冀北典型森林降雨分配功能与林分结构耦合
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在2010、2011年以河北省围场县木兰林管局北沟林场为研究区,选择3种典型森林——人工油松林、人工落叶松林与天然次生林(落叶松、白桦、山杨混交)进行调查与实验,对当地生境条件下的森林降雨分配功能与林分结构做了耦合研究。主要研究结果如下:
     1.用逐步回归分析与二次响应曲面拟合方法拟合了研究区人工油松林、人工落叶松林穿透率、树干茎流率关于林分结构、雨量级的最优方程。
     2.研究区人工油松林穿透雨出现聚集效应的情况比较常见,某些油松单木树冠下穿透率有时会超过100%,远高出临近林窗的穿透雨与林外降雨的比值。
     3.根据自制简易蒸散装置的测定,研究区2011年7-9月植物生长季昼间代表性人工油松林(9、10号样地)林内平均水分蒸散速率(0.09mm·h-1)在绝大部分观测时段小于无林地(0.22mm·h-1);与其它林内测点相比,处于经营后期的10号人工油松林样地内的覆盖枯落物且植入灌草的蒸散装置的昼间蒸散速率较高。同时期夜间,人工油松林林内平均水分蒸散速率(0.026mm·h-1)在多于一半的观测时段小于无林地(0.065mm.h-1)。
     4.根据自制简易树木胸径生长测定装置的测定,研究区各人工油松林样地径级标准木平均年胸径生长速率从大到小的排序情况为:10号样地(0.2597cm·年-1;林分密度最小,为600株·hm-2)>13号样地(0.2097cm·年-1;林分密度较小,为1080株·hm-2)与15号样地(0.2097cm·年-1,林分密度较小,为928株·hm-2)>3号样地(0.1413cm·年-1;林分密度较大,为2483株·hm-2)、9号样地(0.1082cm·年-1;林分密度较大,为1408株·hm-2)与12号样地(0.1400cm·年-1,林分密度较大,为1815株·hm-2)。较小的经营密度有利于提高人工油松林胸径生长速率。研究区人工油松林(林龄在33~43年)的年平均胸径生长速率为0.18cm·年-1,在6~9月生长旺季胸径生长速率可达0.53cm·年-1。
     5.通过因子分析与典型相关分析方法得到的显著的林分结构典型变量与林分降雨分配功能典型变量的典型相关系数达0.9501(P<0.05),其对应的典型结构说明研究区林分经营的初期趋向性与林分透水含水功能有很好的负相关性。
     6.总结了研究区3种林分各样地的不考虑蒸发的冠层持水能力、树干持水能力与树干茎流系数。用Levton-最上方5点约束的方法得到9号模型样地(林分密度为1925株·hm-2)与10号样地(林分密度为600株·hm-2)2个人工油松林样地的冠层持水能力分别为0.49mm与0.21mm,相比之下,9号模型样地与10号样地的不考虑蒸发冠层持水能力分别平均为1.03mm与0.74mm。
     7.根据修正Gash模型的算法,使用Visual Basic编程软件6.0版,自行编制了“修正Gash模型模拟系统”。该系统支持模型计算所需变量数据的导入、计算结果显示与有关图件的生成与保存,可对截留散失量、树干茎流量与穿透雨量进行动态模拟;支持变参数动态模拟分析;实现了在限定、可标示有关参数情况下的参数对截留量影响的敏感度分析。用该系统对2011年9号模型样地与10号样地观测期降雨的截留散失量、树干茎流量与穿透雨量的动态拟合,并进行了模型参数对截留量影响的敏感度分析。
Investigation and experiment in three kinds of forests including planted Chinese pine forest, planted larch forest and natural secondary forest (mixed by larch birch and poplar) were completed at Beigou forest farm in Mulan forestry administration in Weichang county of Hebei province in2010,2011. Coupling relationship between water allocation function, environmental function (about meteorology and plant) and stand structure of the forests was studied. Main research results was listed as follows:
     1. Stepwise regression analysis and response surface quadratic model was used to get the optimal equation to describe the relationship between throughfall rate or stem-flow rate and stand structure&rainfall class of planted Chinese pine forest and planted larch forest.
     2."Gathering effect" of throughfall in planted Chinese pine forest was common. Throughfall rate under the crown of some individual tree of Chinese pine sometimes exceeded100%, and was far higher than the throughfall rate of adjacent forest gaps and rainfall outside the forest.
     3. According to the measurement of self-made simple evapotranspiration measuring devices, mean daytime evapotranspiration rate (0.026mm·h-1) during July to September inside the representative planted Chinese pine forest in study area was smaller than the land with no forests (0.065mm·h-1) at most of observation time. Compared with other measuring points inside the forests, daytime evapotranspiration rate of the evapotranspiration device with covering of forest litters, shrub and grass in NO.10sample plot (at later management periods) was higher. During the same time, mean nighttime evapotranspiration rate (0.026mm·h-1) was smaller than the land with no forests (0.065mm·h-1) at during half of observation time.
     4. According to the measurement of self-made simple DBH growth measuring devices, sorting (from the highest to the lowest) mean annual DBH growth rate of diameter class-standard trees of planted Chinese pine forest sample plots was as follows:NO.10sample plot (0.2597cm·a-1; with the smaller stand density of600trees·hm-2)> NO.13sample plot (0.2097cm·a-1; with a relatively smaller stand density of1080trees·hm-2) and NO.15sample plot (0.2097cm·a-1; with a relatively smaller stand density of928trees·hm-2)> NO.3sample plot (0.1413cm·a-1; with a higher stand density of2483trees·hm-2), NO.9sample plot (0.1082cm·a-1; with a higher stand density of1408trees·hm-2) and NO.12sample plot (0.1400cm·a-1; with a higher stand density of1815trees·hm-2). Smaller management density was beneficial to increase DBH growth rate of Chinese pine forest. Annual DBH growth rate of planted Chinese pine forest in study area was0.18cm·a-1at mean level during1year, and reached to0.53cm·a-1at DBH growth-peak season during June to September.
