羟乙基丁硝胺硝酸酯的膜蒸发模拟装置设计及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
羟乙基丁硝胺硝酸酯(BuNENA)是一种含能增塑剂,其具有大比容、低爆温、难挥发等优异的性能,广泛的应用于各种发射药配方,因此要求其要有较高的纯度。但传统的后处理方法具有操作时间长、安全性低和不能实现连续化工业生产等缺点。本论文根据BuNENA生产的特点和薄膜蒸发器性能的优点,引入薄膜蒸发器对BuNENA进行后处理。针对BuNENA后处理中的蒸发过程模拟和装置设计及应用,主要研究结果如下:
     根据物料特性进行相关安全性分析并编写了旋转薄膜蒸发器结构参数的VB计算程序,并计算出实验室小试蒸发条件下最小蒸发面积为0.0391m2;通过实际蒸发实验与ANSYS CFX模拟传热、传质、流体力学性能得到的数据,修正计算程序并模拟计算中试工艺条件下所需最小蒸发面积为0.1816m2;设计一套中试用旋转薄膜蒸发装置,设备参数为:蒸发面积0.2m2,冷却面积2m2,滚筒式刮板直径20mmm,100-500rpm调速电机,电加热功率12KW,抽气量7L/s的水喷射式真空泵;中试设备进行蒸发实验的最佳操作工艺为:蒸发温度140℃,刮板转速200rpm,进料量80L/h(质量浓度20%的BuNENA溶液),一级自来水、二级低温冷却液冷凝二氯甲烷。经蒸发后能得到含量大于99%的BuNENA,软件的模拟度为90.8%。
     旋转薄膜蒸发器后处理BuNENA-二氯甲烷溶液具有处理时间短,加热时间11.6s;最大感度仅为1.6N·m,远小于BuNENA的感度24.5N-m,可实现连续化工业生产。
The 2-(butyl-nitro-amino) ethyl nitrate (BuNENA BuNENA) is a kind of majority specific volume, low detonation temperature, nonvolatile and other excellent performance of the energetic plasticizer, which is widely used in various propellant formulations. Therefore it was required a high purity. However, there are many shortcomings in the conventional post-processing procedure, including long treatment time, low security degree and impossibility of continuous industrial production. According the characteristics of product BuNENA and the preformance advantages of thin-film evaporator, the thin-film evaporator was introduced into the BuNENA post-processing procedure, the evaporation process has been simulated and a new evaporator has been designed according to the simulation in this paper. There are main contents as follows:
     The security analysis of the process was conducted according to the materials characteristics, and the VB calculating program for structure parameters of thin-film evaporator has been developed. And we calculate the minimum evaporation area that is in the evaporation laboratory test conditions is 0.0381m2. The program was revised according to the experimental data of evaporation and the heat and mass transfer, fluid dynamics data obtained via ANSYS CFX simulation, and the minimum evaporation area, which is 0.1816 m2, was recalculated under the pilot test conditions by the revision program. A thin-film evaporator for pilot test was designed. The device parameters are as follows:the evaporation area is 0.2m2, the cooling area is 2m2, scraper diameter is 20mm, scraper speed is 100-500 rpm, electric heating power is 12 KW, the water-jet vacuum pump exhaust volume is 7 L/s. The optimum process parameters used in pilot test are as follows:the evaporation temperature is 140℃, the scraper speed is 200rpm, fluxes 80L/h (20% concentration of BuNENA solution), dichloromethane was cooled by water and low-temperature coolant. The purity of the BuNENA could be up to 99%, and the program simulation degree is 90.8%.
     Shortor processing time which is just 11.6s; maximum sensitivity is 1.6Nm (BuNENA the sensitivity is 24.5Nm) were showed during the post-processing procedure by using thin-film evaporator treatment BuNENA-dichloromethane solution. And it makes the continuous industrial manufacturing possible.
引文
[1]Schack C. J., Flanagan J. E.. Alkyl Azido, Nitro Ethers and Method of Preparation[P]. US 4522756,1985,6,11.
    [2]Witucki E. F., Flanagan J. E., Flanagan. Azido Esters[P]. US 4419286,1983,12,6.
