基于半球谐振陀螺仪的姿态测量系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半球谐振陀螺以其精度高,稳定性强,可靠性高,抗冲击性良好,抗辐射能力卓越以及寿命长的特点,非常适合在空间飞行器等长时间工作场合使用。开展基于半球谐振陀螺的长寿命姿态测量系统的研制,将对我国空间技术的发展,特别是长寿命卫星的工程实施,有着极其深远的意义。本文以研制基于半球谐振陀螺的高性能姿态测量系统为目的,针对制约系统性能的关键技术进行了深入研究。其中关键技术包括:半球谐振陀螺漂移机理及补偿技术、惯性姿态测量系统初始对准技术、基于半球谐振陀螺与星敏感器的组合姿态测量系统技术等。具体研究安排如下:
     在惯性器件级层面,由于半球谐振陀螺的漂移是系统的最大误差源,因此开展参数漂移的机理、建模和补偿研究是提高系统性能的最有效手段。针对陀螺漂移,开展了两种误差源的研究:其一,研究了陀螺表头结构误差对陀螺性能的影响。表头结构误差主要通过影响振动检测系统及激励系统而导致陀螺漂移,为此首先对拾振器结构及电容间隙变化等问题深入研究,结合谐振子二阶谐振状态下形变的动力学方程,建立了半球谐振陀螺振动检测系统仿真模型。同时,通过对多电极作用下谐振子的动力学特性研究,以及对振幅控制系统与振型角控制系统的耦合分析,建立了半球谐振陀螺激励系统仿真模型。然后将表头结构误差引入到振动检测系统及激励系统的仿真模型中。通过仿真研究,对表头结构误差中的可标定误差提出了标定补偿方法,对不可标定误差给出了定量评估的模型,为表头加工和装配精度指标的确定提供了理论依据。其二,研究了加速度作用下半球谐振陀螺的漂移机理。首先通过求解谐振子的动力学方程,给出了低频加速度作用下谐振子变形的解析形式。其次完成了谐振子变形对半球谐振陀螺振动检测系统及激励系统的影响分析,最终提出了一种能够极大减小加速度对陀螺影响的振动检测方案与谐振子激励方案。并建立了加速度导致陀螺漂移的静态误差模型,通过半球谐振陀螺在重力场中的翻滚试验给予了验证。通过对试验数据残差的进一步分析,给出了陀螺制造及装配的改进措施。
     在惯性姿态测量系统级层面,为提高系统初始对准精度,缩短对准时间,研究了大方位失准角静基座初始对准问题。提出了基于高斯-厄米特滤波器的初始对准方法。针对高斯-厄米特滤波器中的均值和协方差阵的多元非线性高斯积分求解问题,利用初始对准误差方程的非线性是由大方位失准角导致的特点,将高维积分转化成一元数值积分,在不损失精度前提下,解决了高斯-厄米特滤波器在对准应用的“维数灾难”问题。将此算法用于实际系统,对比于扩展卡尔曼滤波、无迹卡尔曼滤波方法,结果表明在大方位失准角条件下,提高了对准精度,缩短了对准时间。
     在组合系统级层面,研制了基于半球谐振陀螺与星敏感器的组合姿态测量系统。为解决当观测到的导航星数量小于3颗时松组合系统无法进行数据融合的问题,提出了基于惯性姿态测量系统的快速星图识别方法,给出了基于HRG与星敏感器紧组合姿态测量系统的构建形式和滤波方法。最后系统测试表明,紧组合系统使得上述问题得到了较好的解决,增加了组合系统的全天域适应性。
     最终,将上述的一系列技术措施应用于课题所研制的基于半球谐振陀螺的姿态测量系统工程样机中,并通过以三轴转台为核心的半实物仿真平台的测试验证,所研制工程样机在精度、适应性及可靠性等方面都得到了较大提升,特别是精度性能达到了高精度卫星姿态控制系统的使用要求。
Hemispherical resonance gyroscope (HRG) is very suitable to be used in long-term working occasions such as space vehicles due to the high accuracy andreliability, good impact and radiation resistance properties, as well as long life.Hence, the design of long life attitude measurement systems is of great significanceto the development of space technology, especially to the engineer construction ofsatellites in China. In order to develop a high performance attitude measurementsystem, this thesis researches several key technologies of restricting theperformance improvement of attitude measurement systems, including the gyrodrift mechanism and the drift compensation technology of HRG, the initialalignment technology of inertial measurement systems, and the technology ofintegrated attitude measurement systems based on HRG and star sensors. The maincontents of this thesis are as follows:
     The biggest error source of attitude measurement systems is the drift of HRGin the level of inertial instruments, so the most efficient way for improving thesystem performance is to explore the mechanism, modeling and compensation ofparameter drift. Two error sources of gyro drift are studied in the thesis and theresearch are focused on the following two parts: The influence of gyro’s structureerrors to its performance is studied. Since structure errors induce gyro drift byaffecting the vibration detecting system, the structure of pickoff and the capacitorgap is analyzed firstly, and a simulation model of the HRG’s vibration detectingsystem is built by incorporating the deformation dynamic equation of the resonatorin second-order free resonant condition. And a simulation model of the forcingsystem is also obtained by analyzing the dynamic characteristics of the resonator inthe action of multiple electrodes and the coupling between the amplitude controlsystem and the precession angle control system. Then, a compensation method forcalibratable errors and a quantitative evaluation