批式流加与连续发酵的非光滑动力系统辨识与优化控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以甘油微生物歧化生产1,3—丙二醇的批式流加与连续发酵为背景,研究了一类非线性脉冲系统与非光滑非线性动力系统的辨识与最优控制问题.根据实际批式流加发酵过程的特点,建立了非线性状态依赖脉冲微分系统.考虑连续发酵过程中底物与目标产物的跨膜运输方式及中间代谢物对发酵过程的影响,建立了八维非光滑非线性动力系统.本文的主要工作概括如下:
     1.将甘油批式流加发酵过程中碱和甘油的流加过程看作为一个状态依赖脉冲过程,建立了描述批式流加发酵过程的非线性状态依赖脉冲动力系统.证明了该系统的非齐诺(Non-Zeno)性及其解的存在性与唯一性,以及系统解关于初值与参数的连续依赖性.以实验测试数据和计算值之间的绝对误差作为性能指标建立了系统的参数辨识模型,证明了此参数辨识模型的可辨识性,并构造了改进的微粒群算法对参数辨识模型进行求解.数值结果表明所建立的非线性状态依赖脉冲系统能更好地描述该批式流加过程.
     2.在批式流加发酵过程中,每次向发酵罐中流加多少碱和甘油是很关键的.本文以甘油的流加量作为控制变量,建立了描述批式流加发酵过程的非线性状态依赖脉冲控制系统,其脉冲时刻及脉冲时刻的状态跳跃幅度都是状态依赖的.以系统终端时刻目标产物浓度的最大化为性能指标,建立了带有连续状态不等式约束和控制约束的最优状态依赖脉冲控制模型,通过约束处理技术将最优状态依赖脉冲控制问题转化为一个等价的控制问题,并利用变分法推导出最优控制的最优性必要条件.
     3.考虑胞内胞外两个代谢环境及甘油与1,3—丙二醇的物质被动扩散和细胞主动转运相结合的跨膜运输方式,同时考虑有毒的中间代谢物3-羟基丙醛对甘油脱水酶(GDHt)(?)口1,3—丙二醇氧化还原酶(PDOR)的活性的临界抑制作用及其对细胞生长的临界抑制作用,建立了描述甘油微生物歧化生产1,3—丙二醇的连续发酵过程的八维非光滑非线性动力系统,证明了该动力系统解的存在唯一性、解关于参数的连续性以及解集的紧性.以计算稳态值与实验获得的稳态数据的平均相对误差为性能指标,以多个非光滑非线性动力系统为约束,建立了参数辨识模型,证明了其可辨识性.构造了改进并行微粒群优化算法分别在底物限制和底物过量的条件下对该参数辨识模型进行求解.数值计算结果表明所建立的数学模型能很好的描述连续发酵过程,也表明了用并行微粒群优化算法求解该辨识模型是有效的.
This dissertation investigates the identification and optimal control of a class of nonlinear impulsive system and non-smooth nonlinear dynamical system in the process of bioconversion glycerol to1,3-propanediol. According to the characteristic of fed-batch culture, a nonlinear state-dependent impulsive system is established to formulate the process of the culture. In terms of the transports of substrate and product across cell membrane, and the effects of the interme-diate in the continuous culture process, we develop a non-smooth nonlinear eight-dimensional dynamical system to simulate and optimize the process. The main contributions of the disserta-tion are summarized as follows:
     1. Taking the feeding process as a state-dependent impulses process, a nonlinear state-dependent impulsive system is proposed to formulate the process of fed-batch culture. The existence, uniqueness and regularity of solution to the system and continuous depen-dence of the solution on initial value and parameters are proved. Regarding the absolute error between the experimental results and calculated values as the performance index, a parameter identification model is presented. The identifiability of the parameter identifi-cation model is also proved. Finally, an improved particle swarm optimization algorithm is constructed to find the optimal parameters for the model. Numerical results show that the nonlinear state-dependent impulsive system can be used to describe the fed-batch culture better.
     2. During the process of fed-batch culture, how much substrate to feed is important. In this dissertation, a nonlinear impulsive controlled system, in which the volume of feeding is the control variable and both jumps size of state and impulsive moments are state-dependent, is proposed to formulate the fed-batch fermentation process. To maximize the concentration of target product at the terminal time, an optimal control model involving the nonlinear state-dependent impulsive controlled system and subject to the continuous state inequality constraint and the control constraint is presented. In order to deduce the optimality conditions, the optimal control model is transcribed into an equivalent one by treating the constraints. Finally, the optimality conditions of the optimal control model are investigated by calculus of variations.
