用户名: 密码: 验证码:
改性TiO_2光电复合材料制备及电荷输运特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,半导体光催化氧化技术由于氧化能力强、耗能低、降解速度快、无二次污染、反应条件温和、应用范围广等优点而引起人们的广泛关注。但是由于存在半导体自身量子效率和太阳光利用率较低等不足,以及对应用基础理论知识如光催化剂结构与活性的关系、活性与界面电荷转移的关系、光催化剂改性机制等目前也不是十分清楚,在一定程度上限制了半导体光催化氧化技术的实用化进程。为了提高纳米TiO2在可见光区的光催化活性,能够充分利用太阳光,必须对其进行改性、修饰。本文试图通过贵金属Ag修饰、与ABO3型光催化剂复合等方法进一步改善TiO2光催化剂的性能,并重点揭示新型纳米结构材料表面界面光生电荷转移机制及其对光催化性能的影响规律。
     利用溶胶-水热和溶胶-凝胶方法制备了TiO2纳米粒子,对样品进行表征并考察了样品的光催化活性。结果表明,具有和P25相似相组成的T550样品的SPS响应较强说明了此样品的光生电荷分离效率高,并且在405 nm还有一个较强的由表面态跃迁引起的SPS峰,显著地提高了可见光的光催化活性。
     利用溶胶-水热法合成了TiO2水热粒子,同时在溶胶形成过程中引入了适量的DBS基团,并进一步通过旋涂法制备了不同的TiO2纳米粒子薄膜。重点考察了添加DBS基团对薄膜表面微观结构、光催化活性和润湿性能的影响,以及内在关系。结果表明:添加DBS使薄膜上的TiO2纳米粒子发生团聚而形成微米级的团簇,虽然减小了膜的有效表面积,使光催化活性降低,但改变了纳米TiO2薄膜的表面微结构,纳米-微米的复合结构使其具有很好的亲水性。添加DBS基团虽然降低了TiO2粒子膜的光催化活性,但是却显著提高了薄膜的亲水性能,甚至达到超亲水性,这主要与薄膜表面由TiO2纳米粒子所形成的微米级隆起有关。说明薄膜表面微观结构能够强烈影响材料的光催化和润湿性能。
     半导体表面沉积贵金属被认为是可以捕获光生电子的有效改性方法之一,可以进一步提高半导体光催化剂的活性。以贵金属Ag为代表,对纳米TiO2薄膜进行了改性。主要考察了不同Ag沉积量对TiO2结构和性能等的影响,重点研究了贵金属Ag沉积对纳米TiO2薄膜光生载流子的分离以及光催化性能的影响。结果表明:适量Ag的沉积有利于TiO2薄膜中光生载流子的分离,从而减少电子-空穴的复合几率,进而提高纳米TiO2薄膜的光催化活性。硝酸银溶液的最佳浓度为1×10-3 mol·L-1。此外,沉积贵金属Ag的TiO2薄膜具有良好的光催化循环性能。
     LaFeO3由于其独特的晶体结构和优良的性能,近年来在催化等领域显示了较好的应用前景。采用柠檬酸络合法制备了LaFeO3纳米粒子,并利用现代测试技术对样品进行了表征,重点考察了LaFeO3纳米粒子的最佳制备条件及其在可见光下光催化氧化罗丹明B的催化性能。结果表明:随着焙烧温度的升高,粒子尺寸逐渐增大,表面光电压谱(SPS)信号逐渐增强。在光催化实验中,500℃焙烧的LaFeO3纳米粒子表现出较高的光催化活性,随着焙烧温度的升高,样品的光催化活性降低,这与表面光电压谱(SPS)的表征结果是相符合的。样品的尺寸越大,能带弯曲越大,自建电场越强,所以其表面光电压信号增强。样品的尺寸越大,光生载流子从粒子内部到达表面的迁移时间越长,这样使光生载流子在复合前到达半导体表面的数目减少,以至于被捕获的机会减少,进而引发氧化还原反应的几率减小,使其光催化活性降低。此外,与比表面积也有关。随着焙烧温度的升高,粒子尺寸越大,比表面积越小,小的比表面积不利于光催化反应的进行,使其光催化活性降低。
     柠檬酸络合法是一种经常被采用的合成方法,但是所制备的样品易团聚、粒径大、比表面积小,以至于在应用中存在许多不足,因此探索新的合成方法是非常有必要的。以SBA-16中孔分子筛为硬模板合成了纳米LaFeO3,利用N2气吸附-脱附和SPS等现代测试技术对样品进行了表征,并利用可见光下光催化降解亚甲基蓝为模型反应对样品的光催化性能进行评价。同时,对模板法与柠檬酸法合成的纳米LaFeO3进行了比较研究。结果表明,利用模板法制得的LaFeO3纳米粒子具有多孔结构,而且在高温条件下可以得到比表面积较大的纳米LaFeO3,其在可见光下的光催化性能与柠檬酸络合法制备的LaFeO3相比有很大的提高。
     考虑到TiO2是一种紫外光光催化剂,而LaFeO3是一种可见光光催化剂。若将二者进行复合,在光谱吸收方面将会产生互补,进而会提高对太阳光的利用率。也可能会发生耦合作用或者发生载流子的注入过程,进而导致光生电荷的有效分离,以至于提高光量子效率。在前期研究工作基础上,构建了一系列的TiO2-LaFeO3的纳米复合膜,并利用PL和SPS等测试技术深入地揭示和探讨界面电荷转移行为及其机制,同时以光催化降解亚甲基蓝为模型反应对样品的光催化性能进行评价。结果表明,复合膜的光催化活性明显优于单一组成膜的光催化活性。LaFeO3/TiO2纳米复合膜光催化活性的提高是由于LaFeO3与TiO2之间发生了耦合作用,而TiO2/LaFeO3膜光催化活性的提高是因为发生了光生电荷从TiO2向LaFeO3的注入过程,进而促进了光生电荷的有效分离。
     本论文能够使纳米半导体材料的基础理论知识得以丰富,从而有效地推动纳米材料在光催化领域的实用化进程。也将为半导体材料在其它领域的应用如光电转换及光诱导合成等提供理论依据。
In recent years, semiconductor photocatalytic oxidation technology has attracted widely attentions mainly due to its characteristics such as strong oxidation capability, low energy consumption, moderate reaction conditions, quick degrading speed, no-secondly pollution and large application range, and is a new promising practical technology for degrading environmental pollutions. However, the practical application step of the semiconductor photocatalytic oxidation technology is held back to a certain extent by the some shortcoming like the low quantum efficiency of semiconductor material in itself and the lower efficiency for utilizing the solar light. Moreover, the involving the photocatalytic reaction, the relationships between structure and activity, the relationships between activity and interface-charge transferring, the modification mechanism, are not well understood up to date. These problems are needed to solve.In order to improve the photocatalytic activity under visible light and make full use of the solar light, the nano-sized titanium dioxide must be modified. With these in mind, the main purpose of the paper is to prepare nano-sized TiO2 modified with noble metal Ag and ABO3-type perovskite photocatalyst and improve the photocatalytic activity under visible light, and the interface-charge transferring mechanism and the photocatalytic activity of composite film photocatalysts were also principally investigated.