model for uncalibratable errors areproposed, respectively, by simulation research, and this provides theoretical basisfor the determination of machining and assembly accuracy indexes. The driftmechanism of HRG under accumulation is studied. The analytical form of theresonator’s deformation under low frequency accumulation is obtained by solving its dynamic equation firstly. Then, the influence of the deformation to the vibrationdetecting system and the forcing system is analyzed. Finally, a vibration detectingscheme and a resonator exciting scheme are proposed, respectively, which canweaken the influence of accumulation greatly. Additionally, a static error model ofdrift caused by accumulation is founded, which is verified by rolling experiment ofHRG in gravitational field. And some improvement measures for gyro machiningand assembly are provided by analyzing the residual error of test data.
     In order to improve the alignment accuracy of the system and shorten thealigning time, the initial alignment problem of stationary base with large azimuthmisalignment angles is researched and an initial alignment approach based onGauss-Hermite Filter (GHF) is proposed in the level of inertial attitudemeasurement system. Then, the multi-variable nonlinear Gauss integration of themean and the covariance is addressed. Since the nonlinearity of the alignment errorequation is induced by a large azimuth misalignment angle, the so called“dimension problem” in the application of GHF to alignment is solved without lossof accuracy, by converting multi-variable integration to single variable integration.The proposed alignment approach is applied to a practical system lastly, and thealignment accuracy under a large azimuth misalignment angle condition isimproved and the aligning time is decreased, compared with Extended KalmanFilter (EKF) and Unscented Kalman Filter (UKF).
     An integrated attitude measurement system based on HRG and a star sensor isdeveloped in the level of integrated systems. A method of fast star patternrecognition is proposed firstly, and both a construction form and a filteringapproach of tightly-coupled integrated systems are given, in order to solve the datefusion problem in the case where the number of navigation stars is smaller thanthree in loosely-coupled integrated systems. Then, the integrated system is tested,and the result implies that the tightly-coupled integrated systems can solve thisproblem well, and hence enhances the adaptability for celestial sphere field.
     At last, all the above technologies are applied to an engineering prototype ofthe attitude measurement system based on HRG. The prototype is tested by a semi-physical simulation platform whose primary component is a three-axis turntable,and the test result shows that the accuracy, adaptability and reliability of theprototype are improved greatly. Especially, its accuracy attains the usage standard of high precision satellite attitude control systems.
引文
[1]吕志清.半球谐振陀螺在宇宙飞船中的应用[J].压电与声光,1999,21(5):349-353.
    [2] Matthews A. Rybak F J. Comparison of hemispherical resonator gyro andoptical gyros[J]. IEEE Aerospace and Electronic Systems Magazine,1992,7(4):40-46.
    [3] Ciolino R D, Rozelle D M, Schifferns E A, Wright D S. Northrop Grumman'sScalable space inertial reference unit: Innovations reduced to practice[C]//25th Annual AAS Rocky Mountain Guidance and Control Conference,Breckenridge, CO, United states.2002:249-269.
