秸秆酶解木质素液化改性及聚氨酯发泡材料制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酶解木质素是从微生物酶解玉米秸秆制备丁醇等能源的残渣中分离得到的新型木质素,与传统的碱木质素和硫酸盐木质素相比,酶解木质素具有多种活性基团和较好的反应活性。本文对酶解木质素的多羟基醇液化以及酶解木质素基聚氨酯发泡材料的制备进行了一系列研究。通过化学改性手段制备酶解木质素基聚氨酯发泡材料,不但可以提高农业废弃物的利用率和生物酶解技术的经济效益,同时也可获得良好的社会效益。
     论文首先研究了在常压下以硫酸为催化剂,酶解木质素在聚乙二醇和丙三醇的混合溶剂中的液化工艺,并以液化产物的残渣率和羟值作为液化效果的评价指标,考察了液化时间、液化温度、催化剂用量、液固比等对液化反应的影响。提出了酶解木质素在多羟基醇溶剂中液化的最优条件。在液化温度为120°C,液化时间为50min,硫酸用量为0.6%,液固比为5:2的条件下,液化产物的羟值达到397mgKOH/g,残渣率为0.59%,以及粘度为5405mPa·s。当液固比从5:3增加到5:1时,液化产物的相对分子量下降,多分散系数下降,羟值升高,残渣率下降,粘度下降。
     采用傅里叶变换红外光谱(FT-IR),核磁共振波谱(NMR),气相色谱-质谱联用(GC-MS)及凝胶渗透色谱(GPC)等方法对不同液化时间下的液化产物的官能团、分子结构、相对分子量大小及其分布进行了表征,初步探讨了玉米秸秆酶解木质素在多羟基醇液化溶剂中的液化改性机理。研究表明,在液化前期,液化产物的重均分子量和数均分子量降低,且多分散系数降低。而在液化后期,液化产物的平均分子量出现上升趋势。说明液化过程中同时存在降解反应和缩聚反应。酶解木质素在酸性条件下,首先发生降解反应生成对香豆醇、芥子醇等结构单元,然后发生甲基脱除反应,最后发生氧化和酯化反应。酶解木质素多羟基醇液化产物中主要有三类化合物,第一类是含有苯酚基本单元和苯基的化合物;第二类是含有苯甲氧基的化合物;第三类是酶解木质素衍生物与液化溶剂相互之间的缩合物。
     利用酶解木质素多羟基醇液化产物与传统聚醚多元醇复配后,与二苯基亚甲基二异氰酸酯反应,制备了改性聚氨酯发泡材料,并研究了液化产物含量对聚氨酯发泡材料各项性能的影响。结果表明,液化改性木质素基聚氨酯发泡材料的最佳合成工艺:聚醚多元醇4110与403复配比为40:60,液化产物含量为30%,异氰酸酯指数为1.2,催化剂含量为2.5%,发泡剂含量为20%,阻燃剂含量为25~30%(水含量为1%,硅油含量为2%)。可以根据聚氨酯发泡材料的最终用途来选择合适的配方。当液化产物含量低于30%时,液化产物的添加可以提高聚氨酯发泡材料的压缩强度。当液化产物含量为30%时,聚氨酯发泡材料的压缩强度达到最大值291kPa,比未添加液化产物的聚氨酯发泡材料的压缩强度高出36%。当液化产物含量继续增加时会导致材料变脆,压缩强度降低。另外,液化产物的添加可以改善聚氨酯发泡材料的热稳定性能和阻燃性能。含有液化产物的聚氨酯发泡材料的开始热分解温度和第一阶段的最大热失重温度明显高于未添加液化产物的聚氨酯发泡材料。当液化产物含量分别为10%和50%时,释热速率峰值分别为200.60kW·m~(-2)和191.33kW·m~(-2),比未添加液化产物的聚氨酯发泡材料的释热速率峰值(263.43kW·m~(-2))分别低约23.85%和27.37%。同时,添加了液化产物的聚氨酯发泡材料的失重率显著下降。并且,当液化产物部分替代聚醚多元醇时,聚氨酯发泡材料的导热性能也得到了提高。当液化产物含量为30%时,聚氨酯发泡材料的导热系数达到最低值(0.02517W/mK),比未添加液化产物的聚氨酯发泡材料导热系数(0.03027W/mK)低约36%。当液化产物含量低于70%时,泡沫的泡孔结构规整。
     采用填充型酶解木质素和液化改性型酶解木质素两种方法制备酶解木质素基聚氨酯发泡材料,探讨了两种制备方法对酶解木质素基聚氨酯发泡材料的化学结构、基本工艺参数、凝胶量、密度和压缩强度、泡孔微观形貌、动态力学性能的影响。结果表明,在液化改性型聚氨酯发泡材料合成过程中,酶解木质素以液相参与发泡反应,起到核化点和稀释剂的作用,反应分子间的间隔加大,因此液化改性型聚氨酯发泡材料的凝胶时间长于填充型聚氨酯发泡材料。随着多元醇替代物含量增多,填充型聚氨酯发泡材料的密度要高于液化改性型聚氨酯发泡材料,凝胶量低于液化改性型聚氨酯发泡材料。液化改性型聚氨酯发泡材料的压缩强度要高于填充型聚氨酯发泡材料。当多元醇替代物含量低于30%时,液化改性型聚氨酯发泡材料的玻璃化转变温度稍高于填充型聚氨酯发泡材料的玻璃化转变温度。液化改性的方法更有利于酶解木质素基聚氨酯发泡材料的合成。
Enzymatic hydrolysis lignin (EHL) a novel lignin which is isolated from the enzymatichydrolysis residues of corn stalk for production of butanol.Compared to lignosulfonate or kraftlignin, EHL has various reaction groups and greater chemical reactivity. The polyhydricalcohol liquefaction of EHL and the modified polyurethane (PU) foaming materials derivedfrom the liquefaction product were studied in this dissertation.The preparation of EHL-basedPU foaming materials by chemaical modified method will be favorable to not only improvingthe application of agricultural wastes and the economic benefit of biological enzymolysistechnology, but also gaining better social benefit.
