IL-2Rα基因负调控元件(NRE/NIRS)相关结合蛋白的筛选及其功能的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白细胞介素2(IL-2)与其高亲和力受体(IL-2R)的相互作用在调节T细胞免疫反应的强度和持续时间方面起着关键作用。高亲和力IL-2受体由α、β、γ三个亚基组成。其中β及γ亚基呈组成性表达,并参与IL-2的信号传递;而α亚基在激活的淋巴细胞表面呈诱导性表达,而且与IL-2呈特异结合。α链的特异性诱导表达产生高亲和力受体是淋巴细胞获得对生理浓度IL-2完全反应能力所必需的。
     在体内,IL-2Rα基因的转录被严密地调控。目前已发现IL-2Rα基因5′非编码区存在四个正调控区:PRR Ⅰ,PRR Ⅱ,PRR Ⅲ、和PRR Ⅳ,每一个调控区都有相应的反式作用因子与之结合。但是,对于该基因启动子上游的负调控元件(negative regulatory element,NRE)调控机制研究的报道甚少。在IL-2Rα基因启动子上游调控区中存在一个核心序列为TTCATCCCAGG(-390/-380bp)的负调控元件。该NRE与HIV-1 LTR中的一段调控序列(TTCATCACATG)同源性达82%;而且,IL-2Rα基因NRE和HIV-1基因NILE结合同一种50kD非组织特异表达的蛋白质。我们以往研究发现IL-2Rα基因5′上游存在一段与NRE呈不完全反向重复的序列(NRE inverse repeat sequence,NIRS)CCTGGTTTGAA(-153/-143bp),HIV基因中也有类似的NIRS序列。通过荧光素酶报告基因活性检测,发现在Jurkat细胞中只有当NRE和NIRS同时存在时才对IL-2Rα基因的转录起激活或抑制作用。通过紫外交联实验进一步发现在Jurkat细胞及HeLa细胞中均存在一种既能与NRE又能与NIRS结合的蛋白质。NRE和NIRS的共同存在不仅明显地阻遏了该基因的组成性表达,而且在PHA诱导下共同参与正调控元件使阻遏状态下该基因启动子转为激活状态。
     IL-2Rα基因与HIV在调控机制上也有某些相似之处:淋巴细胞活化可以激活IL-2Rα基因的表达,HIV只能在激活的淋巴细胞中复制;HeLa细胞及淋巴细胞中持续表达的非组织特异表达蛋白SP50既可与IL-2Rα基因NRE结合,又可与HIV基因的NRE结合,并作为转录沉默子起作用。因此,研究NRE和NIRS在IL-2Rα基因调控中的作用,不但有助于阐明IL-2Rα基因的转录调控机理,还可为控制HIV病毒复制提供新的线索和手段。
The magnitude and duration of T-cell immune response are critically regulated by the interaction of interleukin-2 (IL-2) and its high-affinity receptor (IL-2R) on the surface of the cell. The high-affinity IL-2R is composed of three subunits, α,β and γ . Among them, IL-2Rα is the only component that can be specifically induced in activated lymphocytes and binds to IL-2, the growth signal for T cell proliferation. While IL-2Rβ and IL-2Rγ are crucial for IL-2 signaling, induction of IL-2Rα to form high-affinity receptor is a prerequisite for the cell to be fully responsive to physiological concentrations of IL-2.
    The transcription of the IL-2Rα gene is tightly regulated in vivo. It was reported that human IL-2Rα gene contained at least four positive regulatory regions: PRR I, PRR II, PRR III, and PRR IV. Each regulatory region appears to play a well-defined and complementary role. Despite the negative regulatory element (NRE) within the upstream regulatory region of human IL-2 receptor α (IL-2Rα) gene has been identified for two decades, mechanisms of the NRE function on the gene is hetero unknown. The negative regulatory element (NRE) mapped at -390/-380 bp (5' -TTCATCCCAGG-3' ) of the IL-2Rα gene with 82% homologues to NRE sequence of HIV LTR, and the same kind of 50kD non-tissue specific expressed protein can bind to NRE either of IL-2Rα or HIV gene . In addition, an imperfect inverse repeated sequence of the NRE (NIRS) between -153 bp and -143 bp (5' -CCTGGTTTGAA-3') homologous to NRE has been found. It was also found that both NRE and NIRS are required simultaneously for activation or repression of IL-2R α gene transcription in Jurkat cells by enzyme activity assay of the luciferase reporter gene. In Jurkat and HeLa cells, there is one kind of protein that can bind to both NRE and NIRS sequence by using UV cross-linking experiments.
    They're some similarity in regulatory mechanism between IL-2R α gene and HIV gene. The activation of lymphocytes can activate expression of IL-2R α gene, and HIV replicated only in activated lymphocytes. In HeLa cell and lymphocytes, constant
引文
1. Morgan, D. A., Ruscetti, F. W., and Gallo, R. (1976) Science 193, 1007-1008
