石英纤维/有机硅树脂复合材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航天透波材料因其特殊的使用场合而要求具有优良的综合性能。传统的树脂如酚醛树脂、环氧树脂等耐高温性能不足,在透波材料领域中使用受限,有机硅树脂因其具有优良的耐热性和介电性能而备受关注。有机硅树脂作为透波复合材料的基体在俄罗斯已经被成功应用于战术导弹、航天飞机中。已有研究表明,在有机硅树脂中引入B元素,使之形成Si-O-B键桥可以进一步提高其耐热性能。本文使B(OH)3与聚甲基乙氧基硅氧烷(PMES)反应制备了SiBOCH体系的有机硅树脂,通过红外分析法证实了B以Si-O-B形式成功地连接到了硅氧烷结构中,通过TG分析了其耐热性能。
     以这种自制的有机硅树脂为基体,采用介电性能优异的石英纤维(布)做增强体,以寻求制备复合材料的最佳工艺方法为主线,借助于三点弯曲测试、SEM分析、FT-IR分析、TG分析等手段,研究了不同工艺下几种主要因素对复合材料组织和性能的影响。
     纤维布增强有机硅树脂复合材料的研究中显示,石英纤维表面浸润剂的去除对提高复合材料的弯曲性能有很大意义。偶联剂在纤维与基体界面处形成化学键合而表现出比热处理、酸刻蚀物理方法更有效果,其中偶联剂KH550比KH560更为合适。随着温度的升高,复合材料中因为水分、乙醇的挥发,Si-C键裂解产生CO2、H2O,Si-O键断裂生成小分子环体而使材料有较大失重,弯曲性能逐渐下降,350℃之后幅度更大。复合材料中含胶量为40%时,纤维周围树脂基体包覆较好,室温弯曲性能比含胶量为20%、60%的分别高出136%和221%。超声波振动能促进硅树脂中的Si-O-Si键的裂解,导致复合材料弯曲性能下降。制备工艺中浸泡反应法比真空辅助浸渍法和预浸料法优异,但纤维布的线密度比较大,影响了树脂胶液的浸渍效果,材料性能提升有限。
     将单向石英纤维采用缠绕法制备复合材料,室温弯曲强度能达到纤维布所得复合材料的最高值的2.08倍。在固化时采用热压方式,能有效提高固化交联程度,降低材料的气孔率、减小材料变形,复合材料的弯曲强度明显优于无压固化方式,室温下均值为248.0MPa,最高能达到259.9MPa,比无压固化的高出52.6%,350℃时均值为142.4Mpa,尚可比后者高出58.4%。
Wave-transparent materials which have been extensive used in aerospace field requires excellent performance because of their special occasion. The use of traditional resins such as phenolic and epoxy as wave-transparent materials is limited, because their mechanical properties decreased severely as the temperature increased. However, organic silicone resin, whose heat resistance and dielectric properties are excellent have attracted much attention. In Russia, this resin has been used successfully in the tactical missile and space shuttles as the matrix of composites. It has been shown that, the Boron element added in silicone resin, forming Si-O-B bridge can improve its heat resistance further.
     The SiBOCH silicone resin can be prepared by the chemical reaction of B(OH)3 and poly-methyl ethoxy siloxane (PMES). The FT-IR analysis showed that the B element has been successfully connected to the silicon-oxygen alkane structure as Si-O-B bond. Meanwhile , its thermal properties has also been analyzed by TG.
     This paper is to seek an optimal preparation method of the composites with this prepared silicone resin as matrix and quartz fiber (cloth) who has good dielectric properties as reinforcement. The mechanical properties and microstructures were analyzed by three point method, SEM, FT-IR and TG-DTA.