    [3]Howard W. M. Howard. Triaminoguanidine Nitrate-containing Propellants[P]. US 4381958,1983,5,3.
    [4]Fang L. A., Hua S. Q., Xin L., et. Preliminary Study of BuNENA Gun Propellants[A]. Annual Conference of ICT[C]. Karlsruhe, Germany,19966,25:51.
    [5]Johnson R. A., Mulley J. J.. Stability and Performance Characteristics of NENA Materials and Formulations[A]. Joint International Symposium on Energetic Materials Technology [C]. New Orleans, Louisiana,1992,10,5:116.
    [6]鲍冠苓,沈琼华,李遵来.羟乙基丁硝胺硝酸酯增塑剂的性能研究[J].兵工学报,1995,2:43-45.
    [7]陆安舫.新型含能增塑剂-硝氧乙基硝胺族化合物发展概况[J].含能材料,1998,6(1):43-47.
    [8]陆安舫.含羟乙基丁硝胺硝酸酯发射药的研究[J].火炸药,1994,4:12-17.
    [9]Kala P. C., Aarun K. S., Mahadev A. K.. Studies on n-Butyl Nitroxyethylnitramine (n-BuNENA):Synthesis, Characterization and Propellant Evaluations[J]. Propellants, Explosives, Pyrotechnics,2004,2(29):93-98.
    [10]李微,施小芳,林述英.升膜式蒸发器生产能力的提高[J].医药工程设计,2006,27(6):4-6.
    [11]Yang L. P., Chen X., Shen S. Q.. Heat-transfer characteristics of climbing film evaporation in a vertical tube [J]. Experimental Thermal and Fluid Science,2010,34(6): 753-759.
    [12]刘殿宇,田永红.单效降膜式蒸发器在液态奶生产中的设计及应用[J].化工设备与管道,2004,41(2):7-10.
    [13]腊栋,李茂德,秦伟等.降膜蒸发过程的传热性能研究[J].应用能源技术,2006,101:6-10.
    [14]Prost J. S., Gonzalez M. T., Urbicain M. J.. Determination and correlation of heat transfer coefficients in a falling film evaporator[J]. Journal of Food Engineering,2006, 73(40):320-326.
    [15]Pacheco C. R. F., Frioni L. S. M.. Experimental results for evaporation of sucrose solution using a climbing/falling film plate evaporator [J]. Journal of Food Engineering, 2004,64(4):471-480.
    [16]Ribeiro C. P., Cano M. H.. A heat transfer model for the steady-state simulation of climbing-falling-film plate evaporators [J]. Journal of Food Engineering,2002,54(4): 309-320.
    [17]陈其殷.薄膜式设备[J].纯碱工业,1987,5:56-58.
    [18]Chemical Business. Thin-film evaporators handle thick fluids[M]. NY, Reed Business Information.1996,103(12):71-78.
    [19]韦佩英.新型实用旋膜蒸发器与流程[J].化学工程,1997,25(2):30-32.
    [20]杨庆贤,奚一民,张雪丽.刮板式薄膜蒸发器试验装置[J].医药设计,1983,4:63-66.
    [21]田耀华.离心真空薄膜蒸发浓缩器的特点与应用[J].中国制药装备,2010,6:26-28.
    [22]吕鸣冈,王庆,范建兵,等.离心薄膜蒸发器[P].ZL 200720039430.Ⅹ,2008,4,2.
    [23]杨涛,贾国伦.薄膜蒸发器活动刮板调节装置[P].ZL 200520043544.2,2006,12,27.
    [24]赵贤广,李武,张志炳,等.高含盐废水降膜蒸发过程中液膜破裂的抑制[J].2011,5(4):726-730.
    [25]韦昌桃,明大增李志祥,等.表面活性剂在湿法磷酸浓缩过程中的应用[J].磷肥与复肥,2010,25(2):9-11.
    [26]皮丕辉,杨卓如,马四朋.刮膜薄膜蒸发器的特点和应用[J].现代化工,2001,21(3):41-44.
    [27]Bayer A. G.. A Mounting for the Wiper Blades of a Film Evaporator[P]. GB1024729A, 1966,4,6.
    [28]尹更昌.薄膜蒸发器结构及工艺改进[J].2006,2:57-59.