     TiO2 nanoparticles were prepared by a sol-hydrothermal process and by a sol-gel method and were characterized by several testing techniques. The photocatalytic activity was principally investigated. The results show that the stronger SPS response of T550 attributes to the efficient photoinduced electron transferring, the surface states related to oxygen vacancies can induce photocatalytic reactions under visible irradiation, especially in the resulting biphasic TiO2 due to the electron transfer from anatase surface states to rutile.
     Nanosized anatase TiO2 film on the ITO glass has been fabricated via spin coat process, with sodium dodecylbenzenesulfonate modified TiO2 nanoparticles, which is synthesized by a sol-hydrothermal method, and also characterized mainly by means of several testing techniques. It can be suggested that the superhydrophilic performance is mainly attributed to the high roughness resulting from hierarchical surface structure. The formation of characteristic surface structure is close related to the DBS addition. This will be useful to fabricate other newly nanostructured semiconductor film materials, and promote the practical application in the wetting areas of TiO2 films.
     Noble metal depositing has been considered as an effective method to hinder the photogenerated electron/hole pair recombination and accelerate the photoexcitation and formation of oxidizing species, consequently to enhance the photocatalytic activity. TiO2 nanoparticles and TiO2 film were prepared by a sol-hydrothermal process, and were characterized by several testing techniques. The photocatalytic activity for degrading Rhodamine B was principally investigated. Nano-sized TiO2 film deposited with the noble metal Ag was prepared by the sol-gel method. The influences of different Ag content on the TiO2 structure and properties were studied and the effect of Ag-depositing on photo-induced charge separation and photocatalytic activity were principally investigated. The results show that the appropriate Ag-depositing content can improve the photo-indcued charge separation and decrease the chance of the combination efficiencies of the photo-induced electrons and holes, which are responsible for the enhancement of TiO2 photocatalytic performance. The optimum silver nitrate concentration of was found to be 1×10?3 mol·L-1. Moreover, reproducibility tests proved that the photocatalytic activity of the silver-modified films remains intact even after eight consecutive experiments of new added pollutant quantities.
     ABO3-type perovskite LaFeO3 shows a variety of unusual and interesting structure and properties, which was applied in catalytic field. LaFeO3 nano-sized photocatalysts were synthesized by a sol-gel method, using citric acid as complexing reagent and La(NO3)3·6H2O and Fe(NO3)3·9H2O as raw materials. The as-prepared samples also were characterized by several testing techniques, the optimum preparation conditions and the photocatalytic activity for degrading Rhodamine B under visible irradation were principally investigated. The results show that the crystallite size becomes larger and the SPS response becomes much stronger of LaFeO3 nanoparticles with increasing calcination temperature. The LaFeO3 sample calcined at 500℃exhibits higher activity, and the activity decreases with increasing calcination temperature, which is in good agreement with the characterization results. According to the results of XRD characterization, the crystallite size increases, the energy band bending upward becomes large, the built-in electric field becomes strong, resulting in the SPS intensity increases as the calcination temperature rises. The crystallite size is large, the migrating time of photoinduced charge carriers from the inner to surface is long. Thus, the less photoinduced charge carriers can reach to surfaces in advance of recombination, to fewer be captured to initiate photochemical reactions, resulting in the decrease in the activity.
     The sol-gel method is an usual synthesized method. However, the practical application step of the method is hold back at a certain degree by the some shortcoming like small crystallite size and large surface area of the samples prepared by the sol-gel method. So it is necessary to explore new method. LaFeO3 nano-sized photocatalysts were synthesized by hard template method using SBA-16 as template and were characterized by several testing techniques such as nitrogen adsorption-desorption and surface photovoltage spectroscopy. The sample activity of LaFeO3 for degrading Methylene Blue solution under visible irradation was evaluated. We principally investigated the effects of the preparation method on the structure, the properties of LaFeO3. The results show that LaFeO3 prepared by hard template method is porous nano-materials and its surface area calcined at high temperature still becomes larger. Compared with the photocatalytic activity of LaFeO3 prepared by a sol-gel method, its photocatalytic activity increases.
     TiO2 is an untra-violet photocatalyst and LaFeO3 is a visible photocatalyst. If TiO2 was modified by LaFeO3, some properties would be gained. It will realize sensitized intention and improve the photocatalytic activity under visible light. It will happen coupling or inpouring of photo-induced electron and enhance photoinduced charage separation. A series of nano-structured film photocatalysts were prepared using TiO2 and LaFeO3 as semiconductor representatives, and were characterized by several testing techniques such as photoluminescence spectrum and surface photovoltage spectroscopy. The photocatalytic activity of LaFeO3 for degrading Methylene Blue solution under visible irradation was evaluated. The results show that the photocatalytic activity of the composite film increases. The coupling between LaFeO3 and TiO2 conduces the high photocatalytic activity of the LaFeO3-TiO2 film; the charge inpouring from TiO2 to LaFeO3 conduces the photoinduced charage separation.
     This paper could effectively supplement the basic theories of nano-sized semiconductor material, which would greatly speed up the practical process of nanomaterial in photocatalysis and would offer potent foundation in photoelectron conversion and photoinduced synthesis.
引文
[1] Y. Wang, N. Toshima. Preparation of Pd-Pt Bimetallic Colloids with Controllable Core/Shell Structures[J]. J. Phys. Chem. B, 1997, 101(27): 5301-5306.
    [2] G. Schmid. Large Clusters and Colloids. Metals in the Embryonic State[J]. Chem. Rev., 1992, 92(8): 1709-1727.
    [3]张立德,牟季美.纳米材料和纳米结构[M].科学出版社, 2001: 1-100.
    [4]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].化学工业出版社, 2003: 1-20.
    [5]杨英贤,王广阔.纳米材料特性及其在保健功能纤维中的应用[J].高科技纤维与应用, 2005, 30: 34-36.
    [6]李新勇,李数本.纳米半导体研究进展[J].化学进展, 1996, 8(3): 231-239.
    [7]郝素菊,蒋武锋,方觉,李晓,田苹.纳米材料的特性及纳米技术在冶金中的应用前景[J].河北理工学院学报, 2004, 26: 1-3.
    [8]彭勇,陈季香,卢为民.纳米材料的光学特性研究[J].陕西工学院学报, 2003, 19: 16-18.
    [9]吴锦雷.纳米材料的电学、光学和光电性能及应用前景[J].真空电子技术, 2002, 4: 23-27.
    [10]李长鹏,王矜奉,陈洪存,苏文斌,钟维烈,张沛森.掺钽的二氧化钛电容-压敏陶瓷电学性能研究[J].压电与声光, 2001, 23: 113-116.
    [11] P. Wang, C. Klein, R. Humphry-Baker, S. M. Zakeeruddin, M. Gratzel. A High Molar Extinction Coefficient Sensitizer for Stable Dye-Sensitized Solar Cells[J]. J. Am. Chem. Soc., 2005, 127(3): 808-809.