    2. Lin, J. X., and Leonard, W. J. (1997) Cytokine Growth Factor Rev & 313-332
    3. Nelson, B. H., and Willerford, D. M. (1998)Adv Immunol70, 1-81
    4. Gomez, J., Gonzalez, A., Martinez, A. C., and Rebollo, A. (1998) Crit Rev Immunol 18, 185-220
    5. Takeshita, T., Asao, H., Ohtani, K., Ishii, N., Kumaki, S., Tanaka, N., Munakata, H., Nakamura, M., and Sugamura, K. (1992)Science 257, 379-382
    6. Dukovich, M., Wano, Y., Le thi Bich, T., Katz, P., Cullen, B. R., Kehrl, J. H., and Greene, W. C. (1987) Nature 327, 518-522
    7. Nelson, B. H., Lord, J. D., and Greenberg, E D. (1994) Nature 369, 333-336
    8. Depper, J. M, Leonard, W. J., Kronke, M., Noguchi, P. D., Cunningham, R. E., Waldmann, T. A., and Greene, W. C. (1984)J Immunol 133, 3054-3061
    9. Coffman, R. L., Lebman, D. A., and Shrader, B.(1989)J Exp Med170, 1039-1044
    10. Li, J. J., and Herskowitz, I. (1993) Science 262, 1870-1874
    11. Wang, M. M., and Reed, R. R. (1993) Nature 364, 121-126
    12. Sieweke, M. H., Tekotte, H., Frampton, J., and Graf, T. (1996) Cell 85, 49-60
    13. Kim, H. P., and Leonard, W. J. (2002) Embo J 21, 3051-3059
    14. Yeh, J. H., Lecine, P., Nunes, J. A., Spicuglia, S., Ferrier, P., Olive, D., and Imbert, J. (2001) Mol Cell Biol21, 4515-4527
    15. Smith, M. R., and Greene, W. C. (1989) Proc Natl A cad Sci U S A 86, 8526-8530
    16. Lowenthal, J. W., Ballard, D. W,, Bohnlein, E., and Greene, W. C. (1989) Proc Natl Acad Sci U S A 86, 2331-2335
    17. Lin, B. B., Cross, S. L., Halden, N. F., Roman, D. G., To ledano, M. B., and Leonard, W. J. (1990) Mol Cell Biol 10, 850-853
    18. Fujita, T., Nolan, G. E, Ghosh, S., and Baltimore, D. (1992) Genes Dev 6, 775-787
    19. Pomerantz, J. L., Mauxion, F., Yoshida, M., Greene, W. C., and Sen, R. (1989) J Immunol 143, 4275-4281
    20. Gilman, M. Z., Wilson, R. N., and Weinberg, R. A.(1986) Mol Cell Biol6, 4305-4316
    21. Graham, R., and Gilman, M. (1991) Science 251, 189-192
    22. Rosen, C. A., Sodroski, J. G., and Haseltine, W. A. (1985) Cell 41, 813-823
    23. John, S., Reeves, R. B., Lin, J. X., Child, R., Leiden, J. M., Thompson, C. B., and Leonard, W. J. (1995) Mol CellBiol 15, 1786-1796
    24. Reeves, R., Leonard, W. J., and Nissen, M. S. (2000) Mol Cell Biol20, 4666-4679
    25. John, S., Robbins, C. M., and Leonard, W. J. (1996) Embo J 15, 5627-5635
    26. Meyer, W. K., Reichenbach, P., Schindler, U., Soldaini, E., and Nabholz, M. (1997) J Biol Chem 272, 31821-31828
    27. Lowenthal, J. W., Bohnlein, E., Ballard, D. W., and Greene, W. C. (1988) Proc Natl Acad Sci U S A 85, 4468-4472
    28. Sambrook, J., and Russell, D. W. (2001) MOLECULAR CLONING A Laboratory Manual., 3rd Ed., Cold Spring Harbor Laboratory Press., New York
    29. Xiao, L., and Lang, W. (2000) Cancer Res 60, 400-408
    30. Mo, Z. C., Li, X. Y., Li, H. F., Cheng, X. K., Xiao, L., Wu, N. H., and Shen, Y. F. (2002) Prog. in??Nature Sci. 12, 742
    31. Wu, J. M., Xiao, L., Cheng, X. K., Cui, L. X., Wu, N. H., and Shen, Y. F. (2003) J Biol Chem 278, 51143-51149
    32. Karin, M., and Hunter, T. (1995) Curr Biol 5, 747-757
    33. Zhang, Y., Wang, J. S., Chen, L. L., Cheng, X. K., Heng, F. Y., Wu, N. H., and Shen, Y. F. (2004) J Biol Chem 279, 42545-42551
