hsp90β基因在Jurkat细胞中表达调控机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热休克蛋白90(HSP90)在正常生长条件下细胞内就有较高水平的组成性表达,并可被热和丝裂原双重诱导。这提示HSP90在细胞内具有重要的功能。事实证明,作为一种特异的分子伴侣,HSP90除在细胞正常生长和应急保护中具有重要生理功能外,还与信号传导、细胞周期调控、激素应答等细胞内重要生理过程有关。因此研究HSP90蛋白基因的表达调控机制具有重要的生物学意义。本论文首先研究了两个重要顺式元件CRE和AP-1位点及相关的反式作用因子在hsp90β基因表达调控中的作用;另外,从染色质水平对hsp90β基因组在组成性、热诱导和PHA激活表达条件下DNaseI高敏位点进行了分析。
     一、CRE和AP-1位点及相关反式作用因子在hsp90β基因表达调控中的作用
     1.首先构建了CRE和AP-1位点系列缺失的CAT和Luc报告基因质粒。转染Jurkat细胞并分析报告基因的活性。结果发现,在组成性表达中,单独删除CRE或单独删除AP-1位点,报告基因的活性变化不显著,但同时删除这两个元件时,报告基因的活性降低了40%。这表明CRE和AP-1位点共同对hsp90β基因的高组成性表达起重要作用;在热诱导表达中,缺失CRE、AP-1位点和两者同时缺失,报告基因热诱导倍数分别降低67%、50%、67%,表明CRE和AP-1位点参与了hsp90β基因的热诱导表达。在PHA诱导表达中,保留CRE和AP-1位点中的任何一个PHA均能激活报告基因的表达,但同时删除这两个元件时,PHA不能激活报告基因的表达。这表明CRE和AP-1位点介导了PHA激活hsp90β基因的表达。
     2.我们随后分析了CRE相关的反式作用因子对hsp90β基因表达的影响。利用EMSA实验,发现热休克处理的Jurkat细胞核抽提物能与hsp90β基因5'上游含有CRE的-173/-91DNA片段形成三条结合带,野生型冷探针可特异竞争这三条结合带而CRE共有系列的核心碱基突变的寡聚核苷酸片段却不能竞争,表明这三条结合
Human hsp90 genes are usually constitutively expressed in most mammalian cell types and can be further induced by heat shock and mitogen. This suggests that HSP90 proteins are critical to the cells' normal growth. In fact, as a specific molecular chaperone, HSP90 proteins are possibly involved in many important physiological processes such as signal transduction, cell cycle regulation and hormone response. So it is very meanful for us to study the regulatory mechanisms of expression of human hsp90 genes. Here, we first present the evidence of the role of CRE, AP-1 site and their own related transactivators in the regulation of human hsp90p gene; then we identify the DNase I hypersensitive sites in human hsp90p gene in Jurkat cells.
    — The role of CRE, AP-1 site and the related trans-activators in the expression of human hsp90p gene
    1. We first constructed the CAT and Luc reporter plasmid deleting CRE or AP-1 site or both. These deleting mutants were then transfected into Jurkat cells and the reporter activities were detected. The results show that CRE together with AP-1 site are critical for the high constitutive expression of human hsp90p gene; CRE and AP-1 site also participate in heat inducible expression of human hsp90p gene. We also found that the full-length promoter, only CRE deleted or only AP-1 site deleted mutants presented inducible reporter gene activity after PHA treatment; however, deletion mutant lacking both CRE and AP-1 site showed no inducible reporter gene activity after PHA treatment. These results indicate that CRE and AP-1 site mediate the PHA activated expression of human hsp90p gene.
    2. We then analyzed the roles of CRE related transactivators in the expression of hsp90p gene. By EMSA, we found that heat shock nuclear extracts and the labeled probe of -173/-91 fragment containing CRE can form three bands. The addition of the unlabeled wide type probe can efficiently compete three specific bands while the
引文
1. Lindquist S. 1986. The heat-shock response. Ann. Rev. Biochem. 55: 1151
    2. Lindquist S, Craig. 1988. The heat shock proteins. Ann. Rev. Genet. 22: 631
    3. Tissieres A, et al. 1974. J Mol. Biol. 84: 389-398
    4. Hania, et al., 1995. Expression of hsp90 in tissures of the neural and non-neural: the control and hyperthermic. Exper. Cell Res. 219: 358
    5. Hickey, E., et al 1989. Sequence and regulation of a gene encoding a human 89kda heat shock protein. Mol. Cell Biol. 9: 2615
    6. Rebble, NF, 1989. Nucleotide sequence and regulation of a human 90-Kda heat shock protein gene. J. Biol. Chem. 264: 15006
    7. Rutherford SL et al. 1994. 1994. Cell. 79: 1129
    8. Craig EA et al. 1994. Cell. 78: 365
    9. Morimoto RI et al. 1992. J. Biol. Chem. 267: 21987
    10.沈珝琲 方福德 主编.1997.真核基因表达调控(修订版),高等教育出版社p225.
    11. Lis JT and Wu C. 1993. Cell. 74: 1
    12. Sistone L et al. 1994. Mol. Cell. Biol. 14: 2087
    13. Shen yf. 1997. FEBS Letters 413: 92-98
    14. Montminy MR, Sevarino KAY, Wagner JA, Mandel G, Goodman RH. 1986. Identification of a cyclic-AMP-responsive element within the rat somatostatin gene. Proc Natl Acad Sci USA 83; 6682-6686
    15. Comb M, Birnberg NC, Seasholtz A, Herbert E, Goodman HM. 1986. A cyclic AMP- and phorbol ester-inducible DNA element. Nature 323; 353-356
    16. Hipskind RH, Nordheim A. 1991. Functional dissection in vitro of the human c-fos promoter. J Biol Chem 266: 19583-19592
    17. Lang D, Gebert S, Arlt H, Stamminger T. 1995. Functional interaction between the human cytomegalovirus 86-kilodalton IE2 protein and the cellular transcription factor CREB. J Virol 69: 6030-6037
    18. Deb SP, Deb S, Brown DR, 1994. Cell-type specific induction of the UL9 gene of HSV-1 by cell signaling pathway. Biochem Biophys Res Commun 205: 44-51;19. Hai T, Wolfgang CD, Marsee DK, Allen AE and Sivaprasad U. 1999. ATF3 and Stress Responses. Gene Expression. 7: 321-335
    