    [12] B. Wenger, M. Gratzel, J. E. Moser. Rationale for Kinetic Heterogeneity of Ultrafast Light-Induced Electron Transfer from Ru(II) Complex Sensitizers to Nanocrystalline TiO2[J]. J. Am. Chem. Soc., 2005, 127(35): 12150-12151.
    [13] S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. van de Lagemaat, A. J. Frank. Standing Wave Enhancement of Red Absorbance and Photocurrent in Dye-Sensitized Titanium Dioxide Photoelectrodes Coupled to Photonic Crystals[J]. J. Am. Chem. Soc., 2003, 125(20): 6306-6310.
    [14] T. A. Heimer, E. J. Heilweil. Direct Time-Resolved Infrared Measurement of Electron Injection in Dye-Sensitized Titanium Dioxide Films[J]. J. Phys. Chem. B, 1997, 101(51): 10990-10993.
    [15] C. L. Huisman, A. Huijser, H. Donker. UV Polymerization of Oligothiophenes and their Application in Nanostructured Heterojunction Solar Cells[J]. Macromolecules, 2004, 37: 5557-5564.
    [16] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides[J]. Science, 2001, 293: 269-271.
    [17] S. Chu, S. Inoue, K. Wada. Highly Porous TiO2/Al2O3 Composite Nanostructures on Glass by Anodization and the Sol-Gel Process: Fabrication and Photocatalytic Characteristics[J]. J. Mater. Chem., 2003, 13: 866-870.
    [18] M. Mirza, K. Taqui, R. C. Bhardwaj. Catalytic Fixation of Nitrogen by the Photocatalytic CdS/Pt/RuO, Particulate System in the Presence of Aqueous [Ru(Hedta)N2] Complex[J]. Angew. Chem. Int. Ed. Engl., 1988, 27: 923-925.
    [19] T. Sato, K. Masaki, K. S. Okuwakib. Photocatalytic Properties of Layered Hydrous Titanium Oxide/CdS-ZnS Nanocomposites Incorporating CdS-ZnS into the Interlayer[J]. J. Chem. Technol. Biotechnol., 1996, 67: 339-344.
    [20] W. Ma, J. Li, X. Tao. Efficient Degradation of Organic Pollutants by Using Dioxygen Activated by Resin-Exchanged Iron(II) Bipyridine under Visible Irradiation[J]. Angew. Chem. Int. Ed., 2003, 42: 1029-1032.
    [21] S. A. Haque, Y. Tachibana, R. L. Willis, J. E. Moser, M. Gratzel, D. R. Klug, J. R. Durrant. Parameters Influencing Charge Recombination Kinetics inDye-Sensitized Nanocrystalline Titanium Dioxide Films[J]. J. Phys. Chem. B, 2000, 104(3): 538-547.
    [22] M. H. Park, Y. J. Jang, H. M. Sung-Suh, M. M. Sung. Selective Atomic Layer Deposition of Titanium Oxide on Patterned Self-Assembled Monolayers Formed by Microcontact Printing[J]. Langmuir, 2004, 20(6): 2257-2260.
    [23] G. Jones, X. Zhou, V. I. Vullev. Photoinduced Electron Transfer in-helical Polypeptides: Dependence on Conformation and Electron Donor-acceptor Distance[J]. Photochem. Photobiol. Sci., 2003, 11: 1080-1087.
    [24] A. Fujishima, K. Honda. Electrochemical Photolysis of Water at a Semiconductor Electrode[J]. Nature, 1972, 238: 37-38.
    [25] O. Legrini, E. Oliveros, A. M. Braun. Photochemical Processes for Water Treatment[J]. Chem. Rev., 1993, 93(2): 671-698.
    [26] A. Hagfeldt, M. Gratzel. Light-Induced Redox Reactions in Nanocrystalline Systems[J]. Chem. Rev., 1995, 95(1): 49-68.
    [27] D. Chatterjee, S. Dasgupta. Visible Light Induced Photocatalytic Degradation of Organic Pollutants[J]. J. Photochem. Photobio. C, 2005, 6: 186-205.
    [28] W. H. Dong, G. K. Hyun, S. L. Jae, K. Jindo, L. Wei, O. H. Se. Photocatalytic Hydrogen Production from Water over M-Doped La2Ti2O7 (M=Cr, Fe) under Visible Light Irradiation[J]. J. Phys. Chem. B, 2005, 109(6): 2093-2102.
    [29] J. Yin, Z. G. Zou, J. H. Ye. Photophysical and Photocatalytic Activities of a Novel Photocatalyst BaZn1/3Nb2/3O3[J]. J. Phys. Chem. B, 2004, 108(34): 12790-12794.
    [30] A. Mills, S. L. Hunte. An Overview of Semiconductor Photocatalysis[J]. J. Photochem. Photobio. A, 1997, 108: 1-35.
    [31] A. Fujishima, T. N. Rao, D. A. Tryk. Titanium Dioxide Photocatalysis[J]. J. Photochem. Photobio. C, 2000, 1: 1-21.
    [32] A. C. Lee, R. H. Lin, C. Y. Yang, M. H. Lin, W. Y. Wang. Preparations and characterization of novel photocatalysts with mesoporous titanium dioxide (TiO2)via a sol-gel method[J]. Mater. Chem. Phys., 2008, 109: 275-280.
    [33] M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann. Environmental Applications of Semiconductor Photocatalysis[J]. Chem. Rev., 1995, 95(1): 69-96.
    [34] S. Chavadej, P. Phuaphromyod, E. Gulari, P. Rangsunvigit, T. Sreethawong. Photocatalytic degradation of 2-propanol by using Pt/TiO2 prepared by microemulsion technique[J].Chem. Eng. Journal, 2008, 137: 489-495.
    [35] L. Q. Jing, Y. C. Qu, B. Q. Wang, S. D. Li, B. J. Jiang, L. B. Yang, W. Fu, H. G. Fu, J. Z. Shun. Review of Photoluminescence Performance of Nano-sized Semiconductor Materials and its Relationships with Photocatalytic Activity[J]. Sol. Energy Mater. Sol. Cells, 2006, 90: 1773-1787.
    [36] M. A. Fox, M. T. Dulay. Heterogeneous Photocatalysis[J]. Chem. Rev., 1993, 93(1): 341-57.
    [37] A. Fujishima, T. N. Rao. Interfacial Photochemistry: Fundamentals and Applications[J]. Pure Appl. Chem., 1998, 70: 2177-2187.
    [38] P. Suppan. Chemistry and Light[M]. Royal Society of Chemistry, Cambridge, 1994, 5-21.
    [39] H. Kato, H. Kobayashi, A. Kudo. Roles of Ag+ in the Band Structure and Photocatalytic Properties of AgMO3(M: Ta and Nb) with the Perovskite Structure[J]. J. Phys. Chem. B, 2002, 106: 12441-12447.