    34. Tsitsikov, E. N., Wright, D. A., and Geha, R. S. (1997) Proc Natl A cad Sci U S A 94, 1390-1395
    35. Casolaro, V., Keane-Myers, A. M., Swendeman, S. L., Steindler, C., Zhong, F., Sheffery, M., Georas, S. N., and Ono, S. J. (2000) J Biol Chem 275, 36605-36611
    36. Aravind, L., and Koonin, E. V. (2000) Trends Biochem Sci 25, 112-114
    37. Boyer, L. A., Latek, R. R., and Peterson, C. L. (2004) Nat Rev Mol Cell Biol 5, 158-163
    38. Aasland, R., Stewart, A. F., and Gibson, T. (1996) Trends Biochem Sci 21, 87-88
    39. Boyer, L. A., Langer, M. R., Crowley, K. A., Tan, S., Denu, J. M., and Peterson, C. L. (2002) Mol Cell 10, 935-942
    40. Sterner, D. E., Wang, X., Bloom, M. H., Simon, G. M., and Berger, S. L. (2002) J Biol Chem 277, 8178-8186
    41. Evers, R., and Grummt, I. (1995) Proc Natl A cad Sci U S A 92, 5827-5831
    42. Evers, R., Staid, A., Rudloff, U., Lottspeich, F., and Grummt, I. (1995) Embo J 14, 1248-1256
    43. Langst, G., Becker, P. B., and Grummt, I. (1998) Embo J 17, 3135-3145
    44. Langst, G., Blank, T. A., Becker, P. B., and Grummt, I. (1997) Embo J 16, 760-768
    45. Nemeth, A., Strohner, R., Grummt, I., and Langst, G. (2004) Nucleic Acids Res 32,4091-4099
    46. Kanei-Ishii, C., Sarai, A., Sawazaki, T., Nakagoshi, H., He, D. N., Ogata, K., Nishimura, Y., and Ishii, S. (1990) J Biol Chem 265, 19990-19995
    47. Morrow, B. E., Ju, Q., and Warner, J. R.(1993)MolCellBiol13, 1173-1182
    48. Yu, J., Li, Y., Ishizuka, T., Guenther, M. G., and Lazar, M. A. (2003) Embo J 22, 3403-3410
    49. Guenther, M. G., Barak, O., and Lazar, M. A. (2001) Mol Cell Biol 21, 6091-6101
    50. Grune, T., Brzeski, J., Eberharter, A., Clapier, C. R., Corona, D. E, Becket, P. B., and Muller, C. W. (2003) Mol Cell 12, 449-460
    51. Corona, D. F., Langst, G., Clapier, C. R., Bonte, E. J., Ferrari, S., Tamkun, J. W., and Becket, P. B. (1999) Mol Cell3, 239-245
    52. Clapier, C. R., Nightingale, K. P., and Becker, P. B. (2002) Nucleic Acids Res 30, 649-655
    53. Strohner, R., Nemeth, A., Nightingale, K. P., Grummt, I., Becker, P. B., and Langst, G. (2004) Mol Cell Biol24, 1791-1798
    54. Santoro, R., Li, J., and Grummt, I. (2002) Nat Genet 32, 393-396
    55. Zhou, Y., Santoro, R., and Grummt, I. (2002) Embo J 21, 4632-4640
    56. Tuteja, R., and Tuteja, N. (2000) Crit Rev Biochem Mol Bio135, 1-33
    57. Giffin, W., Gong, W., Schild-Poulter, C., and Hache, R. J. (1999) Mol Cell Biol 19, 4065-4078
    58. Bertinato, J., Tomlinson, J. J., Schild-Poulter, C., and Hache, R. J. (2003) Gene 302, 53-64
    59. Sadowski, I., Bell, B., Broad, P., and Hollis, M. (1992) Gene 118, 137-141
    60. Murre, C., McCaw, P. S., and Baltimore, D. (1989) Cell 56, 777-783
    61. Davis, R. L., Cheng, P. F., Lassar, A. B., and Weintraub, H. (1990) Cell 60, 733-746
    62. Voronova, A., and Baltimore, D. (1990) Proc Natl A cad Sci U S A 87, 4722-472663. Corneliussen, B., Thornell, A., Hallberg, B., and Grundstrom, T. (1991) J Virol 65, 6084-6093
    64. Henthorn, P., McCarrick-Walmsley, R., and Kadesch, T. (1990) Nucleic Acids Res 18, 678
    65. Henthorn, P., Kiledjian, M., and Kadesch, T. (1990) Science 247, 467-470
    66. Hu, J. S., Olson, E. N., and Kingston, R. E. (1992) Mol Cell Biol 12, 1031-1042
    67. Javaux, F., Donda, A., Vassart, G., and Christophe, D. (1991) Nucleic Acids Res 19, 1121-1127