     3. In this dissertation, an eight-dimensional non-smooth nonlinear dynamic system is devel-oped to formulate the continuous culture of bioconversion glycerol to1,3-PD, in which the passive diffusion and active transport of glycerol and1,3-PD across cell membrane, and3-hydroxypropionaldehyde inhibition to cells growth for its toxicity and to the ac-tivity of GDHt and PDOR when its concentration is higher than a certain value are all taken into consideration. Then, the existence, uniqueness, continuous dependence of the solution on the parameter vector and the compactness of solution set are all proved. Tak-ing the mean relative error between the experimental data and calculated values as the cost functional, a parameter identification model involving multiple eight-dimensional non-smooth nonlinear dynamic systems is presented. The identifiability of the parameter identification model is also proved. An improved parallel particle swarm optimization algorithm is constructed to find the optimal parameters for the systems under substrate limitation and excess conditions, respectively. Numerical results show that the nonlinear dynamic model can describe the fermentation process better and the algorithm is effective to solve the parameter identification model.
引文
[1]Hartwell L H, Hopfield J T, Leibler S, Murray A W. From molecular to modular cell biology. Nature, 1999,402:47-52.
    [2]Nurse P. A long twentieth century of the cell cycle and beyond, cell,2000,100:71-78.
    [3]KitanoH. Computational systems biology. Nature,2002,420:206-210.
    [4]Hermann B G, Patel M. Today's and tomorrow's bio-based bulk chemicals from while biotechnology: A techno-economic analysis. Appl. Biochem. Biotechnol.,2007,136:361-388.
    [5]Zeng A P, Biebl H. Bulk chemicals from biotechnology:The case of 1,3-propanediol production and the new trends. Adv. Biochem. Eng. Biotechnol.,2002,74:239-259.
    [6]Charles E N, Gegory M W. Metabolic engineering for the microbial production of 1,3-propanediol. Curr. Opin. Biotechnol.,2003,14:454-459.
    [7]Witt U, Miller R J, Augusta J, et al. Synthesis, properties and biodegradability of polyesters based on 1,3-propanediol. Chem. Phys.,1994,195:793-802.
    [8]Biebl H, Menzel K, Zeng A P, et al. Microbial production of 1,3-propanediol. Appl. Microbiol. Biotechnol.,1999,52(3):289-297.
    [9]修志龙.微生物发酵法生产1,3-丙二醇的研究进展.微生物学通报,2000,27(4):300-302.
    [10]DeckwerW. Microbial conversion of glycerol into 1,3-propanediol. FEMS Microbiol. Reviews,1995, 16:143-149.
    [11]Cameron D C, Altaras N E, Hoffman M L, et al. Metabolic engineering of propanediol pathways. Biotechnol. Prog.,1998,14(1):116-125.
    [12]刘海军,王剑锋,张代佳,修志龙.用克雷伯氏菌批式流加发酵法生产1,3-丙二醇.食品与发酵工业,2000,27(7):4-7.
    [13]Reimann A, Biebl H. Production of 1,3-propanediol by ClostrldzUm butyrzcum DSM5431 and product tolerant mutants in fedbatch culture. Biotechnol. Lett.,1996,18:823-832.
    [14]Chen X, Zhang D J, Qi W T, Gao S J, Xiu Z L, Xu P. Microbial fed-batch production of 1,3-propanediol by Klebsiella pneumoniae under micro-aerobic conditions. Appl. Microbiol. Biotechnol.,2003,63: 143-146.
    [15]Zeng A P, Ross A, Biebl H, Tag C, Giinzel B, Deckwer W D. Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiella pneumoniae in glycerol fermentation. Biotechnol. Bioeng.,1994,44:902-911.
    [16]Daniel R, Boenigk R, Gottschalk G. Purification of 1,3-propanediol dehydrogenase from ctrobacter freundii and cloning, sequencing, and overexpression of the corresponding gene in Escherichia coli. J. Bacteriol.,1995,177:2151-2156.
    [17]Hao J, Lin R H, Zheng Z M, Sun Y, Liu D H.3-Hydroxypropionaldehyde guided glycerol feeding strat-egy in aerobic 1,3-propanediol production by Kiebsiellapneumoniae. J. Indust. Microbiol. Biotechnol., 2008,35:1615-1624.
    [18]Barbirato F, Grivet J P, Soucaille P, Bories A.3-Hydroxypropionaldehyde, an inhibitory metabolite of glycerol fermentation to 1,3-propanediol by enterobacterial species. Appl. Environment Microbiol., 1996,62:1448-1451.
    [19]Sun Y Q, Qi W T, Teng H, Xiu Z L, Zeng A P. Mathematical modeling of glycerol fermentation By Kiebsiella pneumoniae:Concerning enzyme-catalytic reductive pathway and transport of glycerol and 1,3-propanediol across cell membrane. Biochem. Eng. J.,2008,38:22-32.