    [40] A. Fujishima, K. Honda, S. Kikuchi. Photosensitized electrolyticoxidation on semiconducting n-type TiO2 electrode[J]. Kogyo Kagaku Zasshi, 1969, 72 :108-113.
    [41] A. Fujishima, K. Kobayakawa, K. Honda. Hydrogen Production under Sunlight with an Electrochemical Photocell[J]. J. Electrochem. Soc., 1975, 122: 1487-1489.
    [42] H. J. Oh, J. H. Lee, Y. J. Kim, S. J. Suh, J. H. Lee, C. S. Chi. Surface characteristics of porous anodic TiO2 layer for biomedical applications[J]. Mater.Chemis. Phys., 2008, 109: 10-14.
    [43] A. J. Nozik, R. Memming. Physical Chemistry of Semiconductor-liquid Interfaces[J]. J. Phys. Chem., 1996, 100(31): 13061-13078.
    [44] J. A. Pedraza-Avella, P. Acevedo-Pe?a, J. E. Pedraza-Rosas. Photocatalytic oxidation of cyanide on TiO2: An electrochemical approach[J]. Catalysis Today, 2008, 133-135: 611-618.
    [45] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Graetzel. Conversion of Light to Electricity by Cis-X2bis(2, 2’-bipyridyl-4,4’-dicarboxylate)-ruthenium(II) Charge-transfer Sensitizers (X=Cl-, Br-, I-, CN- and SCN-) on Nanocrystalline TiO2 Electrodes[J]. J. Am. Chem. Soc., 1993, 115(174): 6382-6390.
    [46] P. Supphasrirongjaroen, P. Praserthdam, J. Panpranot, D. N. Ranong, O. Mekasuwandumrong. Effect of quenching medium on photocatalytic activity of nano-TiO2 prepared by solvothermal method[J]. Chem. Eng. J., 2008, 138: 622-627.
    [47] H. Gerisher, A. Heller. The Role of Oxygen in Photooxidation of Organic Molecules of on Semiconductor Particles[J]. J. Phys. Chem., 1991, 95(13): 5261-5267.
    [48] H. Gerisher, A. Heller. Photocatalytic Oxidation of Organic Molecules at TiO2 Particles by Sunlight in Aerated Water[J]. J. Electrochem. Soc., 1992, 139(1): 113-118.
    [49] J. R. Nicole, P. Pichat, A. Foissy. Effect of Deposited Pt Particles on the Surface Charge of TiO2 Aqueous Suspensions by Potentiometry, Electrophoresis and Labeled Ion Adsorption[J]. J. Phys. Chem., 1986, 90(12): 2733-2738.
    [50] M. Takahashi, K. Mita, H. Toyuki. Pt-TiO2 Thin Films on Glass Substrates as Efficient Photocatalysts[J]. J. Mater, Sci., 1989, 24(1): 243-246.
    [51] A. Sclafani, M. N. Mozzanega, P. Pichat. Effect of Silver Deposits on thePhotocatalytic Activity of Titanium Dioxide Samples for the Dehydrogeneration of Oxidation of 2-Propanol[J]. J. Photochem. Photobiol. A, 1991, 59(2): 181-189.
    [52] C. M. Wang. Palladium Catalysis of O2 Reduction by Electrons Accumulated on TiO2 Particles during Photoassisted Oxidation of Organic Compounds[J]. J. Am. Chem. Soc., 1992, 114(13): 5230-5234.
    [53] Y. M. Gao. Improvement of Photocatalytic Activity of Titanium Dioxide by Dispersion of Au on TiO2[J]. Mater. Res. Bull., 1991, 26(12): 1247-1254.
    [54]果玉忱.半导体物理学[M].国防工业出版社, 1988: 18-20.
    [55] A. L. Linsebigler, G. Q. Lu, J. T. Yates, Jr. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results[J]. Chem. Rev. 1995, 95(3): 735-758.
    [56] M. Gratzel, F. H. Russell. Electron Paramagnetic Resonance(EPR) Studies of Doped TiO2 Colloids[J]. J. Phys. Chem., 1990, 94(6): 2566-2572.
    [57]刘畅,暴宁钟,杨祝红,陆小华.过渡金属离子掺杂改性TiO2的光催化性能研究进展[J].催化学报, 2001, 22(2): 215-218.
    [58] W. K. Wong, M. A. Malati. Doped TiO2 for Solar Energy Application[J]. Solar Energy, 1986, 36(2): 163-168.
    [59] T. R. N. Kutty, M. Avudaithai. Photocatalytic Activity of Tin-Substituted TiO2 in Visible Light[J]. Chem. Phys. Lett., 1989, 163:93-97.
    [60] W. Choi, A. Termin, M. R. Hoffmann. The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carriers Recombination Dynamics[J]. J. Phys. Chem., 1994, 98(51): 13669-13679.
    [61] Y. Cao, X. Zhang, W. Yang, H. Du, Y. Bai, T. Li, J. Yao. A Biocomponent TiO2/SnO2 Particulate Film for Photocatalysis[J]. Chem. Mater., 2000, 12(11): 3445-3448.
    [62] P. Ngaotrakanwiwat, T. Tatsuma, S. Saitoh. Charge-discharge Behavior of TiO2-WO3 Photocatalysis Systems with Energy Storage Ability. Phys[J]. Chem.Chem. Phys., 2003, 5: 3234-3237.
    [63] J. S. Jang, H. G. Kim, P. H. Borse, J. S. Lee. Simultaneous hydrogen production and decomposition of H2S dissolved in alkaline water over CdS-TiO2 composite photocatalysts under visible light irradiation[J]. Int. J. Hydrogen Energy, 2007, 32: 4786-4791.
    [64] J. S. Jang, S. M. Ji, S. W. Bae, H. C. Son, J. S. Lee. Optimization of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from Na2S/Na2SO3 aqueous electrolyte solution under visible light (λ≥420 nm) [J]. J. Photochem. Photobiolo., A, 2007, 188: 112-119.
    [65] I. Bedia, P. V. Kamat. Capped Semiconductor Colloids Synthesis and Photoelectronchemical Behavior of TiO2-Capped SnO2 Nanocrystallites[J]. J. Phys. Chem., 1995, 99(22): 9182-9188.
    [66]李芳柏,谷国榜,黎永津. WO3/TiO2复合半导体的光催化性能研究[J].环境科学, 1999, 20(4): 75-78.
    [67] V. Sukharev, R. Kershaw. Concerning the role of oxygen in photocatalytic decomposition of salicylic acid in water[J]. J. Photochem. Photobiol. A, 1996, 98(3):165-169.
    [68] M. Anpo, T. Kawamura, S. Kodama, K. Maruya, T. Onishi. Photocatalysis on Titanium-Aluminum Binary Metal Oxides: Enhancement of the Photocatalytic Activity of Titania Species[J]. J. Phys. Chem., 1988, 92(2): 438-440.