     Corn stalk EHL was liquefied using the mixed solvents of polyethylene glycol400(PEG400) and glycerol in the presence of sulfuric acid as a catalyst under atmospheric pressure.The liquefaction residue ratio and hydroxyl number as evalution indexes were used to evaluatethe effects of the liquefaction temperature, the liquefaction time, the catalyst dosage and theliquid-solid ratio on the liquefaction. The optimal reaction conditions was proposed.When theliquefaction temperature was at120°C, the liquefaction time for50min, the liquefactionsolvent/corn stalk EHL ratio at5:2and sulfuric acid dosage at0.6%, the liquefied productshowed hydroxyl number of397mgKOH/g, residue ratio of0.59%and viscosity of5405mPa·s.When the liquefaction solvent/corn stalk EHL ratio increased from5:3to5:1, theaverage molecular weights, polydispersities, residue ratio of the liquefied EHL polyolsdecreased while the hydroxyl number increased.
     The methods such Fourier transform infrared spectroscopy (FT-IR), Nuclear maggneticresonance spectrum (NMR), Gas chromatography-mass spectrometry (GC-MS) and Gelpermeation chromatography (GPC) were used to analyze the functional groups, molecularstructure, molecular weight and distribution of liquefaction product from different liquefactiontime to study the EHL modification mechanism in polyhydroxyl acohol.The results showed that at the first stage of liquefaction process, the average molecular weights and polydipersitiesdecreased,while at the latter stage of liquefaction process, they presented the upward trend.Itindicated that the degradation reaction and condensation reaction occurred in the liquefaction.At the presence of sulfuric acid, the EHL was firstly degraded into structural units ofp-coumaric alcohol, erucic alcohol and so on, and then the demethylation reaction occurred,finally, there were oxidation and esterification reaction.There were three kinds of chemicalcompounds in the liquefaction products.The compounds of the first group had phenol andbenzene ring structure;the compounds of the second group had phenylmethoxy structure;thecompounds of the third group stemmed from condensation reaction between the EHLdeviatives and liquefaction solvents.
     Polyurethane foams were made from the liquefied product and diphenylmethanediisocynane diisocyanates (MDI). Furthermore,the impacts of liquefaction product additioncontent on properties of PU foaming materials were investigated. The result showed that theoptimal conditions for preparing EHL-based PU foaming materials were the ratio of4110/40340:60, the liquefaction product30%, catalyst dosage2.5%, foaming dosage20%, isocyanateindex1.2, flame retardant dosage25%~30%, water content1%and silicone surfactant2%.The preparation formulations were choosed according to the end use purpose of PU foamingmaterials.The foams with bio-polyol presented better compressive strength than conventionalpolyurethane foams. When the bio-polyol content was30%, the compressive strength reachedits maximum value of291kPa, which was36%higher than that of conventional PU foamingmaterials. It indicated that a high dosage of bio-polyol in the foaming mixture would lead tobrittle foams. The addition of liquefied EHL polyol into the foaming mixture resulted inimproved the thermal stability and flame resistance.The initial degradation temperature and themost rapid degradation temperature during the first degradation stage of the PU foamingmaterials with bio-polyol were higher than those of conventional PU foaming materials.Whenthe contents of bio-polyol were10%and50%, the peak of heat release rate were200.60kW·m~(-2)and191.33kW·m~(-2), respectively, which were23.85%and27.37%lower thanthat of conventional PU foaming materials (263.43kW·m~(-2)). In addition, mass loss rate of PU foaming materials based on bio-polyol significantly decreased.The thermal conductivity wasimproved when the liquefaction products replaced a part of trational polyether polyol. Thethermal conductivity of polyurethane foams with30%bio-polyol was0.02517W/mK,whichwas significantly36%lower than that of conventional polyurethane foams (0.03027W/mK).The scanning electron microscopy images indicated that polyurethane foams containing lessthan70%bio-polyol had smooth surface.
     Corn stalk EHL-based polyurethane foams were prepared by two methods: blending andliquefaction modification. The effects of the two types of preparation methods on the structureof PU foaming materials, process parameters, gel content, density, compressive strength,surface morphology and dynamic mechanical property of EHL-based polyurethane foams werediscussed.The results showed that EHL-based polyol involving in liquid in the foamingreactionand acted as nucleation sites and diluent.The reaction molecular interval became larger.Therefore, the gel time of PU foaming materials derived from liquefaction modification waslonger than that of PU foaming materials from the blending modification.The density ofpolyurethane foams from liquefaction modification method was lower than that from blendingmethod. The gel content and compressive strength of polyurethane foams based on liquefactionproduct were higher than those from blending method. When the substitution for polyol waslower than30%, the glass transition temperature of the polyurethane foams from liquefactionmethod was higher than those from blending method. The liquefaction modification wassuperior to the synthesis of EHL-bassed PU materials.