    68. Lassar, A. B., Davis, R. L., Wright, W. E., Kadesch, T., Murre, C., Voronova, A., Baltimore, D., and Weintraub, H. (1991) Cell 66, 305-315
    69. Benezra, R., Davis, R. L., Lockshon, D., Turner, D. L., and Weintraub, H. (1990) Cell 61, 49-59
    70. Sun, X. H., and Baltimore, D. (1991) Cell 64, 459-470
    71. Bain, G., Gruenwald, S., and Murre, C. (1993) Mol Cell Biol 13, 3522-3529
    72. Furumura, M., Potterf, S. B., Toyofuku, K., Matsunaga, J., Muller, J., and Hearing, V. J. (2001) J Biol Chem 276, 28147-28154
    73. Dhulipala, P. D., Lianos, E. A., and Kotlikoff, M. I. (2001) Gene 269, 167-175
    74. Murre, C., Bain, G., van Dijk, M. A., Engel, I., Furnari, B. A., Massari, M. E., Matthews, J. R., Quong, M. W., Rivera, R. R., and Stuiver, M. H. (1994) Biochim Biophys Acta 1218, 129-135
    75. Atchley, W. R., and Fitch, W. M. (1997) Proc Natl Acad Sci U S A 94, 5172-5176
    76. Chen, B., and Lim, R. W. (1997) J Biol Chem 272, 2459-2463
    77. Petropoulos, H., and Skerjanc, I. S. (2000) J Biol Chem 275, 25095-251011. Jenuwein, T., and Allis, C. D. (2001) Science 293, 1074-1080
    2. Hendzel, M. J., Wei, Y., Mancini, M. A., Van Hooser, A., Ranalli, T., Brinkley, B. R., Bazett-Jones, D. P., and Allis, C. D. (1997) Chromosoma 106, 348-360
    3. Van Hooser, A., Goodrich, D. W., Allis, C. D., Brinkley, B. R., and Mancini, M. A. (1998) J Cell Sci 111 (Pt23), 3497-3506
    4. Goto, H., Tomono, Y., Ajiro, K., Kosako, H., Fujita, M., Sakurai, M., Okawa, K., Iwamatsu, A., Okigaki, T., Takahashi, T., and Inagaki, M. (1999) J Biol Chem 274, 25543-25549
    5. Cheung, W. L., Ajiro, K., Samejima, K., Kloc, M., Cheung, P., Mizzen, C. A., Beeser, A., Etkin, L. D., Chernoff, J., Earnshaw, W. C., and Allis, C. D. (2003) Cell 113, 507-517
    6. Maile, T., Kwoczynski, S., Katzenberger, R. J., Wassarman, D. A., and Sauer, F. (2004) Science 304, 1010-1014
    7. Barber, C. M., Turner, F. B., Wang, Y., Hagstrom, K., Taverna, S. D., Mollah, S., Ueberheide, B., Meyer, B. J., Hunt, D. E, Cheung, P., and Allis, C. D. (2004) Chromosoma 112, 360-371
    8. Zhang, Y., Griffin, K., Mondal, N., and Parvin, J. D. (2004) JBiol Chem 279, 21866-21872
    9. Aihara, H., Nakagawa, T., Yasui, K., Ohta, T., Hirose, S., Dbomae, N., Takio, K., Kaneko, M., Takeshima, Y., Muramatsu, M., and Ito, T. (2004) Genes Dev 18, 877-888
    10. Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S., and Bonner, W. M. (1998) JBiol Chem 273, 5858-5868
    11. Rogakou, E. P., Nieves-Neira, W., Boon, C., Pommier, Y., and Bonner, W. M. (2000) JBiol Chem 275, 9390-9395
    12. Polioudaki, H., Markaki, Y., Kourmouli, N., Dialynas, G., Theodoropoulos, P. A., Singh, P. B., and Georgatos, S. D. (2004) FEBS Lett 560, 39-44
    13. Dai, J., Sultan, S., Taylor, S. S., and Higgins, J. M. (2005) Genes Dev 19, 472-488
    14. Preuss, U., Landsberg, G., and Scheidtmann, K. H. (2003) Nucleic Acids Res 31, 878-885
    15. Houben, A., Demidov, D., Rutten, T., and Scheidtmann, K. H. (2005) Cytogenet Genome Res 109, 148-155
    16. Gurley, L. R., D'Anna, J. A., Barham, S. S., Deaven, L. L., and Tobey, R. A. (1978) Eur J Biochem 84, 1-1517. Wei, Y., Mizzen, C. A., Cook, R. G, Gorovsky, M. A., and Allis, C. D. (1998) Proc Natl Acad Sci USA 95,7480-7484
    