    [20]Mil'man V D, Myshkis A D. On the stability of motion in Nonlinear Mechanics. Sib. Math. J.,1960, 233-237.
    [21]Bainov D D, Simeonov P S. Systems with Impulse Effect:Stability, Theory and Applications. New York, Halsted Press,1989.
    [22]Samoilenko A M, Perestyuk N A. Diferential Equations with Impulse Effect. Visca Skola,1987.
    [23]Lakshmikantham V, Bainov D D, Simeonov P S. Theory of Impulsive Differential Equations. World Scientific, Singapore,1989.
    [24]Bainov D D, Simeonov P S. Impulsive Differential Equations:Asymptotic Properties of the Solutions. World Scientific,1995.
    [25]Frigon M, O'regan D. Existence results for first order impulsive differential equations. J. math. Anal. Applic,1995,193:96-113.
    [26]Frigon M, O'regan D. Impulsive differential equations with variable times. Nonlin. Anal.,1996,26(2): 1913-1922.
    [27]闫宝强,傅希林.具有无限时滞脉冲泛函微分方程解的存在性.中国学术期刊文摘,1999.
    [28]Fu X L, Yan B Q. The global solutions of impulsive funtional differential equations in Banach Spaces. Nonlinear Studies,2000,1(1):1-17.
    [29]Ballinger G, Liu X Z. Existence, uniqueness results for impulsive delay differential equations. Appli-cable Analysis,2000,74:71-93.
    [30]Xing Y P, Han M A. A new approach to stability of impulsive functional differential equations. Appl. Math. Comput.,2004,151:835-847.
    [31]Zhang Y, Sun J T. Boundedness of the solutions of impulsive differential systems with time-varying delay. Appl. Math. Comput.,2004,154:279-288.
    [32]Liu X Z, Ballinger G. Existence and continuability of solutions for differential equations with delays and state-dependent impulses. Nonlin. Anal.,2002,51:633-647.
    [33]Liu X Z, Ballinger G. Continuous dependence on initial values for impulsive delay differential equa-tions. Appl. Math. Lett.,2004,17:483-490.
    [34]Luo Z G, Shen J H. Global existence results for impulsive functional differential equations. J. Math. Anal. Appl.,2006,323:644-653.
    [35]Xu D Y, Zhu W, Long S J. Global exponential stability of impulsive integro-differential equation. Nonlin. Anal.,2006,64:2805-2816.
    [36]M, Henderson J, Ntouyas S K, Ouahab A. Impulsive functional differential equations with variable times. Computers and Mathematics with Applications,2004,47:1659-1665.
    [37]Stamova I M. Lyapunov method for boundedness of solutions of nonlinear impulsive functional differ-ential equations. Applied Mathematics and Computation,2006,177:714-719.
    [38]Liu J H. Nonlinear impulsive evolution equations. Dynam. Contin. Discrete Impuls. Systems,1999, 6(1):77-85.
    [39]Ahmed N U. Some remarks on the dynamics of impulsive systems in Banach Spaces. Dynam. Contin. Discrete Impuls. Systems,2001,8:261-274.
    [40]Rogovchenko Y V. Impulsive evolution systems:Main results and new trends. Dynamics Contin. Discr. Impulsive Sys.,1997,3:57-88.
    [41]Bainov D D, Simeonov P S. Impulsive Differential Equations:Periodic Solutions and Applications. England:Longman Scientific & Technical,1993.
    [42]Lakshmikantham V, Leela S, Kaul S. Comparison principle for impulsive differential equation with variable times and stability theory. Nonlin. Anal.,1994,22:499-503.
    [43]Liu X Z. Nonlinear boundary value problems for first order impulsive differential equations. Appl. Anal.,1990,36:119-130.
    [44]Liu X Z. Impulsive stabilizability of autonomous systems. J. Math. Anal. Appl.,1997,187:17-39.
    [45]Dong Y J, Zhou E X. An application of coincidence degree continuation theorem in existence of solutions of impulsive differential equations. J. Math. Anal. Appl.,1996,197(3):875-889.
    [46]Kaul S K, Liu X Z. Generalized variation of parameters and stability of impulsive systems. Nonlin. Anal.,2000,40:295-307.
    [47]Ahmed N U, Teo K L, Hou S H. Nonlinear impulsive systems on infinite dimensional spaces. Nonlin. Anal.,2003,54:907-925.
    [48]Guo D, Liu X. Multiple positive solutions of boundary-value problems for impulsive differential equa-tions. Nonlin. Anal.,199525(4):327-337.
