collier ML, Ji G, Wang Y, et al. Calcium-induced calcium release in smooth muscle: loose coupling between the action potential and calcium release[J]. J Gen Physiol, 2000,115(5):653-62.
    22. Montgomery BS, Fry CH. The action potential and net membrane currents in isolated human detrusor smooth muscle cells[J]. J Urol, 1992,147(1):176-84.
    23. Kura H, Yoshino M, Yabu H. Blocking action of terodiline on calcium channels in single smooth muscle cells of the guinea pig urinary bladder[J]. J Pharmacol Exp Ther, 1992,261(2):724-9.
    24.沈文浩,李为兵,熊恩庆,等.胃肠道起搏细胞ICCs在豚鼠泌尿道分布研究[J].第三军医大学学报, 2006,28(002): 172-173.
    25. Shafik A, El-Sibai O, Shafik AA, et al. Identification of interstitial cells of Cajal in human urinary bladder: concept of vesical pacemaker[J]. Urology, 2004,64(4):809-13.
    26. Sanders KM, Ward SM. Kit mutants and gastrointestinal physiology[J]. J Physiol, 2007,578(Pt 1):33-42.
    27. McCloskey KD. Characterization of outward currents in interstitial cells from the guinea pig bladder[J]. J Urol, 2005,173(1):296-301.
    28. McCloskey KD. Calcium currents in interstitial cells from the guinea-pig bladder[J]. BJU Int, 2006,97(6):1338-43.
    29. Kubota Y, Kajioka S, Biers SM, et al. Investigation of the effect of the c-kit inhibitor Glivec on isolated guinea-pig detrusor preparations[J]. Auton Neurosci, 2004,115(1-2): 64-73.
    30. Hashitani H, Yanai Y, Suzuki H. Role of interstitial cells and gap junctions in the transmission of spontaneous Ca2+ signals in detrusor smooth muscles of the guinea-pig urinary bladder[J]. J Physiol, 2004,559(Pt 2):567-81.
    31. Kubota Y, Biers SM, Kohri K, et al. Effects of imatinib mesylate (Glivec) as a c-kit tyrosine kinase inhibitor in the guinea-pig urinary bladder[J]. Neurourol Urodyn, 2006,25(3):205-10.
    32. Biers SM, Reynard JM, Doore T, et al. The functional effects of a c-kit tyrosine inhibitor on guinea-pig and human detrusor[J]. BJU Int, 2006,97(3):612-6.
    33. Davidson RA, McCloskey KD. Morphology and localization of interstitial cells in the guinea pig bladder: structural relationships with smooth muscle and neurons[J]. J Urol, 2005,173(4):1385-90.
    34. Duchen MR. Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signalling and cell death[J]. J Physiol, 1999,516 ( Pt 1):1-17.
    35. Ward SM, Ordog T, Koh SD, et al. Pacemaking in interstitial cells of Cajal depends upon calcium handling by endoplasmic reticulum and mitochondria[J]. J Physiol, 2000,525 Pt 2:355-61.
    36. Kubota Y, Hashitani H, Fukuta H, et al. Role of mitochondria in the generation of spontaneous activity in detrusor smooth muscles of the Guinea pig bladder[J]. J Urol,2003,170(2 Pt 1):628-33.
    37. Lacinova L, Hofmann F. Ca2+- and voltage-dependent inactivation of the expressed L-type Ca(v)1.2 calcium channel[J]. Arch Biochem Biophys, 2005,437(1):42-50.
    38. Lewis SA. Everything you wanted to know about the bladder epithelium but were afraid to ask[J]. Am J Physiol Renal Physiol, 2000,278(6):F867-74.
    39. Bschleipfer T, Schukowski K, Weidner W, et al. Expression and distribution of cholinergic receptors in the human urothelium[J]. Life Sci, 2007.
    40. Birder LA. Urinary bladder urothelium: molecular sensors of chemical/thermal/mechanical stimuli[J]. Vascul Pharmacol, 2006,45(4):221-6.
    41. Birder LA, Barrick SR, Roppolo JR, et al. Feline interstitial cystitis results in mechanical hypersensitivity and altered ATP release from bladder urothelium[J]. Am J Physiol Renal Physiol, 2003,285(3):F423-9.
    42. Sun Y, Chai TC. Augmented extracellular ATP signaling in bladder urothelial cells from patients with interstitial cystitis[J]. Am J Physiol Cell Physiol, 2006,290(1):C27-34.