    [69] X. Fu, L. A. Clark, Q. Yang, M. A. Anderson. Enhanced Photocatalytic Performance of Titania-Based Binary Metal Oxides: TiO2/SiO2 and TiO2/ZrO2[J]. Environ. Sci. Technol., 1996, 30(2): 647-653.
    [70] M. W. Rophael, L. B. Khalil. The Reduction of Aqueous Carbonate to Methanol Photocatalysed by TiO2 Phthalocyanine[J]. Vacuum, 1990, 41(1): 143-146.
    [71]王海,陈德文,徐广智,张先付,许慧君.金属酞菁在二氧化钛胶体表面光诱导电子转移[J].科学通报, 1994, 39(5): 424-427.
    [72] J. N. Clifford, E. Palomares, M. K. Nazeeruddin, M. Gratzel, J. Nelson, X. Li, N. J. Long, J. R. Durrant. Molecular Control of Recombination Dynamics in Dye-Sensitized Nanocrystalline TiO2 Films: Free Energy vs Distance Dependence[J]. J. Am. Chem. Soc., 2004, 126(16): 5225-5233.
    [73] A. Delgadillo, M. Arias, A. M. Leiva, B. Loeb, G. J. Meyer. Interfacial Charge-Transfer Switch: Ruthenium-dppz Compounds Anchored to Nanocrystalline TiO2[J]. Inorg. Chem., 2006, 45(15): 5721-5723.
    [74] Q. Wang, W. M. Campbell, E. E. Bonfantani, K. W. Jolley, D. L. Officer, P. J. Walsh, K. Gordon, R. Humphry-Baker, M. K. Nazeeruddin, M. Gratzel. Efficient Light Harvesting by Using Green Zn-Porphyrin-Sensitized Nanocrystalline TiO2 Films. J. Phys. Chem. B, 2005, 109(32): 15397-15409.
    [75] W. G. Becher, M. M. Truong, C. C. Ai, N. N. Hamel. Interfacial Factors that Affects the Photoefficiency of Semiconductor-Sensitized Oxidation in Nonaqueous Media[J]. J. Phys. Chem., 1989, 93(12): 4882-4886.
    [76]岳林海,徐铸德.半导体的表面修饰及其光电化学应用[J].化学通报, 1998, 9: 28-31.
    [77]王传义,刘春艳,沈涛.半导体光催化剂的表面修饰[J].高等学校化学学报, 1998, 19(12): 2013-2019.
    [78] T. Uchihana, M. Matsumura, J. Ono, H. Tsubomura. Effect of EDTA on the photocatalytic activities and flatband potentials of cadmium sulfide and cadmium selenide[J]. J. Phys. Chem., 1990, 94(1): 415-418.
    [79] E. Vrachnou, M. Gratzel, A. J. Mcevoy. Efficient Visible light Photoresponse Following Surface Complexation of Titanium Dioxide with transition Metal Cyanides[J]. J. Electronal. Chem., 1989, 258: 193-205.
    [80]高西汉.钙钛矿结构[J].压电与声光, 1994, 16(4): 44-48.
    [81] U. Helmut, T. Nikolai. Composition, Structure and Transport Properties of Perovskite-type Oxides[J]. Solid State Ionics, 1999, 119: 1-8.
    [82] R. J. H. Voorhoeve, D. W. Johnson, Jr., J. P. Remeika, P. K. Gallagher. Perovskite Oxides: Materials Science in Catalysis[J]. Science, 1977, 195: 827-833.
    [83] K. Hofstadler, R. Bauer, S. Novalic, G. Heisler. New Reactor Design for Photocatalytic Wastewater Treatment with TiO2 Immobilized on Fused-Silica Glass Fibers: Photomineralization of 4-Chlorophenol[J]. Environ. Sci. Technol., 1994, 28(4): 670-674.
    [84] D. N. Rajendran, K. R. Nair, P. P. Rao, K. S. Sibi, P. Koshy, V. K. Vaidyan. Ionic conductivity in new perovskite type oxides: NaAZrMO6 (A = Ca or Sr; M = Nb or Ta)[J]. Mater. Chem. Phys., 2008, 109: 189-193.
    [85] X. Zhang, A. Sun. Theoretical study on magnetic ground state in the perovskite CeCoO3[J]. Physica B, 2008, 40: 1715-1718.
    [86] C. N. R. Rao, R. Mahesh, A. K. Raychaudhuri. Giant Magnetoresistance Change Ordering and other Novel Properties of Perovskite Manganates[J]. J. Phys. Chem. Solids, 1998, 59: 487-502.
    [87] M. Misono, N. Nojiri. Recent Progress in Catalytic Technology in Japan[J]. Appl. Catal. A, 1990, 64: 1-30.
    [88] M. Misono. A View on the Future of Mixed Oxide Catalysts: The Case of Heteropolyacids (polyoxometalates) and Perovskites[J]. Catal. Today, 2005, 100: 95-100.
    [89] C. Miranda, M. E. V. Costa, M. Avdeev, A. L. Kholkin, J. L. Baptista. Relaxor Properties of Ba-based Layered Perovskites[J]. J. Eur. Ceram. Soc., 2001, 21: 1303-1306.
    [90] H. Tanaka, M. Misono. Advances in Designing Perovskite Catalysts. Curr. Opin[J]. Solid State Mater. Sci., 2001, 5: 381-387.
    [91] P. K. Gallagher, F. Schrey. Thermal Decomposition of Some Substituted Barium Titanyl Oxalates and Its Effect on the Semiconducting Properties of the Doped Materials[J]. J. Am. Ceram. Soc., 1963, 46: 567-573.
    [92] M. I. D. Guemes, T. G. Carreno, C. J. Serna. Mechanism of Formation of MTiO3 (M=Strontium or Barium) by the Gel Method[J]. J. Mater. Sci., 1989, 24: 1011-1014.
    [93] C. Y. Lee, N. H. Tai, H. S. Sheu, H. T. Chiu, S. H. Hsieh. The Formation of Perovskite PbTiO3 Powders by Sol-gel Process[J]. Mater. Chem. Phys., 2006, 97: 468-471.
    [94]徐毓龙.氧化物与化合物半导体基础[J].西安电子科技大学出版社, 1991: 49-61.
    [95]潘覆让.固体催化剂的设计与制备[M].南开大学出版社, 1993: 71-80.
    [96] S. Ahuja, T. R. N. Kutty. Nanoparticles of SrTiO3 Prepared by Gel to Crystallite Conversion and their Photocatalytic Activity in the Mineralization of Phenol[J]. J. Photochem. Photobio. A, 1996, 97: 99-107.
    [97] T. Takata, K. Shinohara, A. Tanaka, M. Hara, J. N. Kondo, K. Domen. A Highly Active Photocatalyst for Overall Water Splitting with a Hydrated Layered Perovskite Structure[J]. J. Photochem. Photobio. A, 1997, 106: 45-49.
    [98] Y. Gorokhovatski, Y. Sezonov. Charge Storage and Relaxation in SrTiO3 and KTaO3 Crystals[J]. Journal of Electrostatics, 1989, 23: 223-226.