    18. Wei, Y., Yu, L., Bowen, J., Gorovsky, M. A., and Allis, C. D. (1999) Cell 97, 99-109
    
    19. Hsu, J. Y, Sun, Z. W., Li, X., Reuben, M., Tatchell, K., Bishop, D. K, Grushcow, J. M., Brame, C.J., Caldwell, J. A., Hunt, D. F., Lin, R., Smith, M. M., and Allis, C. D. (2000) Cell 102, 279-291
    
    20. Kaszas, E., and Cande, W. Z. (2000) J Cell Sci 113 ( Pt 18), 3217-3226
    
    21. de la Barre, A. E., Angelov, D., Molla, A., and Dimitrov, S. (2001) Embo J 20, 6383-6393
    
    22. MacCallum, D. E., Losada, A., Kobayashi, R., and Hirano, T. (2002) Mol Biol Cell 13, 25-39
    
    23. Speliotes, E. K., Uren, A., Vaux, D., and Horvitz, H. R. (2000) Mol Cell 6, 211-223
    
    24. Mahadevan, L. C, Willis, A. C, and Barratt, M. J. (1991) Cell 65, 775-783
    
    25. DeManno, D. A., Cottom, J. E., Kline, M. P., Peters, C. A., Maizels, E. T., and Hunzicker-Dunn,M. (1999) Mol Endocrinol 13, 91-105
    
    26. Sassone-Corsi, P., Mizzen, C. A., Cheung, P., Crosio, C, Monaco, L., Jacquot, S., Hanauer, A.,and Allis, C. D. (1999) Science 285, 886-891
    
    27. Thomson, S., Clayton, A. L., Hazzalin, C. A., Rose, S., Barratt, M. J., and Mahadevan, L. C.(1999) Embo J 18, 4779-4793
    