    [29]届建楚.浅论刮板式薄膜蒸发器刮板的结构设计[J].2000,21(4):145-146.
    [30]李光荣,旋液薄膜蒸发器的设计[J].化工装备技术2002,23(5):30-32.
    [31]张晓峰,邢玉华.薄膜蒸发器的设计[J].当代化工,2010,39(5):614-616.
    [32]Glover W. B., William B.. Scale-up of Agitated Thin-film Evaporators [J]. Chemical Engineer,2004,11(4):55-58.
    [33]Qi F., Xia Y..3-D numerical study on the effect of geometrical parameters on thermal behavior of dimple jacket in thin-film evaporator[J]. Applied Thermal Engineering,2008, 28:1875-1881.
    [34]Garvin J.. Estimate heat transfer and friction in dimple jackets[J]. Chemical Engineering Progress,2001,97(4):73-75.
    [35]Fogg R. M., Uhl V. W.. Heat transfer resistance in half-tube and dimpled jackets[J]. Chemical Engineering Progress,1973,69(7):76-80.
    [36]Bolliger, Donald H.. Assessing heat transfer in process-vessel jackets[J]. Chemical Engineering,1982,89(19):5-100.
    [37]Rankin B.H., Adamson W.L.. Scale formation as related to evaporator surface conditions[J]. Desalination,1973,13(1):63-87.
    [38]奚一民,张雪丽,邢建平,等.刮板式薄膜蒸发器性能研究[J].医药设计,1983,1:34-36.
    [39]蔡金海,江有情,王凤翔,等.刮板薄膜蒸发器的性能与结构[J].1983,7:36-37.
    [40]贺小华,李佳,李庆生等.薄膜蒸发器传热蒸发性能的实验研究[J].化工机械,2006,33(2):67-71.
    [41]Mckelvey J. M., Sharps G. V.. Fluid Transport in Thin Flim Polymer Processors[J]. Polymer Engineering and Science,1979,19(9):651-659.
    [42]唐平,贺小华,尹侠.薄膜蒸发器结构参数对流体传热性能的影响[J].化工石油设备,2007,36:22-26.
    [43]Tarif A. A., Vasseur J.. Bibliographic analysis of predicting heat transfer coefficients in boiling for applications in designing liquid food evaporators[J]. Journal of Food Engineering,2008(87):149-161.
    [44]Godau H. J.. Flow Processes in Thin-Film Evaporators[J]. Institution of Chemical Engineers,1975,15(3):445-448.
    [45]Mckenna T. F.. Design Model of a wiped Film Evaporator Applications to the Devolatilisation of Polymer Melts [J]. Chemical Engineering Science,1995,50(3): 453-467.
    [46]Komori S., Takata K., Murakami Y.. Flow Structure and Mixing Mechanism in an Agitated Thin-flim Evaporator [J]. Journal of Chemical Engineering of Japan,1988, 21(6):639-644.
    [47]Mckelvey J. M., Sharps G. V.. Fluid Transport in Thin Flim Polymer Processors[J]. Polymer Engineering and Science,1979,19(9):651-659.
    [48]汪蕊.薄膜蒸发器流体流动数值模拟及传热计算初探[D].南京:南京工业大学,2003.
    [49]贺小华,唐平,李佳等.薄膜蒸发器内流体流动特性的数值模拟[J].过程工程学报,2005,5(4):357-362.
    [50]李佳,贺小华.薄膜蒸发器内流体传热性能分析[J].2002,32(11):21-24.
    [51]汪蕊,贺小华.薄膜蒸发器内流体流动模拟[J].南京工业大学学报,2004,26(1):72-77.
    [52]马四朋,杨卓如,涂伟萍,等.搅拌薄膜蒸发器的蒸发机理及强化研究进展[J].化学工业与工程,2002,19(2):185-190.
    [53]沈广芬.高效机械搅拌式薄膜蒸发器在工业生产中的应用[J].杭州化工,2001,31(2):44-46.
    [54]Jan C., Stefan P., Miroslav M.. Film wiping in the molecular evaporator[J]. Chemical Engineering Journal,2001,81:9-14.
    [55]董金善,李庆生,贺小华.旋转薄膜蒸发器的应用[J].化工机械,1997,24(6):337-342.