    20. Hai T and Curran T. 1991. Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc Natl. Acad. Sci. USA. 88: 3720-3724.
    
    21. Masquilier D and Sassone-Corsi P. 1992. Transcriptional cross-talk: Nuclear factors CREM and CREB bind to AP-1 sites and inhibit activation by Jun. J. Biol. Chem. 22460-22466.
    
    22. Andrisani OM. 1999. CREB-Mediated Transcriptional Control. Critical Reviews~(TM) in Eukaryotic Gene Expression. 9(1): 19-32.
    
    23. Rehfuss RP, Walton KM, Loriaux MM and Goodman RH. 1991. The cAMP-regulated enhancer-binding protein ATFl activates transcription in response to cAMP-dependent protein kinase A. J Biol Chem. 266: 18431-18434.
    
    24. Gonzalez GA and Montminy MR. 1989. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine-133. Cell. 59: 675-680.
    
    25. Chrivia JC, Kwok RPS, Lamb N, Hagiwara M, Montminy MR and Goodman RH. 1993. Phoshorylated CREB binds specifically to nuclear protein CBP. Nature. 365: 855-859.
    
    26. Eckner R, Ewen M, Newsome D, Gerdes M, DeCaprio J, Lawrence J and Livingstone D. 1994. Molecular cloning and functional analysis of the adenovirus El A associated 300-KD(p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev. 8: 869-884.
    
    27. Blobel GA. 2000. CREB-binding protein and p300: molecular integrators of hematopoietic transcription. Blood. 95: 745-754.
    
    28. Bannister AJ and Kouzarides T. 1996. The CBP co-activator is a histone acetyltransferase. Nature(London). 384: 641-643.
    
    29. Ogryzko VV, Schiltz LR, Russanova V, Howard BH, Nakatani Y. 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell. 87: 953-959.
    