     5. According to factor analysis and canonical correlation analysis, an significant canonical correlation coefficient that reflected the relation between a canonical variable about stand structure and a canonical variable about water allocation function of the forests resched0.9501(P<0.05) and the canonical structure it corresponded showed a well negative correlation between initial directivity of forest stand management and the forest function about permeability and water content.
     6. Canopy storage capacity without evaporation-considering, trunk storage capacity and trunk drainage partitioning coefficient of all the sample plots of3kinds of forests was summarized. Computed by method of "Leyton-constraint with top5points", canopy storage capacity of No.9-model sample plot (with the forest density of1925trees·hm-2) and No.10sample plot (with the forest density of600trees·hm-2) were0.49mm and0.21mm respectively. In contrast with them, the canopy storage capacity without evaporation-considering of No.9-model sample plot and No.10sample plot were1.03mm and0.74mm in average respectively.
     7. According to the arithmetic of revised Gash model, Visual Basic language software6.0was used to compile "System for simulation of revised Gash model". This program supports the import of the variables needed for simulation, showing of simulation results and producing and saving of related pictures. The program can simulate dynamic interception loss, stemflow and throghfall, supports the simulation and analysis under the condition of variational parameters, and actualizes sensitivity analysises of canopy parameters that affect canopy interception under the condition that related parameters have been restricted and marked. The program was used to simulate the interception loss, stemflow and throghfall of No.9-model sample plot and No.10sample plot in2011. Sensitivity analysises of canopy parameters to interception was also completed.
引文
[209]丁元林,孔丹莉.多个样本及其两两比较的秩和检验SAS程序[J].中国卫生统计,2002,19(5):313-314.
    [111]刁一伟,裴铁璠.森林流域生态水文过程动力学机制与模拟研究进展[J].应用生态学报,2004,15(12):2369-2376.
    [89]万师强,陈灵芝.东灵山地区大气降水特征及森林树干茎流[J].生态学报,2000,20(1):61-67.
    [135]马雪华.森林水文学.北京:中国林业出版社[M],1993:141-164.
    [206]中国科学院南京土壤研究所土壤物理研究室.土壤物理性质测定方法[M].北京:科学出版社,1978.
    [14]方精云,李意德,朱彪,等.海南岛尖峰岭山地雨林的群落结构、物种多样性以及在世界雨林中的地位[J].生物多样性,2004,12(1):29-43.
    [38]王文,诸葛绪霞,周炫.植物截留观测方法综述[M].河海大学学报(自然科学版),2010,38(5):495-504.
    [136]王正非,朱廷曜,朱劲伟.森林气象学[M],北京:中国林业出版社,1985:196-205.
    [81]王礼先,张志强.森林植被变化的水文生态效应研究进展[J].世界林业研究,1998,6:14-22.
    [134]王安志,裴铁璠.森林蒸散测算方法研究进展与展望[J].应用生态学报,2001,12(6):933-937.
    [173]王秀石.落叶松人工林土壤变化规律的研究[J].吉林林业科技,1982,(4):1-11.
    [7]王建林.长苞铁杉群落结构特征研究[J].华东森林经理,2002,16(1):46-50.
    [176]王威,郑小贤,宁杨翠.北京山区水源涵养林典型森林类型结构特征研究[J].北京林业大学学报,2011,33(1):60-63.
    [107]王彦辉,于澎涛,徐德应,等.林冠截留降雨模型转化和参数规律的初步研究[J].北京林业大学学报,1998,20(6):25-30.
    [175]王树力,沈海燕,孙悦等.长白落叶松纯林改造对林地土壤性质的影响[J].中国水土保持科学,2009,7(6):98-103.
    [147]王洪俊.城市森林结构对空气负离子水平的影响[J].南京林业大学学报(自然科学版):2004,28(5):96-98.
    [158]王震洪,段昌群,侯永平,等.植物多样性与生态系统土壤保持功能关系及其生态学意义[J].植物生态学报:2006,30(3):392-403.
    [154]王巍,李庆康,马克平.东灵山地区辽东栎幼苗的建立和空间分布[J].植物生态学报,2000,24(5):595-600.
    [120]王馨,张一平,刘文杰Gash模型在热带季节雨林林冠截留研究中的应用[J].生态学报,2006,26(3):722-729.
    [11]冉潇,从日晨,杨建民,等.北京鹫峰地区松栎混交群落结构与物种多样性[J].河北农业大学学报,2006,29(4):27-33.
    [150]冯仲科,罗旭,石丽萍.森林生物量研究的若干问题及完善途径[J].世界林业研究,2005,18(3):25-28.
    [128]田超,杨新兵,李军,等.冀北山地阴坡枯物层和土壤层水文效应研究[J].水土保持学报,2011,25(2):97-103.
    [35]石培礼,吴波,程根伟,等.长江上游地区主要森林植被类型蓄水能力的初步研究[J].自然资源学报,2004,19(3):351-490.
    [141]刘云,侯世全,李明辉,等.天山云杉林林冠干扰前后植物多样性及其与环境的关系[J].林业科学研究,2005,18(4):430-435.
    [171]刘世荣.落叶松人工林养分循环过程与潜在地力衰退的研究[J].东北林业大学学报,1993,21(2):19-24.