     In the research of fiber cloth reinforce silicone resin composites, it shows that, the removal of the fiber sizing has a significant effect on the flexural strength of composites. Coupling agent used in the interface between fiber and matrix to form a chemical combination, can improve mechanical properties more effectively than method of heat treatment and acid etching, which are physical treatment. In addition, the coupling agent KH550 is more appropriate than KH560. With the increase of temperature, water and ethanol in the composites volatilize, the cleavage of Si-C bond can generate CO2 and H2O , Si-O bond break and small molecule ring body were produced, all of these lead to a greater weight loss and a drop of the flexural properties , especially after 350℃. When the resin content of the composite is 40% (mass fraction), the resin matrix can cover the fiber better, so at room temperature its flexural strength can be 1.36 and 2.21 times higher than the content is 20% and 60% respectively. Ultrasonic vibration can promote the cleavage of Si-O-Si bond in silicone resin, which results in the flexural strength decrease. Among the several methods of fabrication, soaking-reaction mothd can perform better than vacuum-assisted impregnation and prepreg one. However the linear density of the fiber is relatively large, affecting the impregnation of resin glue. As a result, the improvement of strength is limited.
     Use unidirectional quartz fiber to fabricate composites by filament winding process, the flexural strength at room temperature can be 2.08 times as high as fiber cloth reinforced composites. The hot-pressing way used in the curing step, can improve the crosslinking effectively, lower the porosity of the material, reducing deformation. Consequently, the flexural strength of the composite is superior to pressureless way. At room temperature, it is 248.0 MPa on average, with a peak of 259.9MPa, which can be 0.526 times higher than the pressureless one. At 350℃, the flexural strength is 142.4Mpa, this can also be 0.584 times higher than the latter.
引文
[1] Chase V .A , Copel , R.L. Development of a 1200f Radom Interim Engennering Report 3, AD 429387, 1963.
    [2]张大海,黎义,陈英等.航天透波多功能材料研究进展.宇航材料工艺. 2000, 30(5): 1-5.
    [3]刘丽等.天线罩用透波材料.冶金工业出版社. 2008.
    [4]周玉玺,袁海根.透波复合材料研究进展.化学推进剂与高分子材料. 2006, 4(5): 30-36.
    [5]张恒,张军,沈献民等.电磁透波功能复合材料综述.材料导报. 2003, 17(7): 64.
    [6]于翘.胡连成,黎义.俄罗斯航天透波材料现状考察.宇航材料工嚣. 1994, 1: 48-52.
    [7]蔡克龙.耐高温杂化硅树脂的合成及复合材料性能研究.博士学位论文. 2009, 2.
    [8] Chimie de la Matiere Condensee. Sol–Gel-Derived Silicon-Boron Oxycarbide Glasses Containing Mixed Silicon Oxycarbide (Sicxo4-X ) and Boron Oxycarbide (Bcyo3-Y ) Units. Ultrahigh-Temperature Ceramics. 2001, 84(10): 2160-2164.
    [9]姚金水,徐清钢,李梅等.耐高温有机硅树脂的合成和改性研究状况.山东轻工业学院学报. 2010, 24(1): 33-36.
    [10]付丽英,汪倩,胡潇文等.含硼硅树脂的合成及其热氧化稳定性的研究.化情CD54377. 2004: 259-261.
    [11] Seishi Yajima, Kiyohito Okamura,Toetsu Shishido etc. Process for Producing Heat-Resistant Semi-Inorganic Compounds. United states patent. 1979, 4242487.
    [12] Marco A. Schiavon, Nádia A. Armelin, I. Valéria P. Yoshida. Novel Poly(Borosiloxane) Precursors to Amorphous Sibco Ceramics. Materials Chemistry and Physics. 2008, 112: 1047-1054.
    [13] L. A. Vostrikova, K. G. Ione, V. M. Mastikhin etc. Preparation and Properties of Borosilicates with a Zeolite Structure. React, Kinet. Catal. Lett. 1984, 26(3-4): 291-295.
    [14] V. A. Kasperskii, V. V. Brei, A.A.Chuiko. Ir Spectroscopic Study of Hydrolysis of Boron-Containing Groups on the Surface of Silica. Zhurnal Prikladoni Spektroskopil. 1987, 49(3): 460-464.
    [15] M. Nogamia,Y. Moriyaa. Glass Formation of the SiO2-B2O3 System by the Gel Process from Metal Alkoxides. Journal of Non-Crystalline Solids. 1982, 48(2-3): 359-366.
    [16] Z.L. Carole C. Harrison Studies of Mixed Silica/Alumina and Silica/Boric Oxide Materials. Journal of Sol-Gel Science and Technology 1994, 2(1-3): 73-79.