    [49]Sun J, Ma Y. Initial value problems for the second order mixed monotone type of impulsive differential Equations in Banach Spaces. J. Math. Anal. Appl.,2000,247:506-516.
    [50]Luo Z, Shen J. Stability and boundness for impulsive functional differential equations with infinite delays. Nonlin. Anal.,2001,46(4):475-493.
    [51]Shen J. New Maximum priciples for first-order impulsive boundary value problems. Appl. Math. Lett., 2003,16(1):105-112.
    [52]Qi J, Fu X. Existence of limit cycles of impulsive differential equations with impulsives at variable times. Nonlin. Anal.,2001,44(3):345-353.
    [53]Benchohra M, Henderson J, Ntouyas S K. Impulsive Differential Equations and Inclusions. Hindawi Publishing Corporation, Vol.2, New York,2006.
    [54]Zavalishchin A. Impulse dynamic systems and applications to mathematical economics. Dynam. Sys-tems Appl.,1994,3:443-449.
    [55]Luo J C, Lee E B. Time-optimal control of the swing using impulsive control actions. Proceedings of American Control Conference,1998,200-204.
    [56]Hou S H, Wong KH. Optimal impulsive control problem with application to Human Immunodeficiency Virus Treatment. J. Optim. Theory Appl.,2011,151:385-401.
    [57]Culsaw R V, Ruan S, Spiteri R J. Optimal HIV treatment by maximizing immune response. J. Math. Biol.,2004,545-562.
    [58]Angelova J, Dishliev A. Optimization problems for one-impulsive models from population dynamics. Nonlin. Anal.2000,39:483-497.
    [59]Qian L N, Lu Q S, Meng Q G, Feng Z S. Dynamical behaviors of a prey-predator system with impulsive control. J. Math. Anal. Appl.,2010,363:345-356.
    [60]Tian Y, Chen L S, Kasperski A. Modelling and simulation of a continuous process with feedback control and pulse feeding. Computers and Chemical Engineering,2010,34:976-984.
    [61]Sun K. B, Tian Y, Chen L S, Kasperski A. Nonlinear modelling of a synchronized chemostat with impulsive state feedback control. Mathematical and Computer Modelling,2010,52:227-240.
    [62]Sun K B, Tian Y, Chen L S, Kasperski A. Universal modelling and qualitative analysis of an impulsive bioprocess. Computers and Chemical Engineering,2011,35:492-501.
    [63]Barles G. Deterministic impulse control problems. SIAM Journal on Control and Optimization,1985, 23:419-432.
    [64]Stojanovic S, Yong J M. Optimal switching for systems governed by nonlinear evolution equations. Numerical Functional Analysis and Optimization,1987,9:995-1030.
    [65]Stojanovic S, Yong J M. Optimal switching for partial differential equations II. J. Mathematical Anal-ysis and Applications,1989,138:439-460.
    [66]Yong J M. Optimal switching and impulse controls for distributed parameter systems. System Science and Mathematical Science,1989,2:137-160.
    [67]Yong J M. Systems governed by ordinary differential equation with continuous, switching and impulse controls. Appl. Math, and Optim.,1989,20:223-235.
    [68]Yong J M. Existence of the value function for a differential game with switching strategies in a Banach space. Syst. Sci. Math. Sci.,1991,4:321-340.
    [69]Yong J M, Zhang P. Necessary conditions of optimal impulse control for distributed parameter systems. Bulletin of the Australian Mathematical Society,1992,45:305-326.
    [70]Yong J M. Zero-sum differential games involving impulse controls. Appl. Math. Optim.,1994,29: 243-261.
    [71]Li X J, Yong J M. Optimal Control Theory for Infinite Dimensional Systems. Birkhauser Boston Massachusetts,1995.
    [72]Ahmed N U. Optimal impulse control for impulsive systems in Banach Spaces. International J. Differ-ential Equations and Applications,2000,1(1):37-52.
    [73]Pereira F, Silva G. Necessary conditions of optimality for vector-valued impulsive control problems. Systems & Control Letters,2000,40:205-215.
    [74]Liu X Z, Liu Y Q, Teo K L. Stability analysis of impulsive control systems. Math. Comput. Model., 2003,37:1357-1370.
    [75]Liu X Z. Stability of impulsive control systems with time delay. Math. Comput. Model.,2004,39: 511-519.
    [76]Belbas S A, Schmidt W H. Optimal control of volterra equations with impulses. Appl. Math. Comput, 2005,166:696-723.
    [77]Belbas S A, Schmidt W H. Optimal control of impulsive Volterra equations with variable impulse times. Applied Mathematics and Computation,2009,214:353-369.