    [63]刘建立,王彦辉,于澎涛,等.六盘山叠叠沟小流域华北落叶松人工林的冠层降水再分配特征[J].水土保持学报,2009,23(4):76-81.
    [137]刘俊民,余新晓.水文与水资源学[M].北京:中国林业出版社,146-147.
    [28]刘彦,余新晓,岳永杰,等.北京密云水库集水区刺槐人工林空间结构分析[J].北京林业大学学报,2009,31(5):25-28.
    [15]刘思土,邹秀红,郭志坚,等.毛竹群落植物科属组成及其植物地理分析[J].福建林业科技,2003,30(4):59-61.
    [64]刘春延,李良,赵秀海,等.塞罕坝地区华北落叶松人工林对降雨的截留分配效应[J].西北林学院学报,2011,26(3):1-5.
    [108]刘家冈,万国良,张学培,等.林冠对降雨截留的半理论模型[J].林业科学,2000,36(2):2-5.
    [211]刘曙光,郭景唐.华北人工林林下降雨空间分布的研究[J].北京林业大学学报,1988,10(4):1-10.
    [82]刘曙光,郭景唐.华北人工林林下降雨空间分布的研究[J].北京林业大学学报,1988,10(4):1-10.
    [215]吕雄.概率论与数量统计[M].呼和浩特,内蒙古大学出版社,2000,166-195.
    [29]吕锡芝,范敏锐,余新晓,等.北京百花山核桃楸华北落叶松混交林空间结构特征[J].水土保持研究,2010,17(3):212-216.
    [124]孙向阳,王根绪,李伟.贡嘎山亚高山演替林林冠截留特征与模拟[J].水科学进展,2011,22(1):23-29.
    [16]孙儒泳,李博,诸葛阳,等.普通生态学[M].北京:高等教育出版社,1993.
    [66]巩合德,王开运,杨万勤,等.川西亚高山白桦林穿透雨和茎流特征观测研究[J].生态学杂志,2004,23(4):17-20.
    [189]巩合德,王开运,杨万勤等.川西亚高山白桦林穿透雨和茎流特征观测研究[J].生态学杂志2004,23(4):17-20.
    [205]祁有祥,骆汉,赵廷宁.基于鱼眼镜头的林冠郁闭度简易测量方法[J].北京林业大学学报,2009,(6):60-66.
    [169]闫德仁.落叶松人工林地力哀退趋势的研究[J].内蒙古林业科技,1996,(34):93-98.
    [100]何常清,薛建辉,吴永波,等.应用修正的Gash解析模型对岷江上游亚高山川滇高山栎林林冠截留的模拟[J].生态学报,2010,30(5):1125-1132.
    [125]吴钦孝,赵鸿雁,刘向东,等.森林枯枝落叶层涵养水源保持水土的作用评价[J].水土保持学报,1998,4(2):23-28.
    [145]吴楚材,郑群明,钟林生.森林游憩区空气负离子水平的研究[J].林业科学,2001,37(5):75-81.
    [132]张伟,杨新兵,张汝松,等.冀北山地不同林分枯落物及土壤的水源涵养功能评价[J].水土保持通报,2011,31(3):208-238.
    [109]张光灿,刘霞,赵玫.树冠截留降雨模型研究进展及其述评[J].南京林业大学学报,2000,24(1):64-68.
    [31]张佳音,丁国栋,余新晓,等.北京山区人工侧柏林的径级结构与空间分布格局[J].浙江林学院学报,2010,27(1):30-35.
    [182]张佳音.木兰围场北沟林场森林生态系统健康评价研究[D].北京:北京林业大学,2009.
    [10]张宜辉,阙德海.福建三明小湖赤枝拷群落组成结构及物种多样性分析[J].厦门大学学报(自然科学版).2002,41(2):251-257.
    [172]张彦东.落叶松根际土壤磷的有效性研究[J].应用生态学报,2001,12(1):31-34.
    [207]张济世,刘立昱,程中山,等.统计水文学[M].郑州:黄河水利出版社,2006,134.
    [127]张振明,余新晓,牛健植,等.不同林分枯落物层的水文生态功能[J].水土保持学报,2005,19(3):139-143.
    [149]张翔.浅析相关因子对空气负离子水平的影响[J].湖南环境生物职业技术学院学报,2004,10(4):346-351.
    [164]张鼎华.人工地力的衰退与维护[M].北京:中国林业出版社,2001.
    [34]李文华,何永涛,杨丽韫.森林对径流影响研究的回顾与展望[J].自然资源学报,2001,16(5):398-406.
    [179]李金良,郑小贤.北京地区水源涵养林健康评价指标体系的探讨[J].林业资源管理,2004(1):31-34.
    [151]李荣,何景峰,张文辉,等.近自然经营间伐对辽东栎林植物组成及林木更新的影响[J].2011,39(7):83-91.
    [83]李振新,郑华,欧阳志云,等.岷江冷杉针叶林下穿透雨空间分布特征[J].生态学报,2004,24(5):1015-1021.
    [65]李淑春,张伟,姚卫星,等.冀北山地不同林分类型林冠层降水分配研究[J].水土保持研究,2011,18(5):124-131.
    [3]李毅.甘肃胡杨林分结构的研究[J].干旱区资源与环境.1994,8(3):88-95.
    [162]杨承栋.杉木人工林根际土壤性质变化的研究[J].林业科学,1999,35(6):2-9.
    [178]杨春时.系统论信息论控制论浅说[M].北京:中国广播电视出版社,1987(2):23-24.