    30. Blobel GA, Orkin SH. Estrogen-induced apoptosis by inhibition of the erythroid transcription factor GATA-1. Mol Cell Biol. 1996, 16: 1687-1694
    
    31. Kwok RP, Lundblad JR, Chrivia JC et al. Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature(London). 1994: 370: 223-226
    
    32. Abraham SE, Lobo S, Yaciuk P, Wang HG. Moran E. P300 and P300 associated proteins, are components of TATA-binding protein(TBP) complexes. Oncogene. 1993; 8: 1639-164733. Swope DL , Mueller CL, Chrivia JC, CREB binding protein activates transcription through multiple domains. J Biol Chem. 1996, 271: 28138-28145
    
    
    34. Dallas PB, Yaciuk P, Moran E. Characterization of monoclonal antibodies against p300: both p300 and CBP are present in intracellular TBP complexes. J Virol. 1997: 71: 1726-1731.
    
    35. Sang N, Avantaggiati ML, Giordano A. Roles of p300, pocket proteins and hTBP in El A - mediated transcriptional regulation and inhibition of p53 transactivation activity. J Cell Biochem. 1997;66:277-285
    
    36. Kee B, Arias J , Montminy M. Adaptor mediated recruitment of RNA polymerase II to a signal dependent activator. J Biol Chem. 1996; 271:2371-2375
    
    37. Nakajima T, Uchida C, Anderson SF, Parvin JD, Montminy M. Analysis of a cAMP responsive activator reveals a two-component mechanism for transcriptional induction via signal-dependent factors. Genes Dev. 1997a; 11: 738-747.
    
    38. Nakajima T, Uchida C, Anderson SF et al. RNA helicase A mediates association of CBP with RNA polymerase II. Cell. 1997b; 90: 1107-1112.
    
    39. Cho H, Orphanides G, Sun X, et al. A human RNA polymerase II complex containing factors that modify chromatin structure. Mol Cell Biol. 1998; 18: 5355-5363.
    
    40. Neish AS, Anderson SF, Scheigel BP, Wei W, Parvin JD. Factors associated with the mammalian RNA polymerase II holoenzyme. Nucleic Acids Res. 1998; 26: 847-853.
    
    41. Kyriakis JM. 1999. Action of the AP-1 transcription factor by inflammatory cytokines of the TNF family. Gene Expression. 7: 217-231.
    
    42. Millhouse S, Kenny JJ, Quinn PG, Lee V and Wigdahl B. 1998. ATF/CREB elements in the Herpes simplex virus type 1 latency-associated transcript promoter interact with members of the ATF/CREB and AP-1 transcription factors families. J. Biomed Sci. 5: 451-464.
    
    43. Karin M, Liu Z-g, Zandi E. 1997. AP-1 function and regulation. Curr. Opin. Cell Biol. 9: 240- 246;
    
    44. Kyriakis JM, Avruch J. 1996a. Protein kinase cascades activated by stress and inflammatory cytokines. Bioessays 18: 567-577.
    
    45. Kyriakis JM, Avruch J. 1996b. Sounding the alarm: Protein kinase cascades activated by stress and inflammation. J. Biol. Chem. 271: 24313-2431646. Treisman R. 1996. Regulation of transcription by MAP kinase cascades. Curr. Opin. Cell. Biol. 8:205-215;
    
    47. Ritossa FM. 1962. Experientia, 18, 571,
    
    48. Zhang SL et al. 1999. Regulation of human hsp90α gene expression. FEBS letters. 444: 130- 135.
    
    49. Kadonaga JT. 1998. Eukaryotic transcription: an interlaced network of transcription factors and chromatin-modifying machines. Cell. 92: 307-313.
    
    50. Tsukiyama T, and Wu C. 1997. Chromatin remodeling and transcription. Curr. Opin. Genet. Dev.7: 182-191.
    
    51. Elgin SCR. 1988. The formation and function of DNase I hypersensitive sites in the process of gene activation. J. Biol. Chem.. 263: 19259-19262.
    
    52. Gross DS, and Garrard WT. 1988. Nuclease hypersensitive sites in chromatin. Annu. Rev. Biochem. 57: 159-197.
    
    53. Cockerill PN. 2000. Identification of DNasel hypersensitive sites within nuclei. Methods Mol Biol..l30:29-46.
    
    54. Verdin E, 1991. DNase I hypersensitive sites are associated with both long terminal repeats and with the intragenic enhancer of integrated humam immodeficiency virus type 1. Journal of Virology. 65(12): 6790-6799.
    
    55. Smith AN, Wardle CJC and Harris A. 1995. Characterization of DNase I hypersensitive sites in the 120 kb 5' to the CFTR gene. Biochem. Biophys. Res. Commun. 211: 274-281.
    