    [4] Loper E J, Lynch D D. Hemispherical Resonator Gyro: Status Report andResults[C]//Proceedings of the National Technical Meeting of the InstituteofNavigation. San Diego, C A.1984:105-107.
    [5] Dickinson J, Strandt C R. HRG strapdown navigator[C]//The1990's-ADecade of Excellence in the Navi-gation Sciences. IEEE PLANS '90.1990:110-117.
    [6] Rozelle D M. The hemispherical resonator gyro: From wineglass to theplanets[C]//19th AAS/AIAA Space Flight Mechanics Meeting. Savannah,Georgia,2009:1157-1178.
    [7] Bae S. Schutz B E. GLAS spacecraft attitude determination using CCD startracker and3-axis gyros[J]Advances in the Astronautical Sciences.1997,102(2):961-980.
    [8] Meyer A D. Rozelle D M. milli-HRG inertial navigation system[C]//2012IEEE/ION Position, Location and Navigation Symposium, PLANS2012,Myrtle Beach, USA,April23-26,2012.
    [9] Emily L B, Allan Y L. In-flight Characterization of Cassini Inertial ReferenceUnits[C]//AIAA Guidance, Navigation, and Control Conference2007, HiltonHead, SC, United states.2007,1:438-448.
    [10] Jerebets S A. Gyro evaluation for the mission to Jupiter[C]//2007IEEEAerospace Conference, Big Sky, MT, United states.2007:1-9.
    [11] Bae Sungkoo, Magruder Lori, Ricklefs Randall, Webb Charles, Yoon Sungpil,Schutz Bob. ICESAT/GLAS precision attitude determination for early laseroperation[C]//AAS/AIAA Space Flight Mechanics Meeting, Maui, HI, Unitedstates.2005,119(1):263-274.
    [12] Konefat E H, Litty E C, Voigt S K, Wright D S. Enabling technology forNASA's Europa Orbiter mission[C]//Guidance and Control2001,Breckenridge, CO, United states.2001,107:3-24.
    [13] Johnson G M, Lefley A S, Toole P A. Development of the HRG based scalablespace inertial reference unit for long-life moderate and precision pointingspacecraft[C]//Guidance and Control2001, Breckenridge, CO, United states.2001,107:405-424.
    [14] Stewart R E. Micro Hemispheric resonator gyro[P]. USA, US8109145B2.2012-2-7.
    [15] Choi Y A,Rozelle D M. Inner-forcer milli-hemispherical resonator gyro[P].USA, US7839059B2.2010-11-22.
    [16] Choi Y A. Circuit board mounting for temperature stress reduction[P]. USA,US7607350B2.2009-10-27.
    [17] Lynch D D, Savaya R R, Campanile J J. Hemispherical resonator gyrocontrol[P]. USA, US7318347B2.2008-1-15.
    [18] Choi Y A. Package for electro-mechanical systems[P]. USA, US7222532B2.2007-5-29.
    [19] Campanile J J. Hemispherical resonator gyro control[P]. USA,US20060248953A1.2006-11-9.
    [20] Baker J C, Zaida D T, Johnson G M. Vibratory sensor with virtualnode/antinode correction of secondary harmonics[P]. USA, US6357296B1.2002-3-19.
    [21] В А Матвеев, В И Липатников, А. В. Алехин. Проектирование. Волновоготвердотелъного гироскопа[M].Издателъство МГТУ имени Н. Э. Баумана,1998:1-43.
    [22] В Ф Журавлев, Д М Климов. Волновой твердотельный гироскоп[М].Наука,1985.
    [23] Н Е Егармип. Опрецессии стоячих волн вращающейся осесимметричнойоболочки[C]\\Известия АН СССР. Механика твердого тела.1986,1:142-148.
    [24] Н Е Егармин. Некоторые проблемы динамики волнового твердотельногогироскопа[М] Препринт ИПМ АН СССР.1989,389.
    [25] С А Сарапулов, С П Киселенко, А О Иосифов. Влияние вращенияна дина-мику неидеального полусферического резонатора[J]. Механика гироско-пических систем.1993,12:59-66.