    [129]杨新兵,张伟,张建华,等.生态抚育对华北落叶松幼龄林枯落物和土壤水文效应的影响[J].水土保持学报,2010,24(1):119-122.
    [62]杨澄,刘建军.桥山油松天然林水文效应的研究[J].西北林学院学报,1997,12(1):29-33.
    [57]肖洋,陈丽华,余新晓,等.北京密云水库油松人工林对降水分配的影响[J].水土保持学报,2007,21(3):154-157.
    [30]苏薇,岳永杰,余新晓,等.北京山区油松天然林的空间结构分析[J].灌溉排水学报,2008,28(1):113-117.
    [144]邵海荣,贺庆棠,阎海平,等.北京地区空气负离子浓度时空变化特征的研究[J].北京林业大学学报(自然科学版):2005,27(3):35-39.
    [146]邵海荣,贺庆棠,阎海平,等.北京地区空气负离子浓度时空变化特征的研究[J].北京林业大学学报(自然科学版):2005:27(3):35-39.
    [148]邵海荣,贺庆棠.森林与空气负离子[J].世界林业研究,2000,13(5):19-23.
    [167]陆秀君.落叶松连栽对土壤物理性质及林木生长的影响[J].辽宁林业科技,1999,10(3):10-12.
    [166]陈乃全.落叶松人工林重茬更新效果的研究[A].中国林学会造林学会第二届学术讨论会造林论文集[C].北京:中国林业出版社,1990.
    [61]陈云明,吴钦孝,刘向东.黄土丘陵区油松人工林对降水再分配的研究[J].华北水利水电学院学报,1994,(1):62-68.
    [4]陈东来,秦淑英.山杨天然林林分结构的研究[J].河北农业大学学报.1994,17(1):36-43.
    [56]陈丽华,杨新兵,鲁绍伟,等.华北土石山区油松人工林耗水分配规律[J].北京林业大学学报,2008,30(增刊2),182-187.
    [161]陈洪明,陈立新,王殿文.落叶松人工林土壤酸度质量与养分关系研究现状及趋势[J].防护林科技,2004,(5):46-49.
    [138]国庆喜,王晓春,孙龙.植物生态学实习方法[M].哈尔滨:东北林业大学出版社,2004,4-9.
    [218]国家林业局.中华人民共和国林业行业标准——森林生态系统长期定位观测方法(LY/T1952-2011),2011,15.
    [19]孟宪宇,邱水文.长白山落叶松直径分布收获模型的研究[M].北京林业大学报,1991,13(4):9-15.
    [5]孟宪宇.测树学(第2版)[M].中国林业出版社,1995.
    [183]孟宪宇.测树学[M].北京:中国林业出版社,1995,128-130.
    [121]季冬.贡嘎山暗针叶林林冠截留的Gash模型[D].北京:北京林业大学,2007.
    [22]岳永杰,余新晓,李钢铁,等.北京松山自然保护区蒙古栎林的空间结构特征[J].应用生态学报,2009,20(8):1811-1816.
    [6]岳永杰.北京山区防护林优势树种群落结构研究[D].2008,6.
    [99]林业部调查规划设计院.森林调查手册[M].北京:中国林业出版社,1981.
    [50]战伟庆,张志强,武军,等.华北油松人工林冠层穿透雨空间变异性研究[J].中国水土保持科学,2006,4(3):26-30.
    [12]咎启杰,李鸣光,王伯荪,等.黑石顶针阔混交林演替过程国群落结构动态[J].应用生态学报,2000,11(1):1-4.
    [9]胡正华,于明坚,等.古田山国家级自然保护区常绿阔叶林类型及其群落物种多样性研究[J].应用与环境生物学报,2003,9(4):341-345.
    [20]胡艳波等.吉林蛟河天然红松阔叶林的空间结构分析[J].林业科学研究.2003,16(5):523-530.
    [130]胡淑萍,余新晓,岳永杰.北京百花山森林枯落物层和土壤层水文效应[J].水土保持学报,2008,22(1):146-150.
    [139]胡理乐,朱教君,李俊生,等.林窗内光照强度的测量方法[J].生态学报,2009,29(9):5056-5065.
    [142]贺庆棠.气象学.北京:中国林业出版社,2002,179-181.
    [123]赵洋毅,王玉杰,王云琦,等.基于修正的Gash模型模拟缙云山毛竹林降雨截留[J].林业科学,2011,47(9):15-20.
    [17]赵淑清,方精云,朴世龙,等.大兴安岭呼中地区白卡鲁山植物群落结构及其多样性研究[J].生物多样性,2004,12(1):182-189.
    [60]赵鸿雁,吴钦孝,刘国彬.黄土高原人工油松林水文生态效应[J].生态学报,2003,23(2):376-379.
    [177]钟剑飞,刘东兰,郑小贤.水源涵养林结构与功能量化研究进展[J].现代农业科学,2009,16(3):110-112.
    [165]席苏桦.落叶松二代更新对地力影响及林木生长的研究[J].东北林业大学学报,1999,27(5):15-19.
    [131]徐学华,于树峰,崔立志,等.冀北山地华北落叶松人工林水源涵养功能分析[J].水土保持研究,2009,16(5):162-166.
    [213]袁志发,周静芋.多元统计分析[M].北京,科学出版社,2002,122-215.
    [40]郭忠升,邵明安.雨水资源、土壤水资源与土壤水分植被承载力[J].自然资源学报,2003,18(5):522-528.
    [37]郭明春,于澎涛,王彦辉,等.林冠截持降雨模型的初步研究[J].应用生态学报,2005,16(9):1633-1637.
    [110]郭明春,于澎涛,王彦辉,等.林冠截持降雨模型的初步研究[J].应用生态学报,2005,16(9):1633-1637.