    [17] Ahmet Kasgoz, Takahisa Misono, Yoshimoto Abe. Sol-Gel Preparation of Borosilicates. Journal of Non-Crystalline Solids. 1999, 243: 168-174.
    [18] Yajima. Borosiloxane Polymers and a Method for Producing the Same. United states patent 1979, 4152509.
    [19] Gian Domenico Soraru. Organically Modified SiO2-B2O3 Gels Displaying a High Content of Borosiloxane(=B-O-Si≡)Bonds. Chem. Mater. 1999, 11: 910-919.
    [20]黎义,张大海,高文等.高温天线罩材料研究进展.宇航材料工艺. 2001, 31(6): 1-3.
    [21] D.G.Paquette. .Method of Making a Radar Transparent Window Material Operable above 2000℃. US Patent. 1997, 562754.
    [22] Rice R W, Medonough W J, Freiman S W et al. Ablative- Esistant Dielaetrie Ceramic Composite. US Patent. 4304870(1981).
    [23]雷廷权,温广武,周玉.石英玻璃基复合材料的研究进展.材料工程. 2002, 1: 40-43.
    [24] Dodds C G, Tanzilli R A. Silica, Boron Nitride, Aluminum Nitride, Alumina Composite, Article and Method of Making Same. US patent. 1999, 5891815.
    [25] WEN G.WU G L..LEI T Q. Co-Enhanced SiO2-BN Ceramics for High temperature Dielectric Applications. Journal of the European Ceramic Society. 2000, 20(11): 1923-1928.
    [26] Dodds C G, Tanzilli R A. Boron Nitride-toughened Single Phase Silicon Aluminum Oxynitride Composite, Article and Method Ofmaking Same. US Patent. 1999, 5925584.
    [27] Xu CM,Wang SW, Huang X X,etc. Processing and Properties of Unidirectional SiO2f /SiO2 Composites. Ceramic International. 2007, 33(4): 669-673.
    [28] Lyons J S, Starr TL. Strength and Toughness of Slip-Cast Fused-Silica Composites. Journal of the American Ceramic Society. 1994, 77(6): 1673-1675.
    [29]周玉,贾德昌,雷廷权.热压工艺对SiO2f/SiO2复合材料结构与力学性能的影响.宇航材料工艺. 2001, 1: 29-31.
    [30]黄校先,郭景坤,李包顺等.介电陶瓷复合材料.上海硅酸盐. 1989, 1(2): 26-30.
    [31] WEN G, WU G L, LEI T Q. Co-Enhanced SiO2-BN Ceramics for High-Temperature Dielectric Applications. Journal of the European Ceramic Society. 2000, 20: 1923-1928.
    [32] Liu H K, Huang C C. Impact Response and Mechanical Behavior of 3-D Ceramic Matrix Composites. Journal of the European Ceramic Society. 2001, 21: 251-261.
    [33]张立中.三向石英复合材料的断裂韧度KiC的测试与分析.宇航材料工艺. 1996, 4: 26-29.
    [34] Chen H, Zhang L M, Jia G Y, etc. The Preparation and Characterization of 3d-Silica Fiber Reinforced Silica Composites. Key Engineering Materials. 2003, 249: 159-162. ]35]黎义,曾剑平,吴远秀等.有机硅树脂在SiO2基复合材料中的应用研究.宇航材料工艺. 1997, 3: 26-31.
    [36]陈虹,贾光耀,胡利明等.三向石英复合材料的研制.硅酸盐通报. 2002, 1: 3-6.
    [37]张联盟,陈虹,李勇等.三维编织SiO2基复合材料性能的研究.硅酸盐学报. 2003, 31(10): 918-921.
    [38] Brazel J P, Fenton R. ADL-4DL. A Silica/Silica Composites for Hardened Antenna Windows. Proceedings of the 13th Symposium on Electromagnetic Windows Georgia Institute of Technology, Atlanta, Georgia 1976: 9-16.
    [39] GilreathM C, Castell ow S L. High Temperature Dielectric P R Operties of Candidate S Pace2shuttle Ther Mal P Rotection System and Antenna- Window Materials. NASA TND2 7523. Washington. 1974, NASA: 1-53.
    [40] Thomas M. Place. Costa Mesa, Calif. Low Loss Radarwindow for Reentry Vehicle. US Patent. 1988, 4786548.