引文
[1]魏玉萍,程发,李厚萍,等.基于天然高分子的聚氨酯材料.高分子通报,2004,(2):22-29
    [2]宋湛谦.生物质产业与林产化工.现代化工,2009,29(1):2-5
    [3] Ge J J,Xu J T,Zhang Z N. Environmental-friendly material based on natural polysaccharidesⅡ.biodegradable polyurethane foams from liquefied wheat straws of banknote paper and pulp paper. ActaChimca Sinica,2002,60(4):732-736
    [4] Hatakeyama H,Hatakeyama T. Environmentally compatible hybrid-type polyurethane foams containingsaccharide and lignin components. Macromolecular Symposia,2005,224(1):219-226
    [5] Ge J J,Wu R,Chi X H,et al. Biodegradable polyurethane materials from bark and starch Ⅱ. Coatingmaterial for controlled-release fertilizer. Journal of Applied Polymer Science,2002,86(12):2948-2952
    [6] Kim D H,Kwon O J,Yang S R,et al. Preparation of starch-based polyurethane films and theirmechanical properties. Fibers and Polymer,2007,8(3):249-256
    [7] Kwon O J,Yang S R,Kim D H,et al. Characterization of polyurethane foam prepared by using starchas polyol. Journal of Applied Polymer Science,2007,103(3):1544-1553
    [8] Lu Y,Tighzert L,Dole P,et al. Preparation and properties of starch thermoplastics modified withwaterborne polyurethane from renewable resources. Polymer,2005,46(23):9863-9870
    [9] Ha S K,Broecker H C. Characteristics of polyurethanes incorporating starch granules. Polymer,2002,43(19):5227-5234
    [10] Gao Z H,Gu J Y Wang X M. FTIR and XPS study of the reaction of phenyl isocyanate and cellulosewith different moisture contents. Pigment and Resin Technology,2005,34(5):282-289
    [11] Rivera-Armenta J L,Henze T,Mendoza-Martinez A M. New polyurethane foams modified withcellulose derivatives. European Polymer Journal,2004,40(12):2803-2812
    [12] Zhang L,Jeon H K,Malsam J,et al. Substituting soybean oil-based polyol into polyurethane flexiblefoams. Polymer,2007,48(12):6656-6667
    [13] Pechar T W,Sohn S,Wilkes G L,et al. Characterization and comparison of polyurethane networksprepared using soybean-based polyols. Journal of Applied Polymer Science,2006,101(3):1432-1443
    [14] Narine S S,Kong X,Bouzidi L. Physical properties of polyurethanes produced from polyols from seedoils Ⅱ.Foams. Jounal of The American Oil Chemistry Society,2007,84(1):65-72
    [15] Hu Y H,Gao Y,Wang D N,et al. Rigid polyurethane foam prepared from a rape seed oil based polyol.Journal of Applied Polymer Science,2002,84(3):591-597
    [16]毕红,阮德礼,章于川,等.新型茶单宁聚氨酯材料的研究(Ⅰ).安徽大学学报:自然科学版,2000,24(4):79-84
    [17]李景明.中国生物质能发展现状与前景展望.中国科技成果,2010,10,4-6
    [18] Gregg D J,Saddler J N. Factors affecting cellulose hydrolysis and the potential of enzyme recycle toenhance the efficiency of an integrated wood to ethanol process. Biotechnology and Bioengineering,1996,51(4):375-383
    [19] Sun Y,Cheng J J. Hydrolysis of lignocellulosic materials for ethanol production:a review. BioresourceTechnology,2002,83(1):1-11
    [20] Galbe M, Zacchi G. A review of the production of ethanol from softwood. Applied Microbiology andBiotechnology,2002,59(6):618-628
    [21] Collinson S R, Thielemans W.The catalytic oxidation of biomass to new materials focusing onstarch,cellulose and lignin. Coordination Chemistry Reviews,2010,254(15-16):1854-1870
    [22]刘晓玲,程贤甦.酶解木质素的分离与结构研究.纤维素科学与技术,2007,15(3):41-46,51
    [23] Chen Y P,Cheng X S. Separation and characteristic analysis of steam-expolded lignin from cornstalkresidue. Chemistry of Natural Compounds,2009,45(5):693-696
    [24] Jin Y Q, Cheng X S, Zheng Z B. Preparation and characterization of phenol-formaldehyde adhesivesmodified with enzymatic hydrolysis lignin. Bioresource Technology,2010,101(6):2046-2048
    [25]蒋挺大.木质素.第2版.北京:化学工业出版社,2001:19-25
    [26]中野隼三.木质素的化学.高洁译.北京:中国轻工业出版社,1988:162-181
    [27] Evtuguin D V,Pascoal Neto C,Rocha J,et al. Oxidative delignification in the presence ofmolybdovanadophosphate heteropolyanions:mechanism and kinetic studies. Applied Catalysis A:General,1998,167(1):123-139
    [28] Vazque G,Antorrena G,Gonzalez I. Lignin-phenol-formaldehyde adhesives for exterior gradeplywoods. Bioresource Technology,1995,51(2-3):187-192
    [29] Wang J F,Yao K J,Korich A,et al. Combining renewable gum rosin and lignin towards hydrophobicpolmer composites by controlled polymerization. Journal of Polymer Science Part A:Polymerchemistry,2011,49(17):3728-3738