    [170]高雅贤.落叶松人上林土壤中水、肥动态的研究[J].林业科技,1983,(2):9-13.
    [208]高慧璇等.SAS系统SAS/STAT软件使用手册[M].北京:中国统计出版社,1997,160-524.
    [174]崔国发.兴安落叶松人工林土壤酸度的研究[J].北京林业大学学报,2002,(3):34-36.
    [33]曹云,黄志刚,郑华,等.柑桔园林下穿透雨的分布特征[J].水科学进展,2007,18(6):853-857.
    [8]曹洪麟,任海,彭少麟.鹤山湿地松人工林的群落结构与能量特征[J].广西植物,1998,18(1):24-28.
    [163]盛炜彤.人工林地力衰退研究[M].北京:中国科学技术出版社,1992.
    [85]黄承标,梁温宏.广西亚热带主要林型的树干茎流[J].植物资源与环境,1994,3(4):10-17.
    [220]黄清麟.浅谈德国的“近自然森林经营”[J].世界林业研究,2005,18(3):73-77.
    [122]彭焕华.祁连山北坡青海云杉林冠截留过程研究[D].兰州:兰州大学,2010.
    [25]惠刚盈,克劳斯·冯佳多.森林空间结构量化分析方法[M].北京:中国科学技术出版社,2003.
    [24]惠刚盈,克劳斯·冯佳多.德国现代森林经营技术[M].北京:中国科学技术出版杜,2001:66-134.
    [27]惠刚盈,胡艳波.混交林树种空间隔离程度表达方式的研究[J].林业科学研究,2001,14(1):177-181.
    [18]惠刚盈,盛炜彤.林分直径结构模型的研究[J].林业科学研究,1995,8(2):127-131.
    [59]曾杰,郭景唐.太岳山油松人工林生态系统降雨的第一次分配[J].北京林业大学学报,1997,19(3):21-27.
    [143]曾曙才,苏志尧,陈北光.我国森林空气负离子研究进展[J].南京林业大学学报(自然科学版),2006,30(5):107-111.
    [55]温远光,刘世荣.我国主要森林生态系统类型降水截留规律的数量分析[J].林业科学,1995,31(4):298-298.
    [1]董世仁,郭景唐,满荣洲.华北油松人工林的透流、干流和树冠截留[J].北京林业大学学报,1987,9(1):58—68.
    [140]韩海荣,姜玉龙.栓皮栎人工林光环境特征的研究[J].北京林业大学学报,2000,22(4):92-96.
    [2]鲁兴隆,温存,毛军.华北落叶松单株树冠对降水空间格局的影响[J].防护林科技,2007,(4):11—15.
    [26]雷相东,唐守正.林分结构多样性指标研究综述[J].林业科学,2002,38(3):141—146.
    [58]鲍文,包维楷,何丙辉,等.岷江上游油松人工林对降水的截留分配效应[J]。北京林业大学学报,2006,24(5):10-16.
    [13]臧润国,杨彦承.海南岛霸王岭热带山地雨林群落结构及树种多样性特征的研究[J].植物生态学报,2001,25(3):270-275.
    [214]裴喜春.薛河儒.SAS及应用[M].北京,中国农业出版社,1998.127-177.
    [168]潘建平.落叶松人工林地力衰退研究现状与进展[J].东北林业大学学报,1997,25(2):59-63.
    [152]魏瑞,王孝安,郭华.黄土高原马栏林区辽东栎的种子产量[J].应用与环境生物,2009,15(1):16-20.
    [202]Abe T, Tani M, Hattori S. Measurements of throughfall and stemflow in a bamboo forest [J]. Transactions of Kansai Branch of the Japanese Forestry Science,1984,35:265-268. (in Japanese).
    [88]Aboal R, Morales D, Hernndez M, et al.1999. The measurement and modeling of the variation of stemflow in a laurel forest in Teneeerife, Canary Islands [J]. Journal of Ecology,221:161-175.
    [133]Amarakoon D, Chen A, Mclean P. Estimating daytime latentheat flux and evapotranspiration in Jamaica. A gric For Meteorol,2000.102:113-124.
    [195]Asdak C, Jarvis P G, van Gardingen P, et al. Rainfall interception loss in unlogged and logged forest areas of Central Kalimantan, Indonesia[J]. Journal of Hydrology,1998,206:237-244.
    [119]Bruijnzeel L A, Wiersum K F. Rainfall interception by a young Acacia auriculiformis (A Cunn) plantation forest in West Java, Indonesia:application of Gash's analytical model[J]. Hydrological Processes.1987,1:309-319.
    [184]Bruijnzeel L A., and Wiersum K F. Rainfall interception by a young Acacia Auriculiformis (A. Cunn) plantation forest in west Java, Indonesia:Application of Gash's analytical model [J], Hydrological Processes,1987,1,309-319.
    [78]Carlyle-Moses D E, Laureano J S F, Price A G. Throughfall and throughfall spatial variability in Madrean oak forest communities of northeastern Mexico[J]. Journal of Hydrology,2004,297: 124-135.
    [192]Chappell N A, Bidin K, Tych W. Modelling rainfall and canopy controls on net-precipitation beneath selectively-logged tropical forest [J]. Plant Ecology,2001,153:215-229.
    [94]Crockford R H, Richardson D P. Partitioning of rainfall in a eucalypt forest and pine plantation in southeastern Australia:III. Determination of the canopy storage capacity of a dry sclerophyll eucalypt forest [J]. Hydrological Processes,1990,4(2):157-167.