    56. Moulin DS, Manson AL, Nuthall HN, Smith DJ, Huxley C and Harris A. 1999. In vivo analysis of DNase I hypersensitive sites in the humam CFTR gene. Molecular Medicine. 5:211-223.
    
    57. Li Q, Zhang M, Duan Z, Stamatoyannopoulos G. 1999. Nucleotide Structural analysis and mapping of DNase I hypersensitivity of HS5 of the beta-globin locus control region. Genomics. 61(2):183-93.
    
    58. Gaasenbeek M, Gellersen B, DiMattia GE. 1999. DNase I hypersensitivity analysis of non- pituitary human prolactin gene expression. Mol Cell Endocrinol. 152(1-2): 147-59.
    
    59. Ono SJ, Zhou G, Tai AK, Inaba M, Kinoshita K, Honjo T. Identification of a stimulus-dependent DNase I hypersensitive site between the Ialpha and Calpha exons during immunoglobulin heavy chain class switch recombination. FEBS Lett. 2000 Feb 11; 467(2-3):268-72.60. Wu C. 1980. The 5' ends of Drosophila heat shock genes in chromatin are hypersensitive to DNase I. Nature. 286: 860.
    61. Sambrook J, et al. 1989. Molecular Cloning. A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press.
    62. Zhen L and Swank RT. 1993. Biotechniques. 4(6): 151.
    63. Promega: Prime-a-gene~N Labeling System Protocol.
    64. Ausubel FM, et al. 1995
    65. Selden, RF. 1987. Transfection using DEAE-Dextran. In: Ausubel, FM, Brent R, Kinston RE, eds. Current protocol in molecular biology, 3rd ed. New York: John Wiley & Sons Inc.,. 9-9-9-11.
    66. Xiao L, Lang WH. 2000. A dominant role for the c-jun NH2-terminal kinase in oncogenic Rasinduced morphologic transformation of human lung carcinoma cells. Cancer Res,, 60: 400-408.
    67. Robert RJ. 1983. Assays in protein kinase. Methods in Enzymology 99, 3-6.
    68. Nestler EJ and Tallman JF. 1988. Chronic morphine treatment increases cyclic AMP -dependent protein kinase activity in the rat locus coeruleus. Mol Pharmacol. 33: 127.
    69. Wu C, Bingham PM, Livak KJ, Holmgren R and Elgin SCR. 1979. Cell. 16: 797-806.
    70. Verdin E, Paras PJ and Lint CV. 1993. Chromatin disruption in the promoter of human immunodeficiency virus type 1 during transcriptional activation. The EMBO Journal. 12(8): 3249-3259.
    71.卢圣栋 主编.1993.现代分子生物学实验技术.高等教育出版社。
    72. Fanger GR, Gerwins P, Widmann D, Bienz M. 1997. MEKKs, GCKs, MLKs, PAKs, TAKs, and TPLS: upstream regulators ofc-Jun amino-terminal kinases? Curr Opin Genet Dev. 7: 67-74.
    73. Iordanov M, Bender K, Ade T, Schmid W, Sachsenmainer C, Engle K, Gaestel M, Rahmsdorf H J, Herrlich P. 1997. CREB is activated by UVC through a p38/HOB-1-dependent protein kinase. EMBO J. 16: 1009-1022.
    74. Chen BPC, Wolfgang CD, Hai T. 1996. Analysis of ATF3: A transcription factor induced by physiological stresses and modulated by gadd 153/Chop 10. Mol Cell Biol. 16: 1157-1168.
    75. Yin T, Sandhu G, Wolfgang CD, Burrier A, Webb RL, Rigel DF, Hai T, Whelan J. 1997. Tissue-specific pattern of stress kinase activation in ischemic/reperfused heart and kidney. J. Biol. Chem. 272: 19943-19950.76. Chen BPC, Liang G, Whelan J, Hai T. 1994. ATF3 and ATF3AZip: Transcriptional repression versus activation by alternatively spliced isoforms. J. Biol. Chem. 269: 15819-15826.
    
    77. Wolfgang CD, Chen BPC, Martindale JL, Holbrook NJ, Hai T. 1997. gaddl53/Chop10, a potential target gene of the transcriptional repressor ATF3. Mol. Cell. Biol. 17: 6700-6707.
    