    28. Saccani, S., Pantano, S., and Natoli, G. (2002) Nat Immunol 3, 69-75
    
    29. Yamamoto, Y, Verma, U. N., Prajapati, S., Kwak, Y T., and Gaynor, R. B. (2003) Nature 423,655-659
    
    30. Nowak, S. J., and Corces, V. G. (2000) Genes Dev 14, 3003-3013
    
    31. Waring, P., Khan, T., and Sjaarda, A. (1997) J Biol Chem 272, 17929-17936
    
    32. Schmitt, A., Gutierrez, G. J., Lenart, P., Ellenberg, J., and Nebreda, A. R. (2002) FEBS Lett 518,23-28
    
    33. Yoshida, M., Usui, T., Tsujimura, K., Inagaki, M., Beppu, T., and Horinouchi, S. (1997) Exp Cell Res 232, 225-239
    
    34. Giet, R., and Glover, D. M. (2001) J Cell Biol 152, 669-682
    
    35. Crosio, C, Fimia, G. M., Loury, R., Kimura, M., Okano, Y, Zhou, H., Sen, S., Allis, C. D., and Sassone-Corsi, P. (2002) Mol Cell Biol 22, 874-885
    
    36. Lo, W. S., Duggan, L., Emre, N. C, Belotserkovskya, R., Lane, W. S., Shiekhattar, R., and Berger,S. L. (2001) Science 293, 1142-1146
    
    37. Hazzalin, C. A., Cano, E., Cuenda, A., Barratt, M. J., Cohen, P., and Mahadevan, L. C. (1996) Curr Biol 6, 1028-1031
    
    38. Hazzalin, C. A., Cuenda, A., Cano, E., Cohen, P., and Mahadevan, L. C. (1997) Oncogene 15,2321-2331
    
    39. Shibata, K., Inagaki, M., and Ajiro, K. (1990) Eur J Biochem 192, 87-93
    
    40. Lo, W. S., Gamache, E. R., Henry, K. W., Yang, D., Pillus, L., and Berger, S. L. (2005) Embo J 24,997-1008
    
    41. Hauf, S., Cole, R. W., LaTerra, S., Zimmer, C, Schnapp, G, Walter, R., Heckel, A., van Meel, J.,Rieder, C. L., and Peters, J. M. (2003) J Cell Biol 161, 281-294
    
    42. Murnion, M. E., Adams, R. R., Callister, D. M., Allis, C. D., Earnshaw, W. C, and Swedlow, J. R.(2001)J Biol Chem 276, 26656-26665
    
    43. Sugiyama, K., Sugiura, K., Hara, T., Sugimoto, K., Shima, H., Honda, K., Furukawa, K.,Yamashita, S., and Urano, T. (2002) Oneogene 21, 3103-3111
    44. Goto, H., Yasui, Y., Nigg, E. A., and Inagaki, M. (2002) Genes Cells 7, 11-17
    45. Choi, H. S., Choi, B. Y., Cho, Y. Y., Zhu, F., Bode, A. M., and Dong, Z. (2005) J Biol Chem 280, 13545-13553
    46. Femandez-Capetillo, O., Allis, C. D., and Nussenzweig, A. (2004) J Exp Med 199, 1671-1677
    47. Downs, J. A., Allard, S., Jobin-Robitaille, O., Javaheri, A., Auger, A., Bouchard, N., Kron, S. J., Jackson, S. P., and Cote, J. (2004) Mol Cell 16, 979-990
    48. Downs, J. A., Lowndes, N. F., and Jackson, S. P. (2000)Nature 408, 1001-10041 Lachner M, Jenuwein T. The many faces of histone lysine methylation. Curr Opin Cell Biol, 2002,14:286-98.
    
    2 Rea S, Eisenhaber F, O'Carroll D, et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature, 2000, 406:593-9.
    
    3 Van Leeuwen F, Gafken PR, Gottschling DE. Dotlp modulates silencing in yeast by methylation of the nucleosome core. Cell, 2002, 109:745-56.
    
    4 NgHH, Feng Q, Wang H, et al. Lysine methylation within the globular domain of histone H3 by Dotl is important for teiomeric silencing and Sir protein association. Genes Dev, 2002, 16:1518-27.
    