    [78]Ahmed N U. Necessary conditions of optimality for impulsive systems on Banach spaces. Nonlinear Analysis,2002,51:409-424.
    [79]Silva G N, Vinter R B. Necessary conditions for optimal impulsive control problems. SIAM J. Control Optim.,1997,35(6):1829-1846.
    [80]Azhmyakov V, Attia S A, Raisch J. On the maximum principle for impulsive hybrid systems. Lecture Notes in Computer Science,2008,4981:30-42.
    [81]Azhmyakov V. A gradient-type algorithm for a class of optimal control processes governed by hybrid dynamical systems. IMA Journal of Mathematical Control and Information,2011,28:291-307.
    [82]Liu Y, Teo K L, Jennings L S, WANG S. On a class of optimal control problems with state jumps. J. Optimization Theory and Applications,1998,98(1):65-82.
    [83]Wu C Z, Teo K L, Zhao Y, Yan W Y. Solving an identification problem as an impulsive optimal parameter selection problem. Computers and Mathematics with Applications,2005,50:217-229.
    [84]Li R, Feng Z G, Teo K L, Duan G R. Optimal piecewise state feedback control for impulsive switched systems. Mathematical and Computer Modelling,2008,48:468-479.
    [85]Kennedy J, Eberhart R C. Particle swarm optimization. Proceedings of IEEE International Conference on Neural Networks, Perth, Australia,1995,1942-1948.
    [86]Reynolds C W. Flocks, herds and schools:a distributed behavioral model. Computer Graphics,1987, 21(4):25-34.
    [87]Heppner F, Grenander U. A Stochastic Nonlinear Model for Coordinated Bird Flocks. S. Krasner, Ed., The Ubiquity of Chaos, AAAS Publications, Washington D. C,1990.
    [88]Msserschmidt L, Engelbrecht A. Learning to play games using a PSO-based competitive learning approach. IEEE Trans, on Evolut. Comput.,2004,8:280-288.
    [89]Engelbrecht A, Ismail A. Training product unit neural networks. Stability and Control:Theory and Applications,1999,2:59-74.
    [90]Zhang X, Yu L, et al. Two-stage adaptive PMD compensation in a 10 Gbit/s optical communication system using partical swarm optimization algorithm. Optics Communications,2004,231:233-242.
    [91]Park J, Choi K, et al. Parasitic-aware RF circuit design and optimization. IEEE Trans, on Circuits and Systems I:Fundamental Theory and Applications,2004,51:1953-1966.
    [92]Nemortaite J, Simutis R. Stocks'trading system based on the partical swarm optimizatioan algorithm. International Conference on Computational Science,2004,843-850.
    [93]Pavlidis N, Parsopoulos K, et al. Computing Nash equilibria through computational intelligence meth-ods. J. Computational and Applied Mathematics,2005,175:113-136.
    [94]Xiao X, Dow E, et al. Hybrid self-organizing maps and partical swarm optimization approach. Con-currency and Computation-Practice k. Experience,2004,16:895-915.
    [95]Rasmussen T, Krink T. Improved Hidden Markov Model training for multiple sequence alignment by a partical swarm optimization-evolutionary algorithm hybrid. Biosystems,2003,72:5-17.
    [96]Shen Q, Jiang J, et al. Modified partical swarm optimization algorithm for variable selection in MLR and Pls modeling:QSAR studies of antagonism of angiotensin II antagonists. Europ. J. of Pharmaceu-tical Science,2004,22:145-152.
    [97]Liu B, Wang L, et al. An effective PSO-based memetic algorithm for flow shop scheduling. IEEE Trans. Syst. Man. Cy. B.-Cybernetics,2007,37(1):18-27.
    [98]Tasgetiren M, Sevkli M, et al. Partical swarm optimization algorithm permutation flowshop sequencing problem. Lect. Notes in Comput. Sci.,2004,3172:382-389.
    [99]Parsopoulos K, Vrahatis M. Partical swarm optimization method for constrained optimization prob-lems. Proc. of the Europ-International Symposium on Computational Intelligence,2002.
    [100]Clerc M. Discrete Partical Swarm Optimization, Illustrated by Traveling Salesman Problem. On-wubolu GC, Babu BV, New optimization techniques in engineering, Springer-Verlag, Berlin,2004.
    [101]Eberhart R, Shi Y. Tracking and optimizing dynamic systems with partical swarms. Proc. IEEE CEC, 2001,94-97.
    [102]Pulido G, Coello C. A constraint-handling mechanism for partical swarm optimization. Proc. IEEE CEC,2004,1396-1403.
    [103]He Q, Wang L. A hybrid partical swarm optimization with a feasibility-based rule for constrained optimization. Appl. Math. Comput.,2007,186:1407-1422.