    [41]胡海峰,韩爽,齐共金.无机天线罩的研究进展.纤维复合材料. 2006, 4: 64-68.
    [42]田焕芳.石英增强磷酸盐复合材料制备和组织结构及力学性能.硕士学位论文. 2003: 68.
    [43]罗进文,麻平,郭卫红等.磷酸盐基体及其纤维复合材料的研究——预浸料制备及其成型工艺.纤维复合材料. 2004, 2(15): 46-47.
    [44] A.Matsumoto,K. Hasgawa, A. Fukuda,et al. Study on Modified Phenolic Resin.Ii. Modification with P-Hydroxyphenylmaleimide/Styrene Copolymer. Appl.Polym.Sci.. 1992, 44(2): 205-212.
    [45] J. Boyd. Bismaleimide Composites Come of Age: Bmi Science and Applications. SAMPE journal. 1999, 35(6): 13.
    [46]黄玉东,刘玉荣,刘丽等.三硅醇异丁基倍半硅氧烷改性甲基硅树脂的耐热性能及力学性能.复合材料新进展. 2006, B: 125-133.
    [47]张晓洁,张军营,肖志刚等.聚倍半硅氧烷树脂/石英纤维复合材料耐高温性能研究.玻璃钢/复合材料2008, 6: 24-27.
    [48] J.T. Sun, Y.D. Huang, G.F. Gong etc. Thermal Degradation Kinetics of Poly(Methylphenylsiloxane) Containing Methacryloyl Groups. Polymer Degradation and Stability. 2006, 91(2): 339-346.
    [49] Raquel Pe?a-Alonso, Gian Domenico Sorarù. Synthesis and Characterization of Hybrid Borosiloxane Gels as Precursors for Si–B–O–C Fibers Journal of sol-gel science and technology. 2007, 43: 313-319.
    [50] Qian Wang, Liying Fu, Xiaowen Hu etc. Preparation and Properties of Borosiloxane Gels. Jorunal of applied polymer science. 2006, 99: 719-724.
    [51] Michael A. Beckett, Martin P. Rugen-Hankey, K. Sukumar Varma. Formation of Borosilicate Glasses from Silicon Alkoxides and Metaborate Esters in Dry Non-Aqueous Solvents Journal of Sol-Gel Science and Technology 2006, 39(2): 95-101.
    [52] G. Ambadas, S. Packirisamy, K.N. Ninan. Synthesis, Characterization and Thermal Properties of Boron and Silicon Containing Preceramic Oligomers Journal of Materials Science Letters 2002, 21(13): 1003-1005.
    [53] CONGJI ZHA, G.R. ATKINS, A.F. MASTERS. A Spectroscopic Study of an Anhydrous Tetraethyl Orthosilicate-Boric Acid-Ethanol System. Journal of Sol-Gel Science and Technology 1998, 13(103-107).
    [54] A.D. Irwin, J.S. Holmgren, T.W. Zerda et al.. Spectroscopic Investigations ofBorosiloxane Bond Formation in the Sol-Gel Process. Journal of Non-Crystalline Solids. 1987, 89(1-2): 191-205.
    [55] Deepa Devapal, S. Packirisamy,K. J. Sreejith et al. Synthesis, Characterization and CeramicConversion Studies of Borosiloxane Oligomers from Phenyltrialkoxysilanes. J Inorg Organomet Polym 2010, 20: 666-674.
    [56] RENATO L. SIQUEIRA1, I. VALéRIA P. YOSHIDA2, LUIZ C. PARDINI et al. Poly(Borosiloxanes) as Precursors of Ceramic Matrix in Carbon Fiber Composites. Inorganic-bonded fiber composites conference. 2006, 15(18): 186-189.
    [57] A.D. Irwin, J.S. Holmgren, and J. Jonas. Solid State 29si and 11b Nmr Studies of Sol-Gel Derived Borosilicates. Journal of Non-Crystalline Solids. 1988, 101(2-3): 249-254.
    [58] Gian Domenico Soraru, Florence Babonneau, Christel Gervais etc. Hybrid RSiO1. 5/B2O3 Gels from Modified Silicon Alkoxides and Boric Acid. Journal of Sol-Gel Science and Technology . 2000, 18(1): 11-19.