    [102]Crockford R H, Richardson D P. Partitioning of rainfall into throughfall, stemflow, and interception:effect of forest type, ground cover and climate[J]. Hydrological Processes,2000,14: 2903-2920.
    [203]Crockford R H., Richardson D P. Partitioning of rainfall in a eucalypt forest and pine plantation in southeastern Australia:Part I. Throughfall measurement in a eucalypt forest:Effect of method and species composition[J]. Hydrological Processes,1990,4,131-144.
    [105]Dang H Z, Zhou Z F, Zhao Y S. Study on forest Interception of Picea crassifolia[J]. Journal of Soil and Water Conservation,2005,19(4):60-64.
    [212]David Dunkerley. Measuring interception loss and canopy storage in dryland vegetation:a brief review and evaluation of available research strategies[J]. Hydrological processes,2000,14, 669-678.
    [153]De Steven D, Wright S J. Consequences of variable reproduction for seedling recruitment in three neotropical tree species [J]. Ecology,2002,83:2315-2327.
    [70]Deguchi A, Hattori S, Park H T. The influence of seasonal changes in canopy structure on interception loss: application of the revised Gash model. Journal of Hydrology [J].2006,318: 80-102.
    [80]Dietz J, Holscher D, Leuschner C, et al. Rainfall partitioning in relation to forest structure in differently managed montane forest stands in Central Sulawesi, Indonesia[J]. Forest Ecology and Management,2006,237:170-178.
    [114]Dykes A P. Rainfall interception from a lowland tropical rain forest in Brunei[J]. Journal of Hydrology,1997,200:260-279.
    [199]Edwards P J. Studies of mineral cycling in a mountain rain forest in Brunei [J]. Journal of Ecology, 1982,70:807-827.
    [72]Ford E D, Deans J D. The effects of canopy structure on stemflow, throughfall and interception loss in a toung Sitka Spruce plantation[J]. Journal of Applied Ecology,1978,15:905-917.
    [221]Gadow K V, Nagel J, Saborowski J. Continuous Cover Forestry[J]. Kluwer Academic Publishers, the Nether lands,2002.
    [219]Gadow K V, Hui G Y. Characterizing forests Patial structure and diversity. "Sustainable Forestry in Temperate Regions", Proceedings of the SUFOR International Workshop [J]. University of Lund, Sweden,2002,4:7-9.
    [181]Gardiner J J. Environmental conditions and site aspects. In:A. F. M. Olsthoorn H H, Bartelink J J, Gardiner H, Pretzsch H J, Hekhuis A, Frano(eds). Manafement of mixed-species forest: silviculture and economics. Dlo Instisute for Forestry and Nature Research(IBN-DLO), Wageningen,1999.
    [113]Gash J H C, Lloyd C R, Lachaud G. Estimation sparse forest rainfall interception with an analytical model[J]. Journal of Hydrology[J],1995,170:78-86.
    [96]Gash J H C, Morton A J. Application of the Rutter model to the estimation of the interception loss from Thetford forest [J]. Journal of Hydrology,1978,38(1/2):49-58.
    [51]Gash J H C, Wright I R, Lloyd C R. Comparative estimates of interception loss from three coniferous forests in Great Britain[J]. Journal of Hydrology,1980,48:89-150.
    [198]Gash J H C, Wright I R, Lloyd C R. Comparative estimates of interception loss from three coniferous forests in Great Britain[J]. Journal of Hydrology,1980.48:89-105.
    [112]Gash J H C. An analytical model of rainfall interception in forests. Quarterly Journal of the Royal Meteorological Society[J],1979,105:43-55.
    [39]Gmez J A, Vanderlinden K, Giraldez J V, et al. Rainfall concentration under olive trees[J]. Agricultural water management,2002,55:53-70.
    [210]Gomez J A, Vanderlinden K, Giraldez J V, et al. Rainfall concentration under olive trees[J]. Agricultural Water Management,2002,55:53-70.
    [87]Hanchi A, Rapp M.1997. Stemflow determination in forest stands [J]. Forest Ecology and Management,97:231-235.
    [21]Hansorg Dietz. Plant invasion patches-reconstructing pattern and process by means of herb-chronology [J]. Biological Invasions,2002,4:211-222.
    [90]Helrey J D. A summary of rainfall interception by certain conifers of North America. Proceeding of the international symposium for hydrology professors biological effects in the hydrological cycle, Purdue University, Lafayette, Indiana.1971.103-113.
    [116]Herbst M, Roberts J M, Rosier P T W, Gowing D J. Measuring and modelling the rainfall interception loss by hedgerows in southern England[J].Agricultural and Forest Meteorology,2006, 141:244-256.
    [97]Herbst M, Rosier P T W, Mcneil D D, et al. Seasonal variability of interception evaporation from the canopy of a mixed deciduous forest. Agricultural and Forest Meteorology,2008,148: 1655-1667.
    [93]Herwitz S R. Interception storage capacities of tropical rainforest canopy trees[J]. Journal of Hydrology,1985,77(1/4):237-252.
    [187]Holwerda F, Scatena F N, and Bruijnzeel L A. Throughfall in a Puerto Rican lower montane rain forest:A comparison of sampling strategies[J]. Journal of Hydrology,2006,327:592-602.
    [91]Horton R E. Rainfall interception[J]. Mon Weather Review,1919,47(9):603-623.
    [104]Iida S, Tanaka T, Sugita M. Change of interception process due to the succession from Japanese red pine to evergreen oak[J]. Journal of Hydrology,2005,315:154-166.
    [86]Jackson I J. Relationships between rainfall parameters and interception by tropical rainforest [J]. Journal of Hydrology,1975,24(3/4):215-238.