    [104]He Q, Wang L. An effective co-evolutionary partical swarm optimization for constrained engineering design problems. Engineering Applications of Artificial Intelligence,2007,20:89-99.
    [105]Shi Y H, Eberhar R. A modified particle swarm optimizer. IEEE CEC.,1998,69-73.
    [106]崔红梅,朱庆保.微粒群算法的参数选择及收敛性分析.计算机工程与应用,2007,43(23):89-91.
    [107]李会荣,高岳林,李济民.一种非线性递减惯性权重策略的粒子群优化算法.商洛学院学报,2007,21(4):16-20.
    [108]Ratnawecra A, Halgamuge S. Self-organizing hierarchical partical swarm optimizer with time-varying acceleration coefficients. Evolutionary Computation,2004,8(3):240-255.
    [109]冯翔,陈国龙,郭文忠.粒子群优化算法中加速因子的设置与试验分析.集美大学学报,2006,11(2):146-151.
    [110]陈水利,蔡国蓉等.PSO算法加速因子的非线性策略研究.长江大学学报(自然科学版)理工卷,2007,14(4):1-4.
    [111]Shiloach Y, Vishkin U. An O(n2 logn) parallel max-flow algorithm. J. Algorithms,1982,3(2):128-146.
    [112]Reif J H. An optimal parallel algorithm for integer sorting. IEEE Foundations of Computer Science, 1985,496-504.
    [113]Goldberg M, Spencer Tek. A new parallel algorithm for the maximal independent set problem. IEEE Foundations of Computer Science,1987,161-165.
    [114]Anderson R J, Miller G L. A simple randomized parallel algorithm for list-ranking. Information Processing Letters,1990,33(5):269-273.
    [115]Dongarra J J, Sorensen D C. A fully parallel algorithm for the symmetric eigenvalue problem. SIAM J. Sci. Stat. Comput,1987,8:139-154.
    [116]Sorensen D C, Tang P. On the orthogonality of eigenvectors computed by divide-and-conquer tech-niques. SIAM Journal on Numerical Analysis,1991,28(6):1752-1775.
    [117]Pardalos P M. Parallelsearchalgorithms in globaloptimization. Appl. Math. Comput.,1989,29(3): 219-229.
    [118]Ge R. A parallel computing scheme for minimizing a class of large scale functions. Appl. Math. Comput.,1989,30(3):261-288.
    [119]Chen Z, Fei P S. A parallel algorithm for constrained optimization problems. J. Computational and Applied Mathematics 1995,61:225-230.
    [120]Maleknejad K, Safdari H. Parallel algorithm for solving linear systems arising from PDE and integral equations. Appl. Math. Comput.,2004,151:443-453.
    [121]Schutte J F, Reinbolt J A, Fregly B J. Parallel global optimization with the particle swarm algorithm. Int. J. Numer. Meth. Engng.,2004,61:2296-2315.
    [122]Venter G, Sobieszczanski-Sobieski J. A parallel particle swarm optimization algorithm accelerated by asynchronous evaluations.6th World Congresses of Structural and Multidisciplinary Optimization, Brazil,2005.
    [123]McNabb A W, Monson C K, Seppi K D. Parallel PSO using MapReduce. IEEE Congress on Evolu-tionary Computation,2007,7-14.
    [124]王华秋,曹长修.基于模拟退火的并行粒子群优化研究.控制与决策,2005,20(5):500-504.
    [125]Mahdad B, Srairi K, Benbouzid M. Fuzzy controlled parallel PSO to solving large practical economic dispatch. IEEE,2010,2695-2701.
    [126]Zeng A P, Deckwer W D. A kinetic model for substrate and energy consumption of microbial growth under substrate-sufficient conditions. Biotechnol. Prog.,1995,11:71-79.
    [127]修志龙,曾安平,安利佳.甘油生物歧化过程动力学数学模拟和多稳态研究.大连理工大学学报,2000,40(4):428-433.
    [128]王宝光,刘铭等.微生物发生产1,3—丙二醇过程的代谢工程研究进展.过程工程学报,2006,6(1):144-148.
    [129]Zeng A P. A kinetic model for product formation of microbial and mammalian cells. Biotechnol. Bioeng.,1995,46314-324.
    [130]修志龙,曾安平,安利佳,Deckwer W D.甘油连续生物歧化过程的过渡行为及其数学模拟.高校化学工程学报,2000,14(1):5-58.
    [131]高彩霞.非线性脉冲动力系统的最优控制及应用(博士论文).大连:大连理工大学,2005.