    [99] D. W. Hwang, K. Y. Cha, J. Kim, H. G. Kim, S. W. Bae, J. S. Lee. Photocatalytic Degradation of CH3Cl over a Nickel-Loaded Layered Perovskite[J]. Ind. Eng. Chem. Res., 2003, 42(6): 1184-1189.
    [100] O. Carp, C. L. Huisman, A. Reller. Photoinduced Reactivity of Titanium Dioxide[J]. Prog. Solid State Chem., 2004, 32: 33-177.
    [101] M. I. Litter. Heterogeneous Photocatalysis Transition Ions in Photocatalytic Systems[J]. Appl. Catal. B., 1999, 23: 89-114.
    [102] L. Kronik, Y. Shapira. Surface Photovoltage Phenomena: Theory, Experiment, and Applications[J]. Surf. Sci. Rep., 1999, 37: 1-189.
    [103] L. Q. Jing, X. J. Sun, J. Shang, W. M. Cai, Z. L. Xu, Y. G. Du, H. G. Fu. Review ofSurface Photovoltage Spectra of Nanosized Semiconductor and its Applications in Heterogeneous Photocatalysis[J]. Sol. Energy Mater. Sol. Cells, 2003, 79: 133-151.
    [104] R. Nakamura, Y. Nakato. Primary Intermediates of Oxygen Photoevolution Reaction on TiO2(Rutile) Particles, Revealed by in Situ FTIR Absorption and Photoluminescence Measurements[J]. J. Am. Chem. Soc., 2004, 126: 1290-1298.
    [105] Y. Liu, R. O. Claus. Blue Light Emitting Nanosized TiO2 Colloids[J]. J. Am. Chem. Soc., 1997, 119: 5273-5274.
    [106] N. Serpone, E. Pellizzetti. Photocatalysis: Fundamental and Applications[J]. Wiley Publisher, 1989: 1-300.
    [107] E. Pellizzetti, C. Minero. Mechanism of the Photo-Oxidative Degradation of Organic Pollutants over TiO2 Particles[J]. Electrochim. Acta, 1993, 38(1): 47-55.
    [108] I. L. Marta. Heterogeneous Photocatalysis for Purification, Decontamination and Deodorization of Air[J]. J. Chem. Technol. Biotechnol., 1997, 70(2): 117-140.
    [109]郑红,汤鸿霄,王怡中.有机污染物半导体多相光催化氧化机理及动力学研究进展[J].环境科学进展, 1996, 4(3): 1-18.
    [110]李琳.气相有机污染物的光催化氧化[J].化工进展, 1995, 5(1): 45-49.
    [111]胡春,王怡中,汤鸿霄.光催化氧化理论与实践进展[J].环境科学进展, 1995, 3(1): 55-64.
    [112] C. Kormann, D. W. Bahnemann, M. R. Hoffmann. Environmental Photochemistry: Is Iron Oxide an Active Photocatalyst[J]? J. Photochem. Photobiol. A, 1989, 48(1): 161-169.
    [113] V. K. Gupta, L. Suhas, I. Ali, V. K. Saini. Removal of Rhodamine B, Fast Green, and Methylene Blue From Wastewater Using red Mud, an Aluminum Industry Waste[J]. Ind. Eng. Chem. Res., 2004, 43(7): 1740-1747.
    [114] S. Yasui, M. Tsujimoto, K. Itoh, A. Ohno. Quenching of a Photosensitized Dye through Single-electron Transfer from Trivalent Phosphorous Compounds[J]. J.Org. Chem., 2000, 65(15): 4715-4720.
    [115] R. Zondervan, F. Kulzer, M. A. Kolchenko, M. Orrit. Photobleaching of Rhodamine 6G in Poly(vinyl alcohol) at the Ensemle and Single-molecule Levels[J]. J. Phys. Chem. A, 2004, 108(10): 1657-1665.
    [116] J. Pavel. Sorption of Basic Dyes onto Iron Humate[J]. Environ. Sci. Technol., 2003, 37: 5792-5798.
    [117]孙晓君,蔡伟民,井立强,周德瑞,沈雄飞,王志平.二氧化钛半导体光催化技术研究进展[J].哈尔滨工业大学学报, 2001 ,33(4): 534-542.
    [118]张彭义,余刚,蒋展鹏.半导体光催化剂及其改性技术进展[J].环境科学进展, 1997, 5(3): 1-10.
    [119]岳林海,徐铸德.半导体的表面修饰及其光电化学应用[J].化学通报, 1998, 9: 28-31.
    [120]王传义,刘春艳,沈涛.半导体光催化剂的表面修饰[J].高等学校化学学报, 1998, 19(12): 2013-2019.
    [121] J. Z. Zhang. Interfacial Charge Carrier Dynamics of Colloidal Semiconductor Nanoparticles[J]. J. Phys. Chem. B, 2000, 104(31): 7239-7253.
    [122] M. Addamo, V. Augugliaro, A. Di Paola, E. Garcia-Lopez, V. Loddo, G. Marci, R. Molinari, L. Palmisano, M. Schiavello. Preparation, Characterization and Photoactivity of Polycrystalline Nanostructured TiO2 Catalysts[J]. J. Phys. Chem. B, 2004, 108(10): 3303-3310.
    [123] R. A. Spurr, H. Myers. Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer[J]. Anal. Chem., 1957, 29: 760-762.
    [124] M. Kruk, M. Jaroniec. Gas Adsorption Characterization of Ordered Organic-Inorganic Nanocomposite Materials[J]. Chem. Mater., 2001, 13(10): 3169-3183.
    [125] I. Langmuir. The Constitution and Fundamental Properties of Solids and Liquids. Part I. solids[J]. J. Am. Chem. Soc., 1916, 38(11): 2221-2295.
    [126] S. Brunauer, P. H. Emmett, E. Teller. Adsorption of Gases in Multimolecular Layers[J]. J. Am. Chem. Soc., 1938, 60(2): 309-319.
    [127] E. P. Barrett, L. G. Joyner, P. P. Halenda. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms[J]. J. Am. Chem. Soc., 1951, 73(1): 373-380.
    [128] L. Wu, J. C. Yu, L. Z. Zhang, X. C. Wang, W. K. Ho. Preparation of a Highly Active Nanocrystalline TiO2 Photocatalyst from Titanium Oxo Cluster Precursor[J]. J. Solid State Chem., 2004, 177(7): 2584-2590.
    [129] D. Bersani, P. P. Lottici, X. Z. Ding. Phonon Confinement Effects in the Raman Scattering by TiO2 Nanocrystals[J]. Appl. Phys. Lett., 1998, 72(1): 73-75.
    [130] A. Brioude, F. Lequevre, J. Mugnier, J. Dumas, G. Guiraud, J. C. Planet. Raman Spectroscopy of Sol-Gel Ultrathin Films Enhanced by Surface Plasmon Polaritions[J]. J. Appl. Phys., 2000, 88(11): 6187-6191.