    78. Masquilier D and Sassone-Corsi P. 1992. Transcriptional cross-talk: Nuclear factors CREM and CREB bind to AP-1 sites and inhibit activity by Jun. The Journal of Biological Chemistry. 267(31): 22460-22466.1. Bird, A. (1992) The essentials ofDNA methylation. Cell, 70.5-8.
    2. Cooper, D. N. and Krawczak, M. (1989) cytosine methylation and the fae of CpG dinucleotides in vertebrate genomes. Hum. Genet., 83. 181-188
    3. Li, E., Bestor, T. H. and Jaenisch, R. (1992) Targeted mutation of the DNA methytrasferase gene results in embryonic lethality. Cell, 69, 915-926
    4. Panning, B. and Jaenisch, R. (1998) RNA and the epigenetic regulation of X chromosome inactivation.
    5. Li, E., Beard, C. and Jaenisch, R. (1993) Role of DNA methylation in genomic imprinting. Nature, 366, 362-365.
    6. Walsh, C. P., Chaillet, J. R. and Bestor, T. H. (1998) Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nature Genet., 20, 116-117.
    7. Rideout, W. M. I., Coetzee, G. A., Oluni, A. F. and Jones, P. A. (1990) 5-methylcytosine as an endogenous mutagen in the human LDL recetor and p53 genes. Science, 249, 1288-1290.
    8. Jones, P. A. (1996) DNA methylation errors and cancer. Cancer Res., 56, 2463-2467.9. Baylin, S. B., Herman, J. G., Herman, J. R., Vertino, P. M. and Issa, J.-P. (1998) Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv. Cancer Res.,72, 141-196.
    
    10. Taylor, S. M. and Jones, P. A. (1979) Multible new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell, 17, 771-779.
    
    11. Jones, P. A. (1985) Altering gene expression with 5-azacytidine. Cell, 40,485-486.
    
    12. Juttermann, R., Li, E. and Jaenisch, R. (1994) Toxicity of 5-aza-2'-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methytranferase rather than DNA demethylation. Proc. Natl. Acad. Sci. USA, 91, 11797-11801.
    
    13. Antequra, F., Boyes, J. and Bird, A. (1990) High levels of de novo methylation and altered chromatin structure at CpG islands in cell lines. Cell, 62, 503-514.
    
    14. Jones, P. A. and Laird, P. W. (1999) Cancer epigenetics comes of age. Nature Genet., 21,163-166.
    
    15. Tate, P. H. and Bird, A. P. (1993) Effects of DNA methylation on DNA-binding proteins and gene expression. Curr. Opin. Genet. Dev., 3, 226-231.
    
    16. Boyes, J. and Bird, A. (1992) Repression of genes by DNA methylation depends on CpG density and promoter strength: Evidence for involvment of a methyl-CpG binding protein. EMBO J., 11, 327-333.
    
    17. Robertson, K. D. and Ambinder, R. F. (1997) Mapping promoter regions that are hypersensitive to methylation -mediated inhibition of transcription: Application of the methylation cassette assay to te Epstein-Barr virus major latency promoter. J. Virol., 71, 6445-6454.
    
    18. Kass, S. U., Goddard, J. P. and Adams, R. L. P. (1993) Inactive chromatin spreads from a focus of methylation. Mol. Cell. Biol., 13, 7372-7379.
    
    19. Kass, S. U., Pruss, D. and Wolffe, A. P. (1997) How does DNA methylation repress transcription? Trends Genet. 12, 444-449.
    
    20. Woffle A. P. and Pruss D. (1996) Targeting chromatin disruption: Transcriptional regulators that acetylate histones. Cell, 84, 817-819.
    
    21.Jeppesen, P. and Turner, B. M. (1993) The inactive X Chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression. Cell, 74,281-289.
    
    22. Nan, X., Campoy, F. J. and Bird A. (1997) MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell, 88, 471-481.
    
    23. Jones, P. L., Veenstra, G. J. C, Wade, P. A., Vermaak, D., Kass, S. U., Landsberger, N., Strouboulis, J. and Wolffe, A. P. (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Genet., 19, 187-191.
    
    24. Nan, X., Ng, N. -H., Johnson, C. A., Laherty, C. D., Turner, B. M., Eisenman, R. N. and Bird, A. (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature, 393, 386-389.25. Leonhardt, H. Page, A. W., Weier, H. and Bestor, T. H. (1992) A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell, 71, 865-873.
    