    5 Nishioka K, Rice JC, Sarma K, et al. PR-Set7 is a nucleosome-specific methyftransferase that modifies lysine 20 of histone H4 and is associated with silent chromatin. Mol Cell, 2002,9:1201-13.
    
    6 Aagaard L, Laible G, Selenko P, et al. Functional mammalian homologues of the Drosophila PEV-modifier Su(var)3-9 encode centromere-associated proteins which complex with the heterochromatin component M31. Embo J, 1999, 18:1923-38.
    
    7 Lachner M, O'Carroll D, Rea S, et al. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature, 2001, 410:116-20.
    
    8 Bannister AJ, Zegerman P, Partridge JF, et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature, 2001, 410:120-4.
    
    9 Plath K, Fang J, Mlynarczyk-Evans SK, et al. Role of histone H3 lysine 27 methylation in X inactivation. Science, 2003, 300:131-5.
    
    10 Beisel C, Imhof A, Greene J, et al. Histone methylation by the Drosophila epigenetic transcriptional regulator Ash1.Nature, 2002, 419:857-62.
    
    11 Ayyanathan K, Lechner MS, Bell P, et al. Regulated recruitment of HP 1 to a euchromatic gene induces mitotically heritable, epigenetic gene silencing: a mammalian cell culture model of gene variegation. Genes Dev, 2003, 17:1855-69.
    
    12 Nielsen SJ, Schneider R, Bauer UM, et al. Rb targets histone H3 methylation and HP1 to promoters.Nature, 2001, 412:561-5.
    
    13 Nicolas E, RoumillacC, Trouche D. Balance between acetylation and methylation of histone H3 lysine 9 on the E2F-responsive dihydrofolate reductase promoter. Mol Cell Biol, 2003, 23:1614-22.
    
    14 Tamaru H, and Selker EU. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa.Nature, 2001, 414:277-83.
    
    15 Tamaru H, Zhang X, McMillen D, et al. Trimethylated lysine 9 of histone H3 is a mark for DNA methylation in Neurospora crassa. Nat Genet, 2003, 34:75-9.
    
    16 Jackson JP, Lindroth AM, Cao X, et al. Control of CpNpG DNA methylation by the KRYPTON1TE histone H3 methyltransferase. Nature, 2002, 416: 556-60.
    
    17 Xin Z, Tachibana M, Guggiari M, et al. Role of histone methyltransferase G9a in CpG methylation of the Prader-Willi syndrome imprinting center. J Biol Chem, 2003, 278:14 996-15 000.
    
    18 Lehnertz B, UedaY, DerijckAA, et al. Suv39h-mediated histone H3 lysine 9 methylation directs??DNA methylation to major satellite repeats at pericentric heterochromatin. Curr Biol, 2003, 13:1192-200.
    
    19 Fuks F, HurdPJ, Wolf D, et al. The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem, 2003, 278:4 035-40.
    
    20 Noma K, Allis CD, Grewal SI. Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science, 2001, 293:1150-5.
    
     21 Nishioka K, Chuikov S, Sarma K, et al. Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation. Genes Dev, 2002, 16:479-89.
    
    22 Santos-Rosa H, Schneider R, Bannister AJ, et al. Active genes are tri-methylated at K4 of histone H3. Nature, 2002, 419:407-11.
    
    23 NgHH, Robert F, Young RA, et al. Targeted recruitment of Set 1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol Cell, 2003,11:709-19.
    
    24 NgHH, CicconeDN, Morshead KB, et al. Lysine-79 of histone H3 is hypomethylated at silenced loci in yeast and mammalian cells: a potential mechanism for position-effect variegation. Proc Natl Acad Sci USA, 2003, 100:1820-5.
    
    25 Xiao T, Hall H, Kizer KO, et al. Phosphoryiation of RNA polymerase II CTD regulates H3 methylation in yeast. Genes Dev, 2003, 17:654-63.
    
    26 Schneider R, Bannister AJ, Myers FA, et al. Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nat Cell Biol, 2004, 6:73-7.
    
    27 Varambally S, Dhanasekaran SM, Zhou M, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature, 2002, 419:624-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700