    [30] Feng Q H,Chen F G,Wu H R. Preparation and characterization of a temperature-sensitive lignin basedhydrogel. Bioresources,2011,6(4):4942-4952
    [31]吴宇雄,周尽花,曾明光,等.聚氨酯/木质素-丙烯酸酯复合乳液研究.中南林业科技大学学报,2009,29(4):102-104
    [32] Borges da Silva E A,Zabkova M,Araujo J D,et al. An integrated process to produce vanillin andlignin-based polyurethanes from Kraft lignin. Chemical Engineering Research and Design,2009,87(9):1276-1292
    [33]张俐娜.天然高分子改性材料及应用.北京:化学工业出版社,2006:184-191
    [34]于菲,刘志明,方桂珍,等.碱木质素基硬质聚氨酯泡沫的合成及其力学性能表征.东北林业大学学报,2008,36(12):64-65
    [35]刘全校,杨淑蕙,李建华,等.麦草氧碱木素合成聚氨酯及其性能研究.塑料科技,2002(5):45-47
    [36] Hatakeyama T,Matsumoto Y,Asano Y,et al. Glass transition of rigid polyurethane foams derived fromsodium lignosulfonate mixed with diethylene,triethylene and polyethylene glycols. ThermochimicaActa,2004,416(1-2):29-33
    [37] Hatakeyama H. Chemical modification, Properties and Usage of Lignin. New York: KluwerAcademic/Plenum Publishers,2002:41-56
    [38] Hatakeyama H,Tanamachi N,Matsumura H,et al. Bio-based polyurethane composite foams withinorganic fillers studied by thermogravimetry. Thermochimica Acta,2005,431(1-2):155-160
    [39]沈萼芮,朱传勇,孟令辉,等.木磺基聚氨酯泡沫塑料的制备和性能表征.化学工程师,2009,162(3):06-08
    [40] Sarkar S,Adhikari B. Synthesis and characterization of lignin-HTPB coplolyurethane. EuropeanPolymer Journal,2001,37(7):1391-1401
    [41] Sarkar S,Adhikari B. Thermal stability of lignin-HTPB copolyurathane. Polymer Degradation andStability,2001,73(1):169-175
    [42] Hirose S,Kobashigawa K,Izuta Y,et al. Thermal degradation of polyurethanes containing ligninstudied by TG-FTIR. Polymer International,1998,47(3):247-256
    [43] Thring R W,Vanderlaan M N,Griffin S L. Polyurethanes from Alcell lignin. Biomass and Bioenergy,1997,13(3):125-132
    [44] Vanderlaan M N,Thring R W. Polyurethanes from Alcell lgnin fractions obtained by sequential solventextraction. Biomass and Bioenerny,1998,14(5-6):525-531
    [45]吴耿云,程贤甦,杨相玺.高沸醇木质素聚氨酯的合成及其性能.精细化工,2006,23(2):165-169
    [46]程贤甦,刘晓玲,靳艳巧.新型聚氨酯助剂-酶解木质素的研制.聚氨酯工业,2007,22(6):18-21
    [47] Cibanu C,Ungureanu M,Ignat L,et al. Properties of lignin-polyurethane films prepared by castingmethod. Industrial Crops and Products,2004,20(2):231-241
    [48]韦丽玲,刘亚康,汤志刚,等.木质素网状聚氨酯泡沫的制备及初步应用.聚氨酯工业,2007,2(2):17-20
    [49] Hatakeyama T,Izuta Y,Hirose S,et al. Phase transitions of lignin-based polycaprolactones and theirpolyurethane derivatives. Polymer,2002,43(4):1177-1182
    [50]Thomas H Q.Chemical modification properties and usage of lignin.New York:KluwerAcademic/PlenumPublishers,2002:57-80
    [51] Stephen S K,Thomas C W,Glasser Wolfgang G. Multiphase materials with lignin Ⅷ. Interpenetratingpolymer networks from polyurethanes and polymethyl methacrylate. Journal of Applied PolymerScience,1990,41(11-12):2813-2828
    [52]刘全校,崔永岩,杨淑慧,等.木素型聚氨酯的合成及性能研究.中国塑料,2001,15(2):30-32
    [53] Liu Z M,Yu F,Fang G Z,et al. Performance characterization of rigid polyurethane foam with refinedalkali lignin and modified alkali lignin. Journal of Forestry Research,2009,20(2):161-164
    [54] Brahimi B,Riedl B. Symposium on polymer surfaces and interfaces character,modification andapplication.The53rd Annual Technical Conference. Boston:Society of Plastics Engineers,1995,2576-2581
    [55] Cateto C A,Barreiro M F,Rodrigues A E. Montoring of lignin-based polyurethane synthesis by FT-IR.Industrial Crops and Products,2008,27(2):168-174
    [56] Cateto C A,Barreiro M F,Rodrigues A E,et al. Optimization study of lignin oxypropylation in the viewof the preparation of polyurethane rigid foam. Industrial and Engineering Chemistry Research,2009,48(5):2583-2589
    [57] Cateto C A,Barreiro M F,Rodrigues A E,et al. Lignins as macromonomers for polyurethane synthesis:a comparative study on hydroxyl group determination. Journal of Applied Polymer Science,2008,109(5):3008-3017
    [58] Zhang L,Huang J. Effects of nitrolignin on mechanical properties of polyurethane-nitrolignin films.Journal of Applied Polymer Science,2001,80(8):1213-1219