    26. Lei, H., Oh, S. P., Okano, M, Juttermann, R. Goss, K. A., Jaenisch, R. and Li, E.(1996) De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development, 122, 3195-3205.
    
    27. Pradhan, S., Talbot, D., Sha, M., Benner, J., Hornstra, L., Li, E., Yaenisch, R. and Roberts, R. J. (1997) Baculovirus-mediated expression and characterinzation of the full-length murine DNA methyltransferase. Nucleic Acids Res., 25,4666-48873.
    
    28. Vertino, P. M., Yen, R.-W. C, Gao, J. and Baylin, S. B. (1996) De novo methylation of CpG island sequences in human fibroblasts overexpressing DNA(cytosine-5) methylatransferase. Mol. Cell Biol., 16, 4555-4565.
    
    29. Bestor, T. H. (1992) Activation of mammalian DNA methlytransferase by cleavage of a Zn binding regulatory domain. EMBO J., 11, 2611-2617.
    
    30. Wu, J., Issa, J. P., Herman, J., Bassett, D. E., Nelkin, B. D. and Baylin, S. B. (1993) Expression of an exogenous eukaryotic DNA methyltransferase gene induces transformation of NIH 3T3 cells. Proc. Natl. Acad. Sci. USA, 90, 8891-8895.
    
    31.Macleod, A. R. and Szyf, M. (1995) Expression of antisense to DNA methyltransferase mRNA induces DNA demethylation and inhibits tumorigenesis. J. Biol. Chem. 270. 8037-8043.
    
    32. Yoder, J. A. and Bestor, T. H. (1998) A candidate mammalian DNA methyltransferase related to pmt1 from fission yeast. Hum. Mol. Genet., 7,279-284.
    
    33. Okano, M., Xie, S. and Li, E. (1998) Dnmt2 is not required for de novo and maintenance methylation of viral DNA in embryonic stem cells. Nucleic Acids Res., 26, 2536-2540.
    
    34. Kafri, T., Gao X and Razin, A. (1993) Mechanistic aspects of genome-wide demethylation in the pre-implantation embryo. Proc. Natl Acad. Sci. USA, 90, 10558-10562.
    
    35. Allfrey V et al. PNAS, 1964; 51: 786-794
    
    36. Struhl K. Genes &Development, 1998; 12: 599-606
    
    37. Wade PA et al. TIBS, 1997; 22: 128-132
    
    38. Mizzen C A et al. CMSL, 1998; 54: 6-20
    
    39. Kundu TK et al. Mol Cell Biol,1999; 19:1605-1615
    
    40. Candau R et al. EMBO J, 1997; 16: 555-565
    
    41. Grunstein M. Nature,1997;389:349-352
    
    42. Andrew T. Current Biology, 1999; 9: 23-25
    
    43. Braunstein M et al. Mol. Cell Biol., 1996;16:4349-4356
    
    44. Kimura A. FEBS Letters, 1998; 431: 131-133
    
    45. Durrin LK et al. Cell, 1991; 65: 1023-1031
    46. Utley RT et al. Nature, 1998;394: 498-502
    
    47. David JR. Curr Opin in Gene.& Dev., 1998, 8: 173-178
    
    48. Sheridan PL et al. Genes & Development, 1997; 11: 3327-3340
    
    49. Lusser A et al. Science, 1997; 277: 88-91
    
    50. Pazin MJ et al. Cell, 1997; 89: 325-328
    
    51. Gu W et al. Cell, 1997; 90: 595-606
    
    52. Munshi N et al. Molecular Cell, 1998; 2: 457-467
    
    53. Boyes J et al. Nature,1998;396:594-598
    
    54. Rachel HG et al. TIG, 1998; 14: 178-183
    
    55. Kaufman, P. D. (1996). Nucleosome assembly: the CAF and the HAT. Curr. Opion. Cell Biol. 8, 369-373.
    
    56. Roth, S. Y. and Allis, C. D. (1996). Histone acetylation and chromatin assembly: a single escort, multible dances? Cell, 87, 5-8
    
    57. Ito, T., Tyler, J. K. and Kadonaga, J. T. (1997) Chromatin assembly factors: a dual funtion in nucleosome formation and mobilization? Genes cells, 2, 593-600.
    