    [131] S. Y. Choi, M. Mamak, N. Coombs, N. Chopra, G. A. Ozin. Thermally Stable Two-Dimensional Hexagonal Mesoporous Nanocrystalline Anatase, Meso-Nc-TiO2: Bulk and Crack-Free Thin Film Morphologies[J]. Adv. Funct. Mater., 2004, 14(4): 335-344.
    [132] Y. Djaoued, S. Badilescu, P. V. Ashrit, D. Bersani, P. P. Lottici, J. Robichaud. Study of Anatase to Rutile Phase Transition in Nanocrystalline Titania Films[J]. J. Sol-Gel Sci. Technol., 2002, 24(3): 255-264.
    [133] I. B. Bickley, T. Gonzalez-Carreno, J. S. Lees, P. Leonardo, J. D. T. Richard. A Structural Investigation of Titanium Dioxide Photocatalysts[J]. J. Solid State Chem., 1991, 92(1): 178-190.
    [134] S. Horikoshi, H. Hidaka, N. Serpone. Environmental Remediation by an Integrated Microwave/UV-Illumination Method. 1. Microwave-Assisted Degradation of Rhodamine-B Dye in Aqueous TiO2 Dispersions[J]. Enviro. Sci. Technol., 2002, 36(6): 1357-1366.
    [135] L. Q. Jing, X. J. Sun, J. Shang, W. M. Cai, Z. L. Xu, Y. G. Du, H. G. Fu. Review of surface photovoltage spectra of nano-sized semiconductor and its applications in heterogeneous photocatalysis[J]. Sol. Energ. Mat. Sol. C, 2003, 79: 133-151.
    [136] U. Diebold. The surface science of titanium dioxide[J]. Surf. Sci. Rep, 2003, 48: 53-229.
    [137] N. Serpone, D. Lawless, R. Khairutdinov. Size Effects on the Photophysical Properties of Colloidal Anatase TiO2 Particles: Size Quantization versus Direct Transitions in This Indirect Semiconductor[J]? J. Phys. Chem, 1995, 99: 16646-16654.
    [138] J. Hong, J. Cao, J. Z. Sun, H. Y. Li, H. Z. Chen, M. Wang. Electronic structure of titanium oxide nanotubules. Chem. Phys. Lett, 2003, 380: 366-371.
    [139] Y. Lu, M. Yuan, Y. Liu, B. Tu, C. Xu, B. Liu, D. Zhao, J. Kong. Photoelectric Performance of Bacteria Photosynthetic Proteins Entrapped on Tailored Mesoporous WO3-TiO2 Films[J]. Langmuir, 2005, 21: 4071-4076.
    [140] L. Q. Jing, B. F. Xin, F. L. Yuan, L. P. Xue, B. Q. Wang, H. G. Fu. Effects of Surface Oxygen Vacancies on Photophysical and Photochemical Processes of Zn-Doped TiO2 Nanoparticles and their Relationships[J]. J. Phys. Chem. B, 2006, 110: 17860-17865.
    [141] Z. S. Wang, C. H. Huang, Y. Y. Huang, Y. J. Hou, P. H. Xie, B. W. Zhang, H. M. Cheng. A Highly Efficient Solar Cell Made from a Dye-Modified ZnO-Covered TiO2 Nanoporous Electrode[J]. Chem. Mater., 2001, 13: 678-682.
    [142] R. S. Mane, W. J. Lee, H. M. Pathan, S. H Han. Nanocrystalline TiO2-ZnO Thin Films-Fabrication and Application to Dye-Sensitized Solar Cells[J]. J. Phys. Chem. B, 2005, 109(51): 24254-24259.
    [143] H. Tokuhisa, P. T. Hammond. Nonlithographic Micro- and Nanopatterning of TiO2 Using Polymer Stamped Molecular Templates[J]. Langmuir, 2004, 20(4): 1436-1441.
    [144] C. C. Weng, K. H. Wei. Selective Distribution of Surface-Modified TiO2 Nanoparticles in Polystyrene-b-poly (Methyl Methacrylate) Diblock Copolymer[J]. Chem. Mater., 2003, 15(15): 2936-2941.
    [145] B. Q. Wang, L. Q. Jing, Y. C. Qu, S. D. Li, B. J. Jiang, L. B. Yang, B. F. Xin, H. G. Fu. Enhancement of the Photocatalytic Activity of TiO2 Nanoparticles by Surface-Capping DBS groups[J]. Appl. Surf. Sci., 2006, 252: 2817-2825.
    [146]井立强,王德军,辛柏福,王百齐,薛连鹏,付宏刚,孙家钟.掺Sn的纳米TiO2表面光生束缚激子的验证及其特性[J].化学学报, 2005, 63(11): 1008-1012.
    [147]井立强,李晓倩,李姝丹,王百齐,辛柏福,付宏刚,王德军,蔡伟民.纳米Au/TiO2光催化剂的XPS和SPS研究[J].催化学报, 2005, 26(3): 189-193.
    [148] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe. Light-induced amphiphilic surfaces[J]. Nature, 1997, 388: 431-432.
    [149] I. M. Arabatzis, T. Stergiopoulos, M. C. Bernard, D. Labou, S. G. Neophytides, P. Falaras. Silver-Modified Titanium Dioxide Thin Films for Efficient Photodegradation of Methyl Orange[J]. Appl. Catal. B, 2003, 42(2): 187-201.
    [150] B. P. Barbero, J. A. Gamboa, L. E. Cadus. Synthesis and Characterisation of La1?xCaxFeO3 Perovskite-Type Oxidecatalysts for Total Oxidation of Volatile Organic Compounds[J]. Appl. Catal. B, 2006, 65(1): 21-30.
    [151] Z. G. Hu, Y. Y. Yang, X. L. Shang, H. L. Pang. Preparation and Characterization of Nanometer Perovskite-Type Complex Oxides LaMnO3.15 and their Application in Catalytic Oxidation[J]. Mater. Lett., 2005, 59(11): 1373-1377.
    [152] M. Zayat, D. Levy. Blue CoAl2O4 Particles Prepared by the Sol-Gel and Citrate-Gel Methods[J]. Chem. Mater., 2000, 12(9): 2763-2769.
    [153] I. Pribosic, D. Makovec, M. Drofenik. Formation of Nanoneedles and Nanoplatelets of KNbO3 Perovskite during Templated Crystallization of thePrecursor Gel[J]. Chem. Mater., 2005, 17(11): 2953-2958.
    [154] Y. Nosaka, M. Kishimoto, J. Nishino. Factors Governing the Initial Process of TiO2 Photocatalysis Studied by means of in-Situ Electron Spin Resonance Measurements[J]. J. Phys. Chem. B, 1998, 102(50): 10279-10283.
    [155]熊纲,杨绪杰,陆路德,汪信.纳米晶铁酸锌和铁酸镧的合成与表征[J].无机材料学报, 1998, 13(4): 613-618.
    [156] K. Maths, M. Aleksandar, B. Pedro, B. Lars. Vibrational Properties of Proton Conducting Double Perovskites[J]. Solid State Ionics, 2005, 176(39): 2971-2974.