    [56]Takadaa M., Drakeb J. C.. Application of improved high-performance evaporator[J]. Desalination,1983,45(3):3-12.
    [57]Billet R.. Performance of thin-film distillation and its application[J]. Separations Technology,1992,2(4):183-191.
    [58]陈合,杨辉.刮板薄膜蒸发器的特性及其应用研究[J].西北轻工业学院学报,1998,16(2):60-64.
    [59]Timothy F., Kenna Mc. Design model of a wiped film evaporator applications to the devolatilisation of polymer melts[J]. Chemical Engineering Science,1995,50(3): 453-467.
    [60]张铁柱.薄膜蒸发器在硫化碱蒸发过程中的应用[J].无机盐工业,2002,34(4):30-31
    [61]聂莉莎.旋转薄膜蒸发器在氯碱行业中的应用[J].广西轻工业.2008,1:33-34.
    [62]罗延龄,薛丹敏.薄膜蒸发器在液体橡胶干燥中的应用[J].化工科技,2000,8(5)9-12.
    [63]邓永生,杨永明,刘斌,等.薄膜蒸发器在废油再生中的应用[J].石油商技,2010,6:76-78.
    [64]高仲德,朱文洁.刮板式薄膜蒸发器在蜂蜜生产中的应用[J].教学与研究,1985,1:32-34.
    [65]李华,刘培龙.旋转薄膜蒸发器及其在糖液浓缩中的应用[J].食品工业科技,2007,12:172-174.
    [66]邢小霞,桑欣欣,谢慧.刮板薄膜蒸发器在己内酰胺生产中的应用[J].化工进展,2010,29(6):1164-1167.
    [67]Sangrame G., Bhagavathi D., Thakare H., et al. Performance Evaluation of a Thin Film Scraped Surface Evaporator for Concentration of Tomato Pulp [J]. Journal of Food Engineering,2000,43(4):205-211.
    [68]何剑洋.蒸发节能技术在胆固醇生产中的应用[J].化学工程与装备,2007,4:31-34
    [69]《化学工程手册》编辑委员会.化学工程手册(第2篇:蒸发与结晶)[M].北京:化学工业出版社,1985.
    [70]陈迁乔.旋膜式蒸发器辅助设计软件的开发及实验研究[D].南京:南京化工大学,1999.
    [71]贺小华,李庆生,尹侠,等.基于CFD的刮板式薄膜蒸发器工艺计算及辅助设计系统[J].食品与机械,2006,4:63-66.
    [72]Mahmood G. I., Hill M. L., Nelson D. L.. Local heat transfer and flow structure on and above a dimpled surface in a channel[J]. ASME J. Turbomach,2001,123(1):115-123.
    [73]Leu J. S., Jang J. Y., Chou W. C.. Convection heat and mass transfer along a vertical heated plate with film evaporation in a non-Darcian porous medium[J]. International Journal of Heat and Mass Transfer.2009,52:5447-5450.
    [74]Chuaprasert S., Peter D., Minh N.. Data reconciliation of an agitated thin film evaporator using Aspenplus[J]. Journal of Food Engineering,1999(39):261-267.
    [75]Zeboudj S., Belhaneche B. N., Belabbes R.. Modelling of flowing a wiped film evaporator[J]. Chemical Engineering Science,2006,61:1293-1299.
    [76]Chawankul N., Chuaprasert S., Douglas P.L.. Optimisation of an Agitated Thin Film Evaporator for Concentrating Orange Juice Using Aspenplus[J]. Development Chemical Engineering, Mineral Process,2003,11(3):309-322.
    [77]Schaal F., Schilling K., Hasse H.. Separation efficiency of thin-film evaporators: Experiments with water-ethylene glycol and methanol-water and stage-based modeling[J]. Chemical Engineering and Processing,2008,47:209-214.
    [78]Billet R.. Separation Efficiency of Thin-film Evaporators[J] Chinese Journal of Chemical Engineering,2004,12(2):179-18.
    [79]刘金红.混合溶剂稀溶液的沸点升高及其常数的推算[J].1999,13(3):47-49.
    [80]成大先.机械设计手册(第二卷)[M].第三版,北京:化学工业出版社,1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700