    [59] Huang J, Zhang L. Effects of [NCO]/[OH] molar ratio on structure and properties ofgraft-interpenetrating polymer networks from polyurethane and nitrolignin. Polymer,2002,43(8):2287-2294
    [60] Zhang L,Huang J. Effects of hard-segment compositions on properties of polyurethane-nitrolignin films.Journal of Applied Polymer Science,2001,81(13):3251-3259
    [61] Cui G J,Fan H L,Xia W B,et al. Stimultaneous enhancement in strength and elongation of waterbornepolyurethane and role of star-like network with lignin core. Journal of Applied Polymer Science,2008,109(1):56-63
    [62] Ciobanu C,Ungureanu M,Ignat L,et al. Properties of lignin-polyurethnane films prepared by castingmethod. Industrial Crops and Products,2004,20(2):231-241
    [63] Huang J, Zhang L N. Structure and properties of regenerated cellulose films coated withpolyurethane-nitrolignin graft-IPNs coating. Journal of Applied Polymer Science,2002,86(7):1799-1806
    [64]黄进,周紫燕.木质素改性高分子材料研究进展.高分子通报,2007,1:50-57
    [65]郑大峰,邱学青,楼宏铭.木质素的结构及其化学改性进展.精细化工,2005,22(4):249-252
    [66]周建,罗学刚,林晓艳.淀粉和木质素可降解发泡材料研究进展及展望.化工进展,2006,25(8):923-927
    [67]杨晓慧,周永红,郭晓昕.木质素在合成聚氨酯中的应用.林产化学与工业,2010,30(3):115-120
    [68]周建.木质素基发泡材料基础.西南科技大学硕士论文.2004:75
    [69]汪多仁.聚氯乙烯木塑材料的开发与应用进展.江苏氯碱,2008,3:16-23
    [70]任学勇,常建民,苟进胜,等.木质生物质直接液化研究现状及趋势.世界林业研究,2009,22(5):62-65
    [71] Pu S,Shiraishi N. Liquefaction of wood without a catalystⅠ.Time-course of wood liquefaction withphenols and effects of wood/phenol ratios. Mokukzai Gakkashi,1993,39(4):446-452
    [72]徐凤英,梁英,方桂珍.秸秆直接液化技术研究进展.安徽农业科学,2008,36(18):7836-7838
    [73] Lin L Z,Yao Y G,Yoshioka M,et al. Liquefaction of wood in the presence of phenol using phosphoricacid as a catalyst and the flow properties of the liquefied wood. Journal of Applied Polymer Science,1994,52(11):1629-1636
    [74]张求慧,赵广杰.木材的苯酚及多羟基醇液化.北京林业大学学报,2003,25(6):71-76
    [75]赵广杰.功能性木质生物质环境材料的研究现状与展望.木材工业,2006,20(2):16-18
    [76]张求慧,赵广杰.木材液化技术研究的现状及其产业化发展趋势.木材工业,2005,19(3):5-7
    [77]郭建新,王高升,陈夫山.植物纤维原料的液化及其应用.世界林业研究,2007,20(1):55-60
    [78]马天旗,郑志锋,张宏健,等.木材酸性液化条件下苯酚的作用机理.西南林学院学报,2006,26(02):93-96
    [79] Pu S,Shiraishi N. Liquefaction of wood without a catalystⅡ.Weight loss by gasification during woodliquefaction and effects of temperature and water. Mokuai Gakkaishi,1993,39(4):453-458
    [80] Pu S,Shiraishi N. Liquefaction of wood without a catalyst Ⅳ Effect of additives, such as acid, salt,and netural organic solvent. Mokuai Gakkaishi,1994,40(8):824-829
    [81]张求慧,赵广杰,陈金鹏.酸性催化剂对木材苯酚液化能力的影响.北京林业大学学报,2004,26(5):66-70
    [82]李改云,江泽慧,任海青.木质生物材料苯酚液化及其在树脂中的应用.粘结,2006,27(4):28-31
    [83] Alma M H,Basturk M Altay,Digrak M. New polyurethane-type rigid foams from liquefied woodpowders. Journal of Materials Science Letters,2003,22(17):1225-1228
    [84] Alma M H,Yoshioka M,Yao Y,et al. Preparation and characterization of the phenolated wood usinghydrochloric acid(HCL)as a catalyst. Wood Science and Technology,1995,30(1):39-47
    [85] Alma M H,Yoshioka M,Yao Y,et al. Preparation of sulfuric acid-catalyed phenolated woodresin.Wood Science and Technology,1998,32(4):297-308
    [86] Alma M H,Maldas D,Shiraishi N. Resinnification of NaOH-catalyzed phenolated wood-phenolmixture with formalin for making molding materials.Journal of Adhesion Science and Technoology,2002,16(8):1141-1151
    [87]罗蓓,秦特夫,李改云.人工林木材的苯酚液化及树脂化研究Ⅰ.液比和催化对液化反应的影响.木材工业,19(6):15-18
    [88]秦特夫,罗蓓,李改云.人工林木材的苯酚液化及树脂化研究Ⅱ.液化木基酚醛树脂的制备和性能表征.木材工业,2006,20(5):8-10
    [89]马晓军,赵广杰.木材苯酚碳素纤维材料.林产工业,2006,33(3):13-14
    [90]马晓军,赵广杰.木材苯酚液化产物制备碳纤维的初步探讨.林产化学与工业,2007,27(2):29-32
    [91] Kurimoto Y,Shirakawa K,Yoshioka M,et al. Liquefaction of untreated wood with polyhydric alcoholsand its application to polyurethane foams. Chemical Modifaction of lignocellulosics.New Zeland,1992,163-172
    [92] Kurimoto Y,Koizumi A,Doi S,et al. Wood species effects on the characteristics of liquefied wood andthe properties of polyurethane films prepared from the liquefied wood. Biomass&Bioenergy,2001,21(5):381-390
    [93] Yao Y,Yoshioka M,Shiraishi N.Soluble properties of liquefied biomass prepared in organic solventsI. The soluble behavior of liquefied biomass in various diluents.Mokua Gakkaishi,1994,40(2):176-184