    [157] T. Yosuke, S. Hiromi, N. Kazuya, S. Wataru, S. Yoshiyuki. Preparation of a Novel Organic Derivative of the Layered Perovskite Bearing HLaNb2O7·nH2O Interlayer Surface Trifluoroacetate Groups[J]. Mater. Res. Bull., 2006, 41(4): 834-841.
    [158] L. Lu, X. Wang, L. Li, G. Li. Understanding of the Finite Size Effects on Lattice Vibrations and Electronic Transitions of Nanoα-Fe2O3[J]. J. Phys. Chem. B, 2005, 109(36): 17151-17156.
    [159] D. K. Li, D. J. Wang, F. Q. Wu, T. F. Xie, T. J. Li. Surface Electronic States and Photovoltage Gas-Sensitive Characters of Nanocrystalline LaFeO3[J]. Mater. Chem. Phys., 2000, 64: 269-272.
    [160] L. Q. Jing, B. Q. Wang, B. F. Xin, S. D. Li, K. Y. Shi, W. M. Cai, H. G. Fu. Investigations on the Surface Modification of ZnO Nanoparticle Photocatalyst by Depositing Pd[J]. J. Solid State Chem., 2004, 177: 4221-4227.
    [161] L. Q. Jing, J. X Sun, W. M. Cai, Z. L. Xu, Y. G. Du, H. G. Fu. The Preparation and Characterization of Nanoparticle TiO2/Ti Films and their Photocatalytic Activity[J]. J. Phys. Chem. Solids, 2003, 64(4): 615-622.
    [162] L. Kronik, Y. Shapira. Surface photovoltage phenomena: theory, experiment, and applications[J]. Surf. Sci. Rep., 1999, 125(37): 1~206
    [163] D. W. Bahnemann, M. Hilgendorff, R. Memming. Charge Carrier Dynamics atTiO2 Particles: Reactivity of Free and Trapped Holes[J]. J. Phys. Chem. B, 1997, 101(21): 4265-4275.
    [164] J. G. Yu, H. G. Yu, B. Cheng, X. J. Zhao, J. C. Yu, W. K. Ho. The Effect of Calcination Temperature on the Surface Microstructure and Photocatalytic Activity of TiO2 Thin Films Prepared by Liquid Phase Deposition[J]. J. Phys. Chem. B, 2003, 107(50): 13871-13879.
    [165] W. F. Zhang, M. S. Zhang, Z. Yin, Q. Chen. Photoluminescence in Anatase Titanium Dioxide Nanocrystals[J]. Appl. Phys. B, 2000, 70: 261-265.
    [166]袁志好,张立德.掺锌的TiO2纳米粉的结构相变及发光性质[J].高等学校化学学报, 1999, 20(7): 1007-1011.
    [167]李旦振,郑宜,付贤智.纳米二氧化钛的光致发光[J].材料研究学报, 2000, 14(6): 639-643.
    [168] L. D. Zhang, C. M. Mo. Luminescence in Nanostructured Materials[J]. Nanostruct. Mater., 1995, 6: 831-834.
    [169]屈宜春,井立强,张相育,王百齐,李姝丹,付宏刚. Cu掺杂TiO2纳米粒子的溶胶-水热法制备及其SPV和PL研究[J].黑龙江大学自然科学学报, 2005, 22(6): 766-769.
    [170]井立强,周强,王百齐,辛柏福,付宏刚,蔡伟民.表面修饰Ru的TiO2纳米粒子的表征及其光催化活性[J].哈尔滨工业大学学报, 2005, 37(11): 1543-1545.
    [171] Z. Zhang, C. C. Wang, R. Zakaria, J. Y. Ying. Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts[J]. J. Phys. Chem. B, 1998, 102(52): 10871-10878.
    [172] J. C. Yu, J. G. Yu, L. Z. Zhang, W. K. Ho. Enhancing Effects of Water Content and Ultrasonic Irradiation on the Photocatalytic Activity of Nano-Sized TiO2 Powders[J]. J. Photochem. Photobiol. A, 2002, 148(1-3): 263-271.
    [173] D. Das, H. K. Mishra, N. C. Pradhan, A. K. Dalai, K. M. Parada. Studies on Structural Properties, Surface Acidity and Benzene Isopropylation Activity ofSulphated ZrO2-TiO2 Mixed Oxide Catalysts[J]. Microporou Mesoporous Mater., 2005, 80(1-3): 327-336.
    [174] D. Das, H. K. Mishra, K. M. Parada, A. K. Dalai. Preparation, Physico-Chemical Characterization and Catalytic Activity of Sulphated ZrO2-TiO2 Mixed Oxides[J]. J. Mol. Cata. A, 2002, 189(2): 125-131.
    [175] M. D. Hernandez-Alonso, I. Tejedor-Tejedor, J. M. Coronado, J. Soria, M. A. Anderson. Sol-Gel Preparation of TiO2-ZrO2 Thin Films Supported on Glass Rings: Influence of Phase Composition on Photocatalytic Activity. Thin Solid Films, 2006, 502(1-2): 125-131.
    [176] K. Tanade, T. Sumiyoshi, K. Shibata, T. Kiyoura, J. Kitagawa. A New Hypothesis Regarding Regarding the Surface Acidity of Binary Metal Oxides[J]. Bull. Chem. Soc. Jpn., 1974, 47(5): 1064-1066.
    [177] H. H. Kung. Formation of New Acid Sites in Dilute Oxide Solid Solutions: A Predictive Model[J]. J. Solid State Chem., 1984, 52(2): 191-196.
    [178] S. Vafaei, M. Z. Podowski. Analysis of the Relationship between Liquid Droplet Size and Contact Angle[J]. Adv Colloid Interface Sci, 2005, 113(2-3): 133-146.
    [179] D. Y. Kwok, A. W. Neumann. Contact Angle Measurement and Contact Angle Interpretation[J]. Adv. Colloid Interface Sci., 1999, 81(3): 167-249.
    [180] T. Young. An Essay on the Cohesion of Fluids[J]. Philos. Trans. R. Soc. London, 1825, 95: 65-87.
    [181] R. Leboda, V. V. Turov, M. Marciniak, A. A. Malygin, A. A. Malkov. Characteristics of the Hydration Layer Struture in Porous Titania-Silica Obtained by the Chemical Vapor Deposition Method[J]. Langmuir, 1999, 15(24): 8441-8446.
    [182] F. Zhang, G. K. Wolf, X. H. Wang, X. H. Liu. Surface Properties of Silver Doped Titanium Oxide Films[J]. Surf. Coat. Technol, 2001, 148(10): 65-70.
    [183] B. Grzybowska, J. Sloczyski, R. Grabowski, K. Samson, I. Gressel, K. Wcislo, L.Gengembre, Y. Barbaux. Effects of Doping TiO2 of Support with Altervalent Ions on Physicochemical and Catalytic Properties in Oxidative Dehydrogenation of Propane of Vanadia-Titania Catalysts[J]. Appl. Catal. A, 2002, 230(1-2): 1-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700