    43. Ferguson DR, Kennedy I, Burton TJ. ATP is released from rabbit urinary bladder epithelial cells by hydrostatic pressure changes--a possible sensory mechanism?[J]. J Physiol, 1997,505 ( Pt 2):503-11.
    44. Hawthorn MH, Chapple CR, Cock M, et al. Urothelium-derived inhibitory factor(s) influences on detrusor muscle contractility in vitro[J]. Br J Pharmacol, 2000,129(3): 416-9.
    45. Peters NS. Gap junctions: clarifying the complexities of connexins and conduction[J]. Circ Res, 2006,99(11):1156-8.
    46. Meier C, Dermietzel R. Electrical synapses--gap junctions in the brain[J]. Results Probl Cell Differ, 2006,43:99-128.
    47. Christ GJ, Venkateswarlu K, Day NS, et al. Intercellular communication and bladder function[J]. Adv Exp Med Biol, 2003,539(Pt A):239-54.
    48. Sui GP, Coppen SR, Dupont E, et al. Impedance measurements and connexin expression in human detrusor muscle from stable and unstable bladders[J]. BJU Int, 2003,92(3):297-305.
    49. John H, Wang X, Wehrli E, et al. Evidence of gap junctions in the stable nonobstructed human bladder[J]. J Urol, 2003,169(2):745-9.
    50. Christ GJ, Day NS, Day M, et al. Increased connexin43-mediated intercellular communication in a rat model of bladder overactivity in vivo[J]. Am J Physiol Regul Integr Comp Physiol, 2003,284(5):R1241-8.
    51.孙玮,金锡御,宋波,等.荧光光漂白恢复技术在检测膀胱平滑肌细胞间通讯功能中的应用[J].第三军医大学学报, 2003,25(24).
    52.周逢海,宋波,金锡御,等.逼尿肌不稳定缝隙连接介导细胞间通讯的研究[J].中华泌尿外科杂志, 2004,25(004): 260-262.
    53.封建立,宋波, FENG, J,等.不稳定逼尿肌Cx43基因表达及其与逼尿肌细胞间缝隙连接通讯功能的关系研究[J].第三军医大学学报, 2005,27(9).
    54.周逢海,王养民,宋波,等. 18β-GA对逼尿肌不稳定缝隙连接介导细胞间通讯功能影响[J].中华实验外科杂志, 2006,23(003): 369-369.
    55. Nakahira, Y, Hashitani, H, Fukuta, H, et al. Effects of isoproterenol on spontaneous excitations in detrusor smooth muscle cells of the guinea pig[J]. J Urol, 2001,166(1):335-340.
    56. Ordog T, Redelman D, Miller LJ, et al. Purification of interstitial cells of Cajal by fluorescence-activated cell sorting[J]. Am J Physiol Cell Physiol, 2004, 286(2): C448-56.
    57. Zhang H, Zhang Z, Xu Z, et al. [Optical mapping of the membrane potential with voltage-sensitive dyes][J]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, 2006,23(3): 665-8.
    58. Chang PY, Jackson MB. Interpretation and optimization of absorbance and fluorescence signals from voltage-sensitive dyes[J]. J Membr Biol, 2003,196(2): 105-16.
    59. Ishii TM, Takano M, Xie LH, et al. Molecular characterization of the hyperpolarization-activated cation channel in rabbit heart sinoatrial node[J]. J Biol Chem, 1999,274(18):12835-9.
    60. Pian P, Bucchi A, Robinson RB, et al. Regulation of gating and rundown of HCN hyperpolarization-activated channels by exogenous and endogenous PIP2[J]. J Gen Physiol, 2006,128(5):593-604.
    61. Sergeant GP, Thornbury KD, McHale NG, et al. Interstitial cells of Cajal in the urethra[J]. J Cell Mol Med, 2006,10(2):280-91.
    62. Sergeant GP, Hollywood MA, McHale NG, et al. Ca2+ signalling in urethral interstitial cells of Cajal[J]. J Physiol, 2006,576(Pt 3):715-20.
    63. Bean BP. The molecular machinery of resurgent sodium current revealed[J]. Neuron, 2005,45(2):185-7.
    64. Jackson AC, Yao GL, Bean BP. Mechanism of spontaneous firing in dorsomedial suprachiasmatic nucleus neurons[J]. J Neurosci, 2004,24(37):7985-98.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700