    [94] Yao Y G,Yoshioka M,Shiraishi N. Combined liquefaction of wood and starch in a polyethyleneglycol/glycerin blended solvent. Mokuzai. Gakkaishi.1993,39(8):930-938
    [95] Chen F G,Lu Z M. Liquefaction of wheat straw and preparation of rigid polyurethane foam from theliquefaction products. Journal of Applied Polymer Science,2009,111(1):508-516
    [96] Hakim A,Nassar M,Emam,et al. Preparation and characterization of rigid polyurethane foam preparedfrom sugar-cane bagasse polyol. Materials Chemistry and Physics,2011,129(1-2):301-307
    [97] Yamada T,Aratani M,Kubo S,et al. Chemical analysis of the production in acid-catalyed solvolysis ofcellulose using polyethylene glycol and ethylene carbonate.Journal of Wood Science,2007,53(6):487-493
    [98] Yamada T,Hu Y,Ono H. Condensation reaction of degraded lignocelluloses during wood liquefactionin the presence of polyhydric alcohols. Journal of Adhesion Society of Japan,2001a,37(12):471-478
    [99] Yamada T,Ono H. Characterization of products resulting fron ethylene glycol liquefaction of cellulose.Journal of Wood Science,2001b,47(6):458-464
    [100] Yamata T,Ono H,Ohara S,et al. Characterization of the products resulting from direct liqueficationof celluloseⅠIdentification of intermediates and the relevant mechanism in direct phenol liqueficationof cellulose in the presence of water. Mokuai Gakkaishi,1996,42(11):1098-1104
    [101] Zhang Y C,Ikeda A,Hori N,et al. Characterization of liquefied product from cellulose with phenol inthe presence of sulfuric acid. Bioresource Technology,1998,97(2):313-321
    [102] Haw J F,Schultz T P. Carbon-13CP/MAS NMR and FT-IR study low temperature lignin pyrolysis.Holzforchung,1985,39(5):289-296
    [103] Lin L Z,Yoshioka M,Yao Y G,et al. Liquefaction mechanism of lignin in the presence of phenol atelevated temperature without catalysts. Studies on β-O-4lignin model compound Ⅲ.Muti-condensation,Holzforschung,1997,51(4):333-337
    [104] Lin L Z,Yoshioka M,Yao Y G,et al. Liquefaction mechanism of lignin in the presence of phenol atelevated temperature without catalysts ⅡReaction pathway. Holzforschung,1997,51(4):325-332
    [105] Lin L Z,Yao Y G,Yoshioka M,et al. Liquefaction mechanism of lignin in the presence of phenol atelevated temperature without catalystsⅠStructural Characterization of the Reaction Products,Holzforschung,1997,51(4):316-324
    [106] Edita J,Matjaz K,Claudia C. Lignin behavior during wood liquefaction–Characterization byquantitative31P,13C-NMR and size-exclusion chromatography. Catalysis Today,2010,156(1-2):23-30
    [107] Hassan M E.,Shukry N. Polyhydric alcohol liquefaction of some lignocellulosic agricultural residues.Industrial Crops and Products,2008,27(1):33-38
    [108] Yan Y B,Pang H,Yang X X,et al. Preparation and characterization of water-blown polyurethanefoams fron liquefied cornstalk polyol. Journal of Applied Polymer Science,2008,110(2):1099-1111
    [109] Kobayashi M,Asano T,Kajiyama M,et al. Analysis on residue formation during wood liquefactionwith polyhydric alcohol. Journal of Wood Science,2004,50(5):407-414
    [110]戈进杰,张志楠,徐江涛.基于玉米棒的环境友好材料研究(Ⅰ)玉米棒的液化反应及植物多元醇的制备.高分子材料科学与工程,2003,19(3):194-197
    [111] Tohmura S,Li GY,Qin T F. Preparation and characterization of wood polyalcohol-based isocyanateadhesive. Journal of Applied Polymer Science,2005,98(2):791-795
    [112]朱本城,赵广杰.酸性催化剂对刨花板苯酚液化残渣率的影响.中国人造板,2008,15(5):19-23
    [113] Liu J J,Chen F G,Qiu M H. Liquefaction of baggasse and preparation of rigid polyurethane foamfrom liquefaction products. Journal of Bioabased Materials and Bioenergy,2009,3(4):401-407
    [114] Yao Y G,Yoshioka M,Shiraishi N. Rigid polyurethane foams from combined liquefaction mixtures ofwood and starch. Mokuai Gakkaishi,1995,41(7):659-668
    [115] Jin Y,Ruan X,Cheng X,et al. Liquefaction of lignin by polyethyleneglycol and glycerol. BioresouceTechnology,2011,102(3),3581-3583
    [116] Fadi S C,Arthur J R. Review of current and future softwood kraft lignin process chemistry. IndustrialCrops and Products,2004,20(2):131-141
    [117] Sarkanen K V,Ludwig C H. Lignin,Occurrence,Formation,Structure and Reactions. Eds.,JohnWiley-Interscience,New York,1971,95-240