    58. Stillman, B. (1986) Chromatin assembly during SV40 DNA replication in vitro. Cell, 45, 555-565.
    
    59. Smith, S. and Stillman, B. (1989) Purification and characterization of CAF-1, a human cell factor required for chromatin assembly during DNA replication in vitro. Cell, 58,15-25.
    
    60. Kamakaka, R. T., Bulger, M., Kaufman, P. D., Stillman, B. and Kadonaga, J. T. (1996) Post-replicative chromatin assembly by Drosophila and human chromatin assembly factor-1. Mol. Cell. Biol. 16, 810-817.
    
    61. Ito, T., Bulger, M., Pazin, M. J., Kobayashi, R. and Kadonaga, J. T. (1997) ACF, an ISWI- containing and ATP-utilizing chromatin assembly and remodeling factor. Cell, 90, 145-155.
    
    62. Elfring, L. K., Deuring, R., McCallum, C. M., Peterson, C. L. and Tamkun, J. W. (1994) Identification and chataterization of Drosophila relatives of the yeast transcriptional activator SNF2/SWI2. Mol. Cell. Biol. 14,2225-2234.
    
    63. Eisen, J. A., Sweder, K. S., and Hanawalt, P. C. (1995) Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res., 23, 2715-2723.
    
    64. Tsukiyama, T., Daniel, C, Tamkun, J. and Wu, C. (1995) ISWI, a member of the WWK2/SNF2 ATPase family , encodes the 140 kDa subunit of the nucleosome remodeling factor. Cell, 83, 1021-1026.
    
    
    65. Varga-weisz, P. D., Wilm, M., Bonete, E., Dumas, K., Mann, M. and Becker, P. B. (1997) Chromatin-remodeling factor CHRAC contain the ATPases ISWI and topoisomerase II. Nature, 388, 598-602.66. Chen, H., Li, B. and Workman, J. L. (1994) A histone-binding protein, nucleoplasmin, stimulates transcription factor binding to nucleosomes and factor- induced nucleosome disassembly. EMBO J. 13, 380-390.
    
    67. Walter, P. P., Owen-Hughes, T. A., Cote, J. and Workman J. L. (1995) Stimulation of transcription factor binding and histonedisplacement by nucleosome assembly protein 1 and nucleoplasmin requires disruption of the histone octamer. Mol. Cell. Biol., 15, 6178-6187
    
    68. Kadonaga, J. T. (1998) Eukaryotic transcription: an interlaced network of transcription factors and chromation-modifying machines. Cell, 92, 307-313.
    
    69. Perterson, C. L. and Tamkun, J. W. (1995) The SWI-SNF complex: a chromatin remodeling machine? Trends Biochem. Sci., 20, 143-146.
    
    70. Kingston, R. E., Bunker, C. A. and Imbalzano, A. N. (1996) Repression and activation by multiprotein complexes that alter chromation structure. Genes Dev., 10, 905-920.
    
    71. Peterson, C. L. (1996) Multiple switches to tum on chromatin? Curr. Opin. Genet. Dev. 6, 171-175.
    
    72. Hartzog, G. A. and Winston, F. (1997) Nuceosomes and transcription: recent lessons from genetics. Curr. Opin. Genet. Dev., 7, 192-198.
    
    73. Pazin, M. J. and Kadonaga, J. T. (1997) SWI/SNF2 and related proteins: ATP-driven motors that disrupt protein-DNA interactions? Cell, 88, 737-740.
    
    74. Tsukiyama, T. and Wu, C. (1997) Chromatin remodeling and transcription. Curr. Opin. Genet. Dev., 7, 182-191.
    
    75. Kornberg, R. D. and Lorch, Y. (1995) Interplay between chromatin structure and transcription. Curr. Opin. Cell Biol., 7, 371-375.
    
    76. Hirchhorn, J. N., Brown, S. A. Clark, C. D., and Winston, F. (1992) Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev., 6, 2288-2298.
    
    77. Kruger, W., Peterson, C. L., Sil, A., Coburn, C, Arents, G., Moudria-nakis, E. N. and Herskowitz, I. (1995) Amino acid substitutions in the structured domains of histones H3 and H4 partially relieve the requirement of the yeast SWI/ SNF complex for transcription. Genes Dev., 9, 2770-2779.
    
    78. Cote, J., Quinn, J., Workman, J. L. and Peterson, C. L. (1994) Stimulation of Gal4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science, 265,53-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700