    [132]Gao C X, Lang Y H, Feng E M, Xiu Z L. Nonlinear impulsive system of microbial production in fed-batch culture and its optimal control. J. Appl. Math. Comput.,2005,19:203-214.
    [133]Wang G, Feng E M, Xiu Z L. Modelling and parameter identification of microbial biconversion in fed-batch cultures. J. Process Control,2008,18:458-464.
    [134]Wang H Y, Han J H, Shen L J, Xiu Z L. Optimal control of the nonlinear impulsive system and application in fermentation. Second International Conference on Impulsive Dynamical Systems and Applications, Wuxi,2005,114-119.
    [135]Wang G, Feng E M, Xiu Z L. Vector measure as controls for explicit nonlinear impulsive system of fed-batch culture. J. Math. Anal. Appl.,2009,351:120-127.
    [136]Wang H Y, Feng E M, Xiu Z L. Optimality condition of the nonlinear impulsive system in fed-batch fermentation. Nonlinear Anal. TMA,2008,68:12-23.
    [137]Liu C Y, Gong Z H, Feng E M, Yin H C. Optimal switching control for microbial fed-batch culture. Nonlinear Analysis:Hybrid Systems,2008,2:1168-1174.
    [138]Liu C Y. Optimal control for nonlinear dynamical system of microbial fed-batch culture. J. Compu-tational and Applied Mathematics,2009,232:252-261.
    [139]Liu C Y, Gong Z H, Feng E M. Modeling and optimal control of a nonlinear dynamical system in microbial fed-batch fermentation. Math. Comput. Model.,2011,53:168-178.
    [140]Liu C Y, Gong Z H, Feng E M, Yin H C. Optimal switching control of a fed-batch fermentation process. J. Glob. Optim.,2012,52:265-280.
    [141]Ye J X, Feng E M, Lian H S, Xiu Z L. Existence of equilibrium points and stability of the nonlinear dynamical system in microbial continuous cultures. Applied Mathematics and Computation,2009,207: 307-318.
    [142]Lian H S, Feng E M, Li X F, Ye J X, Xiu Z L. Oscillatory behavior in microbial continuous culture with discrete time delay. Nonlinear Analysis:Real World Applications,2009,10:2749-2757.
    [143]Li X H, Feng E M, Xiu Z L. Stability and optimal control of microorganisms in continuous culture. J. Appl. Math.& Computing,2006,22(1-2):425-434.
    [144]Li X H, Guo J J, Feng E M, Xiu Z L. Discrete optimal control model and bound error for microbial continuous fermentation. Nonlinear Analysis:Real World Applications,2010,11:131-138.
    [145]Wang S Y, Feng E M. Stability of nonlinear microbial bioconversion system concerning glycerol's active transport and 1,3-PD's passive transport. Nonlinear Analysis:Real World Applications,2010, 11:3501-3511.
    [146]Wang J, Ye J X, Feng E M, Yin H C, Tan B. Complex metabolic network of glycerol by Kiebsiella pneumoniae and its system identification via biological robustness. Nonlinear Analysis:Hybrid Sys-tems,2011,5(1):102-112.
    [147]Zhai J G, Ye J X, Wang L, Feng E M, Yin H C, Xiu Z L. Pathway identification using parallel optimization for a complex metabolic system in microbial continuous culture. Nonlinear Analysis: Real World Applications,2011,12:2730-2741.
    [148]Zhang Y D, Feng E M, Xiu Z L. Robust analysis of hybrid dynamical systems for 1,3-propanediol transport mechanisms in microbial continuous fermentation. Mathematical and Computer Modelling, 2011,(54):3164-3171.
    [149]张誉铎,田玉娟,冯恩民.微生物连续发酵酶催化动力系统的鲁棒性与并行计算.生物数学学报,2011,26:524-532.
    [150]Kirk D E. Optimal Control Theory:An Introduction. Dover Publictions, Inc., Mineola, New York, 1998.
    [151]Bryson A E, Ho Y C. Applied Optimal Control:Optimization, Estimation, and Control. Hemisphere, Washington, D.C.,1975.
    [152]Teo K L, Goh C J, Wong K H. A Unified Computational Approach to Optimal Control Problem. John Wiley & Sons, Inc., New York,1991.
    [153]Hsieh P F, Sibuya Y. Basic Theory of Ordinary Differential Equations. New York:Springer,1999.
    []54]马知恩,周义仓.常微分方程定性与稳定性方法.北京:科学出版社,2001.
    [155]Samoilenko A M, Perestyuk N A. Impulsive Differential Equations. World Scientific Singapore, 1995.
    [156]傅希林,闫宅强,刘衍胜.脉冲微分系统引论.北京:科学出版社,2005.