    [118] Sjostrom E. Wood Chemistry:Fundamentals and Applications.Academic Press,Orlando,1981,68-82
    [119] Karhumen P,Rummakko P,Brunow G. The formation of dibenzodioxocin structure by oxidativecoupling.A model reaction for lignin biosynthesis. Tetrahedron Letters1995a,36(25):4501-4504
    [120] Karhumen P,Rummakko P,Sipila J,Brunow G. Dibenzodixocin;a novel type of linkage in softwoodlignins.Tetrahedron Letters,1995b,36(1),169-170
    [121] Lundquist K. Isolation and Purification of Lignin. In:Lin S Y,Dence C W.(Eds.) Methods in LigninChemistry.Springer-Verlag,Berlin.1992,66
    [122] Wang T P,Li D,Zhang L H,et al. Effects of CS/EC ratio on structure and properties of polyurethanefoams prepared from untreated liquefied corn stover with PAPI. Chemical Engineering Research andDesign,2008,86(4):416-421
    [123] Zhang T,Zhou Y,Liu D H,et al. Qualitative analysis of products formed during the acid catalyzedliquefaction of bagasse in ethylene glycol. Bioresource Technology,2007,98(7):1454-1459
    [124] Xu F,Sun J X,Sun R C,et al. Comparative study of organosolv lignins from wheat straw. Industrialand Products,2006,23(2):180-193
    [125] Yasuda S,Terashima N,Ito T. Chemical structures of sulfuric acid lignin Ⅰ.Chemical structures ofcondensation products from monolignols(in Japanese).Mokuzai Gakkaishi,1980,26:552-557
    [126]牛敏,赵广杰,Alma M H.木粉多元醇液化残余物的结构表征.北京林业大学学报,2011,33(3):106-110
    [127] Nasar M,Emam A,Sultan M,et al.Optimization and characterization of sugar-cane bagasseliquefaction process. Indian Journal of Science and Technology,2010,3(2):207-212
    [128]樊永明,徐艾青,沈艳尼,等.毛白杨木材乙二醇醇解过程中木质素结构的FT-IR、1H-NMR分析.林产化学与工业,2008,28(2):105-109
    [129] Yang Q,Wu S B,Lou R,et al. Analysis of wheat straw lignin by thermogravimetry and pyrolysis-gaschromatography/mass spectrometry. Journal of Analytical and Applied Pyrolysis,2010,87(1):65-69
    [130]郑志峰,邹局春,张宏健,等.酸催化苯酚液化过程中木质素结构变化的初步研究.第二届全国生物质材料科学与技术学术研讨会.呼和浩特.2008,427-437
    [131] Camarero S,Bocchini P,Galletti G C,et al. Pyrolysis-gas chromatography/Mass spectrometry analysisof phenolic and etherified phenylpropanoid units in natural and indudtrial lignins. RapidCommunications in Mass Spectrometry,1999,13(7):630-636
    [132] Yuan T Q,He J,Xu F,et al. Fractionation and physico-chemical analysis of degraded lignins from theblack liquor of Eucalyptus pellita KP-AQ pulping. Polymer Degradation and Stability,2009,94(7):1142-1150
    [133]刘晓玲,程贤甦.酶解木质素的分离与结构研究.纤维素科学与技术,2007,15(3):41-45
    [134] Lawther J.Mark,Sun R C,Banks W B.Rapid isolation and structural characterization of alkali-solublelignins during alkaline treatment and atmospheric refining of wheat straw.Industrial Crops andProducts,1996,5(2):97-105
    [135] Xiao B,Sun X E,Sun R C.Chemical structural,and thermal characterization of alkali-soluble ligninsand hemicelluloses,and cellulose from maize stems,rye straw,and rice straw.Polymer Degradationand Stability,2001,74(2):307-319
    [136] Sun R C,Tomkinson J,Sun X E,et al. Fractional isolation and physico-chemical characterization ofalkali-soluble ligins from fast-growing poplar wood.Polymer,2000,41(23):8409·8417
    [137]牛敏.木材多元醇液化物的结构表征及缩聚反应路径.北京:北京林业大学博士论文,2011,89
    [138]陶用珍,管映亭.木质素的化学结构及其应用.纤维素科学与技术,2003,11(1):42-55
    [139] Nada A,Yousef M,Shaffei K A,et al. Lignin from waste black liquor3-treated lignin in phenolformaldehyde resin.Pigment&Resin Technology,2000,29(6):337-343
    [140] Nada A,Yousef M,Shaffei K A,et al.Lignin from waste black liquorsⅡ:different lignins in phenolformaldehyde resin. Pigment&Resin Technology,1999,28(3):143-148
    [141]杨淑蕙.植物纤维化学.北京:中国轻工业出版社,2001,90-92
    [142] Demirbas A. Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy ConversionManagement,2000,41(6):633-646
    [143]张海荣,计红果,石锦志,等.桉树木粉的有机磺酸催化热化学液化研究.林产化学与工业,2010,30(6):35-39
    [144] Ishikawa H. Synthesis method for N-benzyloxycarbonyl hydroxyl amino-acid tert-butyl esters. Ligninno Kagaku,ed. J. Nakano,Uni Kono Press,Japan,1979:228
    [145] Vuori A,Niemela M. Liquefaction of Kraft ligninⅡ Reactions with a homogeneous Lewis acid catalystunder mild reaction conditions. Holzforschung,1988,42(5):327-334
    [146] Zou X F,Qin T F,Huang L H,et al. Mechanisms and main regularities of biomass liquefaction withalcoholic solvents. Energy Fuels,2009,23(10):5213-5218