    [155]Jeffery P D, Lisa M R, Peter N. Underst orey plant community characteristics and natural hardwood regeneration under three partial harvest treatment sapplied in anorthern red oak (Quer-cus rubra L.) stand in the Great Lakes-St. Law rence forest region of Canada [J]. Forest Ecology and Management,2008,256:760-773.
    [73]Johnson R C. The interception, throughfall and stemflow in a forest in High land Scotland and the comparison with other upland forests in the U K[J]. Journal of Hydrology,1990,118:281-287.
    [191]Johnson R C. The interception, throughfall and stemflow in a forest in highland Scotland and the comparison with other upland forest in the U.K.[J]. Journal of Hydrology.1990,118:281-287.
    [156]Kareiva P. Diversity and sustainability on the prairie[J]. Nature,1996,379,673-674.
    [186]Keim R F, Skaugset A E, Weiler M. Temporal persistence of spatial patterns in throughfall[J]. Journal of Hydrology,2005,314:263-274.
    [217]Kimmins J P. Some statistical aspects of sampling throughfall precipitation in nutrient cycling studies in British Columbian coastal forests[J], Ecology, (1973),54,1008-1019.
    [92]Klaassen W, Bosveld F, De Water E. Water storage and evaporation as constituents of rainfall interception [J]. Journal of Hydrology,1998,212/213:36-50.
    [194]Kumagai S. Sampling rainfall under crown canopy[J]. Bulletin of Kyushu University Forest,1953, 21:61-69. (in Japanese with English summary).
    [46]Kuraji K, Tanaka N. Rainfall interception studies in the tropical forests [J]. Japan Journal of Forest Society,2003.85:18-28. (in Japanese with English summary).
    [126]Leer. Forest Hydrology [M]. New York:Columbia University Press,1980.
    [43]Levia D F, Frost E E. A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems. Journal of Hydrology,2003,274: 1-29.
    [95]Leyton L, Reynolds E R C, Thompson F B. Rainfall interception in forest and moorland [C]// Sopper W E, Lull H W. International Symposium on Forest Hydrology. Proceedings of a National Science Foundation Advanced Science Seminar. New York:Pergamon Press,1967:163-178.
    [98]Limousin J M, Rambal S, Ourcival J M, et al. Modelling rainfall interception in a Mediterranean Quercus ilex ecosystem:Lesson from a throughfall exclusion experiment[J]. Journal of Hydrology, 2008:357,57-66.
    [106]Liu J. Theoretical model of the process of rainfall interception in forest canopy[J]. Ecological Modelling,1988,42:111-123.
    [49]Llorens P, Domingo F. Rainfall partitioning by vegetation under Mediterranean conditions. A review of studies in Europe. Journal of Hydrology,2007,335:37-54.
    [200]Llorens P, Poch R, Latron J, et al. Rainfall interception by a Pinus sylvestris forest patch overgrown in a Mediterranean mountainous abandoned area I. Monitoring design and results down to the event scale[J]. Journal of Hydrology,1997,199:331-345.
    [185]Lloyd C R, A. d. O. Marques. Spatial variability of throughfall and stemflow measurements in Amazonian rainforest [J]. Agric. For. Meteorol.1988,42:63-73.
    [77]Loescher H W, Powers J S, Oberbauer S F. Spatial variation of throughfall volume in an old-growth tropical wet forest, Costa Rica[J]. Journal of Tropical Ecology,2002,18:397-407.
    [75]Loustau D, Berbigier P, Grainier A, et al. Interception loss, throughfall and stemflow in a maritime pine stand I. Variability of throughfall and stemflow beneath the pine canopy[J]. Journal of Hydrology,1992,138:449-467.
    [216]Loustau D, Berbigier P, Granier A, et al. Iinterception loss,throughfall and stemfall in maritime pine stand I. Variability of throughfall and stemfall beneath the pine canopy[J]. Journal of Hydrology,1992.138:449-467.
    [159]Ma K P(马克平),Mi X C(米湘成), Wei W(魏伟),Lu Z J (卢志军),Advances and review on biodiversity. In:Li WH(李文华), Zhao J Z(赵景柱) eds. Recall and Prospect on Ecology(生态学研究回顾与展望)China Meteorological Press, Beijing,2004,110-125.
    [196]Manfroi O J, Kuraji K, Suzuki M, et al. Comparison of conventionally observed interception evaporation in a 4-ha area of the same Bornean lowland tropical forest[J]. Journal of Hydrology, 2006,329:329-349.
    [48]Manfroi O J, Kuraji K, Suzuki M, et al. The stemflow of trees in a Bornean lowland tropical forest. Hydrological Processes,2004,18:2455-2474.
    [36]Marin C T, Bouten W, Sevink J. Gross rainfall and its partitioning into throughfall, stemflow and evaporation of intercepted water in four forest ecosystems in western Amazonia[J]. Journal of Hydrology,2000,237:40-57.
    [45]Marin C, Bouten W, Sevink J. Gross rainfall and its partitioning into throughfall, stem flow and evaporation of intercepted water in four forest ecosystems in western Amazonia [J]. Journal of Hydrology,2000,237:40-57.
    [103]Nadkarni N M, Sumera M M. Old-growth forest canopy structure and its relationship to throughfall interception [J]. Forest Science,2004,50(3):290-298.
    [115]Navar J, Carlyle-Moses D E, Martinez M A. Interception loss from the Tamaulipanmatorralthorn scrub of north-eastern Mexico:an application of the Gash analytical interception loss model [J]. Journal of Arid Environments,1999,41:1-10.