    [157]Perestyuk N A, Plotnikov V A, Samoilenko A M, Skripnik N V. Differential Equations with Impulse Effects:Multivalued Right-hand Sides with Discontinuities. Walter de Gruyter GmbH & Co. KG, Berlin/Boston,2011.
    [158]王凌,刘波.微粒群优化与调度算法.北京:清华大学出版社,2008.
    [159]李丽,牛奔.粒子群优化算法.北京:冶金工业出版社,2009.
    [160]陈国良.并行算法的设计与分析(修订版).北京:高等教育出版社,2002.
    [161]王鹏,吕爽等人.并行计算—应用及实践.北京:机械工业出版社,2009.
    [162]Mccoy M. Chemical makers try biotech paths. Chem. Eng. News,1998,76:13-19.
    [163 J Xiu Z L, Zeng A P, Deckwer W D. Multiplicity and stability analysis of microorganisms in continuous culture:effects of metabolic overflow and growth inhibition. Biotechnol. Bioeng.,1998,57:251-261.
    [164]Menzel K, Zeng A P, Deckwer W D. High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae. Enzyme Microb. Technol.,1997,20: 82-86.
    [165]Gao C X, Li K Z, Feng E M, Xiu Z L. Nonlinear impulsive system of fed-batch culture in fermentative production and its properties. Chaos Solutions Fractals,2006,28:271-277.
    [166]Gong Z H. A multistage system of microbial fed-batch fermentation and its parameter identification. Math. Comput. Simulat.,2010,80:1903-1910.
    [167]Gong Z H, Liu C Y, Feng E M, Wang L, Yu Y S. Modelling and optimization for a switched system in microbial fed-batch culture. Appl. Math. Model.,2011,35:3276-3284.
    [168]Karakuzu C. Fuzzy controller training using particle swarm optimization for nonlinear system control. ISA Trans.,2008,47(2):229-239.
    [169]Liu L, Liu W X, Cartes D A. Particle swarm optimization based parameter identification applied to permanent magnet synchronous motors. Eng. Appl. Artificial Intell.,2008,21(7):1092-1100.
    [170]Sha D Y, Hsu C Y. A new particle swarm optimization for the open shop scheduling problem. Comput. Oper. Res.,2008,35(10):3243-3261.
    [171]Azhmyakov V, Boltyanski V G, Poznyak A. Optimal control of impulsive hybrid systems. Nonlinear Anal. Hyb. Syst.,2008,2:1089-1097.
    [172]Liu Y, Teo K L, Jennings L S, Wang S. On a class of optimal control problems with state jumps. J. Optim. Theory Appl.,1998,98(1):65-82.
    [173]Attia S A, Azhmyakov V, Raisch J. On an optimization problem for a class of impulsive hybrid systems. Discrete Event. Dyn. Syst.,2010,20:215-231.
    [174]Wang G, Feng E M, Xiu Z L. Vector measure for explicit nonlinear impulsive system of glycerol bioconversion in fed-batch cultures and its parameter identification. Appl. Math. Comput.,2007,188: 1151-1160.
    [175]Li K Z, Feng E M, Xiu Z L. Optimal control and optimization algorithm of nonlinear impulsive delay system producing 1,3-Propanediol. J. Appl. Math. & Computing,2007,24:387-397.
    [176]Mu Y, Teng H, Zhang D J, Wang W, Xiu Z L. Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparations. Biotechnol. Lett.,2006,28:1755-1759.
    [177]高彩霞,冯恩民,王宗涛,修志龙.微生物间歇发酵生产1,3-丙二醇过程辨识与优化.大连理工大学学报,2006,46(5):771-774.
    [178]Gao C X, Feng E M, Wang Z T, Xiu Z L. Barameters identification problem of the nonlinear dynamical system in microbial continuous cultures. Appl. Math. Comput.,2005,169:476-484.
    [179]Sun J, Heuvel J, Soucaille P, Qu Y, Zeng A P. Comparative genomic analysis of dha regulon and related genes for anaerobic glycerol metabolism in bacteria. Biotechnol. Prog.,2003,19:263-272.
    [180]Richery D P, Lin E C. Importance of facilitated diffusion for effective utilization of glycerol by Escherichia coli. J. Bacteriol.,1972,12:784-790.
    [181]Heller K B, Lin E C, Wilson T H. Substrate specificity and transport properties of the glycerol facili-tator of Escherichia coli. J. Bacteriol.,1980,144:274-278.
    [182]Honda S, Toraya T, Fukui S. In situ reactivation of glycerol inactivated coenzyme-B12-dependent glycerol dehydratase and dioldehydratase. J. Bacteriol.,1980,143:1458-1465.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700