    [147]刘晓玲,程贤甦.酶解木质素的分离与结构研究.纤维素科学与技术,2007,15(3):41-46,51
    [148] Wang M C,Xu C B,Leitch M. Liquefaction of cornstalk in hot-compressed phenol-water medium tophenolic feedstock for the synthesis of phenol-formaldehyde resin. Bioresource Technology,2009,100(7):2305-2307
    [149] Jin Y Q,Cheng X S,Zheng Z B. Preparation and characterization of phenol-formaldehyde adhesivesmodified with enzymatic hydrolysis lignin. Bioresource Technology,2010,101(6):2046-2048
    [150]程贤甦,刘树生.酶解木质素研究的进展及其在橡胶工业中的应用.橡胶科技市场,2009,19:23-26
    [151]刘晓婧,程贤甦.新型酶解木质素阻燃剂的合成及其阻燃性能的研究.橡胶工业,2011,58(10):610-615
    [152] Lu Q F,Huang Z K,Liu B,et al. Preparation and heavy metal ions biosrption of graft copolymersfrom enzymatic hydrolysis lignin and amino acids. Bioresource Technology,2012,104:111-118
    [153]朱吕民,刘益军.聚氨酯泡沫塑料.第三版.北京:化学工业出版社,2005:1-10
    [154]王作龄(编译).聚氨酯弹性体的最新动向.橡胶参考资料,2006,36(10):28-30
    [155]国家环保总局对外经济合作领导小组办公室.聚氨酯硬泡CFC-11替代技术手册.2002,8
    [156]吴玉章,原田寿郎.人工林木材燃烧性能的研究.林业科学,2004,40(2):131-136
    [157] Gustafsson S E,Karawacki E,Chohan M A. Thermal transport studies of electrically conductingmaterials using the transient hot-strip technique. Journal of Physics D:Applied Physics,1986,19:727-735
    [158] Karawacki E,Gustafsson S E,Khan M N. Transient hot-strip method for simultaneously measuringthermal conductivity and thermal diffusivity of solids and fluids. Journal of Physics D:AppliedPhysics,1979,12:1411-1421
    [159] Gao L L,Liu Y H,Lei H W,et al. Preparation of semirigid polyurethane foam with liquefied bambooresidues. Journal of Applied of Polymer Science,2010,116(3):1694-1699
    [160] Zheng Z F,Pan H,Huang Y B,et al. Bio-based rigid polyurethane foam from liquefied products ofwood in the presence of polyhydric alcohols. Advaced Materials Research,2011,168-170:1281-1284
    [161]杨渝成,刘栋,张淑贤.水发泡硬质聚氨酯泡沫塑料性能的影响因素.煤气与热力,28(8):34-36
    [162]赵瑾.环境友好聚氨酯泡沫研究.陕西:西北工业大学硕士论文,2005,51
    [163]刘娟娟.蔗渣的液化反应及基于液化产物的聚氨酯的制备和表征.华南理工大学硕士论文,2009:52
    [164]孔新平.高密度阻燃硬质聚氨酯泡沫塑料的研制.聚氨酯工业,2001,16(3):27-30
    [165] Lee S H,Teramoto Y,Shiraishi N. Biodegradable polyurethane foam from liquefied waster paper andits thermal stability,biodegradabilti and genotoxicity. Journal of Applied Polymer Science,2002,83(7):1482-1489
    [166] Lee S H,Yoshioka M,Shiraishi N. Liquefaction of corn bran (CB) in the presence of alcohols andpreparation of polyurethane foam from its liquefied polyol. Journal of Applied Polymer Science,2000,78(2):319-325
    [167]宜理静,罗宏.聚氨酯硬泡材料导热系数的研究.高桥石化,2008,23(6):5-8
    [168]杨春柏.近期国内外聚氨酯工业发展概述.中国塑料,1994,8(4):18-20
    [169] Branca C,Di Blasi C,Casu A,et al. Reaction kinetics and morphological changes of a rigidpolyurethane foam during combustion. Thermochimica Acta,2003,399(1-2):127-137
    [170]吴玉章,杨忠.锥形量热仪研究超细Al(OH)_3处理中密度纤维板得燃烧性能.东北林业大学学报,2010,38(2):47-49
    [171] Galina F L,Kun S,Sergei V L,et al. The correlation between cross-linking and thermal stability:Cross-linked polystyrenes and polymethacrylates. Polymer Degradation and Stability,1999,65(3):395-403
    [172]薛海蛟,丁雪佳,李洪波,等.三乙醇胺对硬质聚氨酯泡沫塑料性能的影响研究.中国塑料,2008,22(10):51-55
    [173]刘新民,柴正鹏.多功能复合板用聚氨酯硬质泡沫塑料的性能研究.新型建筑材料,2006,(2):26-29
    [174] Lim H,Kim S H,Kim B K. Effects of silicon surfactant in rigid polyurethane foams. Express PolymerLetters,2008,2(3):194-200
    [175]魏浩,姜志国,吴嘉民.交联/多相聚氨酯体系化学流变性的研究.北京化工大学学报,2002,29(3):36-39
    [176] Heintz A M,Duffy D J,Nelson C M,et al. A spectroscopic analysis of the phase evolution in thepolyurethane foams. Macromolecules,2005,38(22):9192-9199
    [177] Elwell M J,Ryan A J. In-Stiu studies of structure development during the reactive processing of modelflexible polyurethane foam system using FT-IR spectroscopy,synchrotron SAXS,and Rheology.Macromolecules,1996,29(8):2960-2969
    [178] Zhao Y,Yan N,Feng M. Polyurethane foams devied from liquefied mountain pine beetle-infestedbarks. Journal of Applied Polymer Science,2012,123(5):2849-2858
    [179]赵婷婷,王建华,梁书恩,等.淀粉/微晶纤维素填充聚氨酯泡沫塑料的制备与力学性能.化工新型材料,2009,7(6):34-36
    [180]田春蓉,梁书恩,王建华.以聚酯多元醇为基的聚氨酯弹性体的动态力学性能研究.化学推进剂与高分子材料,2008,6(6):39-46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700