    [59] Gian Domenico Soraru ,Nicola Dallabona, Christel Gervais et al. Organically Modified SiO2B2O3 Gels Displaying a High Content of Borosiloxane (B-O-S) Bonds. Chem. Mater. 1999, 11: 910-919.
    [60] G. D. Soraru, R.Campostrin. S. Maurina, F. Babonneau. Gel Precursor to Silicon Oxycarbide Glasses with Ultrahigh Ceramic Yield. J. Am. Ceram. Soc. 1997, 80: 999-1004.
    [61]韩哲文,付善菊,吴平平.聚硅氧烷热稳定性研究进展.高分子通报. 2001, 1: 40-50.
    [62]张洁,冯圣玉,李美江等.有机硅高分子及其应用.化学工业出版社. 2004,北京.
    [63]王磊,缪长礼,孟令辉等.热处理对高硅氧织物增强甲基硅树脂复合材料室温弯曲强度的影响.固体火箭技术. 2010, 33(1): 95-100.
    [64]张长瑞,陈帮,王思青等.石英纤维的表面处理.硅酸盐通报. 2006, 6: 187-192.
    [65]邓诗峰,周燕,黄发荣.磷酸盐基复合材料中石英纤维的表面处理.玻璃钢/复合材料. 2009, 2: 37-44.
    [66]申世杰,许小芳.硅烷偶联剂处理玻璃纤维对复合材料界面的影响.宇航材料工艺. 2010, 3: 5-11.
    [67]周奇龙,易长海,许家瑞等.硅烷偶联剂处理玻璃纤维表面的形态及活化机理.荆州师范学院学报(自然科学版). 2001, 24(2): 93-96.
    [68] William J. Ablative Silicone Coating Compositions. US Patent. 1966, 3317455.
    [69]黄玉东,王磊,刘丽等.溶胶-凝胶A12O3涂层石英纤维增强甲基硅树脂基复合材料的制备.固体火箭技术. 2008, 31(1): 87-93.
    [70]彭进,张琳琪,邹文俊等.马来酰亚胺改性有机硅树脂复合材料的制备与性能.河南化工. 2004, 7: 16-20.
    [71] Gonzalez一Benito J,Basdga J,Aznar A J. Microstructural and Wettability Study of Surface Pretrated Glass Fibres. JournaI of Matedds. 1999, Processing technology: 92-93.
    [72]曾辉,孙文强,牛兰刚等.耐高温复合材料用玻璃纤维表面处理研究(1)——酸碱刻蚀处理的研究.玻璃钢/复合材料. 2000, 1.
    [73] Anand Agarwal,Minoru Tomozawa. Correlation of Silica Glass Properties with the Infrared Spectra. Journal of Non-Crystalline Solids 1997, 209: 166-174.
    [74] S. P. Zhdanov. IR Study of Hydroxylated Silica. Langmuir. 1987, 3(6): 961.
    [75]黄玉东,王柏臣,刘丽.酚醛-乙醇体系在石英纤维表面吸附行为研究.哈尔滨工业大学学报. 2006, 38(10): 1661-1665.
    [76]葛金龙,王传虎,曾小剑.超细硅微粉表面改性的研究.非金属矿. 2009, 32(4): 14-17.
    [77]王美平.纳米SiO2的化学沉淀法制备及其原位改性.硕士学位论文. 2008.
    [78]李伶,韦其红,李勇.石英纤维复合材料强化处理工艺的研究.硅酸盐通报. 2009, 28(1).
    [79]王树彬,邢建申,张跃.石英纤维析晶行为.复合材料学报. 2006, 23(6).
    [80]殷榕灿,张文保.硅烷偶联剂的研究进展.中国科技信息. 2010, 10: 44-47.
    [81] Soo Jin Park,Joong Seong Jin. Effect of Silane Coupling Agent on Interphase and Performance of Glass Fibers/Nsaturated Polyester Composites. Journal of Colloid Interface Science. 2001, 242(1): 174-179.
    [82]周润培.玻璃纤维-树脂的界面结构.玻璃钢/复合材料. 1979, 3.
    [83]陈剑华,杜作栋.有机硅化学.高等教育出版社. 1990,北京市: 218-219.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700