    [69]Park H T, Hattori S, Kang H M. Seasonal and inter-plot variations of stemflow, throughfall and interception loss in two deciduous broadleaved forests[J]. Journal of Japan Society of Hydrology and Water Resource,2000,13:17-30.
    [180]Pretzsch H.Structural diversity as a result of silvicultural operations.ln:A.F.M. Olsthoorn H H, Bartelink J J, Gardiner H, Pretzsch H J, Hekhuis A, Frano(eds). Manafement of mixed-species forest:silviculture and economics. Dlo Instisute for Forestry and Nature Research(IBN-DLO), Wageningen.1999.
    [193]Pypker T G, Bond B J, Link TE, et al. The importance of canopy structure in controlling the interception of rainfall:examples from a young and an old-growth Douglas-fir forest[J]. Agricultural and Forest Meteorology,2005,130:113-129.
    [32]Richard H. W, William H. S. Forest ecosystems:concepts and management[M]. Florida:Academic Press,1985,94.
    [74]Rodrigo A, A'avila A. Influence of sampling size in the estimation of mean throughfall in two Mediterranean holm oak forests[J]. Journal of Hydrology,2001,243:216-227.
    [68]Rowe L K. Rainfall interception by an evergreen beech forest, Nelson, New Zealand[J]. Journal of Hydrology,1983,66:143-158.
    [52]Rutter A J, Kershaw K A, Robins P C, et al. A predictive model of rainfall interception in forests. Derivation of the model fromobservation in a plantation of Corscian pine[J]. Agricultural and Forest Meteorology,1971,9:367-384.
    [197]Sato Y, Otsuki K, Ogawa S. Estimation of annual canopy interception by lthocarpusedulis Nakai[J]. Bulletin of Kyushu University Forest,2002,83:15-29. (in Japanese with English summary).
    [101]Schellekens J, Scatena F N, Bruijnzeel L A. Modelling rainfall interception by a low land tropical rain forest in northeastern PuertoRico[J]. Journal of Hydrology,1999,225:168-184.
    [118]Schellekensa J, Scatenab F N, Bruijnzeela L A. Modelling rainfall interception by a lowland tropical rain forest in northeastern Puerto Rico[J]. Journal of Hydrology,1999,225:168-184.
    [71]Staelens J, Schrijvrt A D, Verheyen K, et al. Spatial variability and temporal stability of throughfall water under a dominant beech (Fagus sylvatica L.) tree in relationship to canopy cover[J]. Journal of Hydrology,2006,330:651-662.
    [41]Sun G, McNulty S G, Amatya D M, et al. A comparison of the watershed hydrology of coastal forested wetlands and the mountainous uplands in the Southern US[J]. Journal of Hydrology,2002, 263:92-104.
    [23]Tang M P(汤孟平),Tang S Z(唐守正),Lei X D(雷相东),et al. Comparison analysis on two minglings(林业资源管理),2004,4:25-27. (in Chinese)
    [42]Taniguchi M, Tsujimura M, Tanaka T. Significance of stemflow in groundwater recharge: evaluation of the stemflow contribution to recharge using a mass balance approach[J]. Hydrological Processes,1996,10:71-80.
    [44]Taniguchi M, Tsujimura M, Tanaka T. Significance of stemflow in ground-water recharge 1: evaluation of the stemflow contribution to recharge using a mass balance approach. Hydrological Processes,1996,10:71-80.
    [67]Taniguchi M, Tsujimura M, Tanaka T. Significance of stemflow in ground-water recharge: evaluation of the stemflow contribution to recharge using a mass balance approach[J]. Hydrological Processes,1996,10:71-80.
    [53]Teklehaimanot Z, Jarvis P G, Ledger D C. Rainfall interception and boundary layer conductance in relation to tree spacing [J]. Journal of Hydrology,1991,123:261-278.
    [160]Tilman D. Causes, consequences and ethics of biodiversity[J]. Nature,2000,405,298-211.
    [47]Toba T, Ohta T. An observational study of the factors that influence interception loss in boreal and temperature forests [J]. Journal of Hydrology,2005,313:208-220.
    [76]Viville D, Biron P, Granier A, et al. Interception in a mountains declining spruce stand in Strengbach catchment (Vosges, France)[J]. Journal of Hydrology,1993,144:273-282.
    [54]Viville D. Interception on a mountainous declining spruce stand in the strengbach catchment (Voges, France) [J]. Journal of Hydrology,1993,144:892-898.
    [117]Wallace J, Mc Jannet D. On interception modelling of a lowland coastal rainforest in northern Queen sland, Australia[J]. Journal of Hydrology,2006,329:477-488.
    [201]Yoshinori Shinohara, Yuka Onozawa, Masaaki Chiwa, et al. Spatial variations in throughfall in a Moso bamboo forest:sampling design for the estimates of stand-scale throughfall [J]. Hydrological Processes,2010,24,253-259.
    [157]Zhang Q G(张全国),Zhang DY(张大勇).Biodiversity and ecosystem functioning:recent advances and controversies. Biodiversity Science (生物多样性),2002,10,49-60.
    [79]Ziegler A D, Giambelluca T W, Nullet M A, et al. Throughfall in an evergreen-dominated forest stand in northern Thailand:comparison of mobile and stationary methods[J]. Agricultural and Forest Meteorology,2009,149:373-384.
    [188]Zimmermann A S, Germer C. Neill, et al. Spatio-temporal patterns of throughfall and solute deposition in an open tropical rain forest[J]. Journal of Hydrology,2008,360:87-102.
    [84]Zimmermann B, Zimmermann A, Lark R M. Sampling procedures for throughfall monitoring:A simulation study[J]. Water Resources Research,2010,46,1-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700