    [26] Н Е Егармин. Динамика неидеальной оболочки и управление ее колеба-ниями[J]. Известия РАН. Механика твердого тела.1993,4:49-59.
    [27] В Я Липатников, В А Матвеев. Система съема информации твердотель-ного волнового гироскопа[C]\\Вестник МГТУ им. Н.Э. Баумана.1997,1:109-113.
    [28] Chou C S, Chang C O. Modal precession of a hemispherical shell gyroexcited by electrostatic field[J]. Japanese Journal of Applied Physics, Part1:Regular Papers&Short Notes&Review Papers.1997,36(11):7073-7082.
    [29] Zhbanov Y K. Vibration of a hemispherical shell gyro excited by anelectrostatic field[J]. Mechanics of Solids,2008,43(3):328-332.
    [30] Zhbanov Y K. Self-tuning contour of quadrature sup-pression in ahemispherical resonator gyroscope[J]. Giroskop, Navigation,2007(2):37-42.
    [31] Zhbanov Y K, Zhuravlev V P. Effect of movability of the resonator center onthe operation of a hemispheri-cal resonator gyro[J]. Mechanics of Solids,2007,44(3):851-859.
    [32] Zhbanov Y. Eight-point model of the hemispherical resonator gyro[C]//Proceedings of the Annual Meeting-Institute of Navigation, Cambridge, MA,USA.1997:725-728.
    [33] Pi Jaehwan, Myung Hyunsam, Bang Hyochoong. A control strategy forhemispherical resonator gyros using feedback linearization[C]//201111thInternational Conference on Control, Gyeonggi-do, Korea, Republic of.2011:1880-1883.
    [34]雷霆.半球谐振陀螺控制技术研究[D].重庆大学,2006.
    [35]中国电科26所研制的半球谐振陀螺圆满完成卫星闭环控制试验[EB/OL].http://www.cetc.com.cn/NewsInfo.aspx?NId=7322.2012[2012-12-21].
    [36]李广胜,蒋英杰,孙志强,谢红卫.基于多项式模型的半球谐振陀螺温度漂移建模[J].测试技术学报,2009,(06):496-500.
    [37]王旭,吴文启,方针,罗兵,李云.力平衡模式下半球谐振陀螺正交误差控制[J].仪器仪表学报,2012,(04):936-941.
    [38]李云.半球谐振陀螺力再平衡数字控制技术[D].国防科学技术大学,2011.
    [39]栾清磊.组合式石英圆柱壳体振动陀螺的研究[D].国防科学技术大学,2011.
    [40]周小刚,汪立新,方针,雷霆,林珂.半球谐振陀螺平台调平系统设计及仿真[J].宇航学报,2011,(03):549-553.
    [41]杨建业,汪立新,张胜修,李仁兵.半球谐振陀螺旋转惯导系统误差抑制机理研究[J].宇航学报,2010,(10):2321-2327.
    [42]高胜利.半球谐振陀螺的分析与设计.哈尔滨工程大学工学博士学位论文[D].2008.7.
    [43]高胜利,吴简彤.基于多电极的半球谐振陀螺信号检测.哈尔滨工程大学学报.2008,29(5):474-478.
    [44]高胜利,吴简彤,张福勇.力平衡半球谐振陀螺的信号检测.船舶工程,2006,28(2):17-19.
    [45]高胜利,吴简彤.半球谐振陀螺的漂移机理及其控制[J].弹箭与制导学报,2008,28(3):61-64.
    [46]杨倩.基于半球谐振陀螺的惯性导航系统研究[D].哈尔滨工业大学大学,2009:16-22.
    [47]沈博昌.基于半球谐振陀螺仪与星敏感器的卫星姿态确定[D].哈尔滨工业大学,2010.
    [48]任顺清,赵洪波.半球谐振子密度分布不均匀对输出精度的影响[J].中国惯性技术学报,2011,19(3):364-368.
    [49]赵洪波,任顺清,李巍.半球谐振子动力学方程的建立及固有频率的计算[J].哈尔滨工业大学学报,2010,42(11):1702-1706.
    [50]周小刚,汪立新,佘嫱,等.半球谐振陀螺加速度影响分析与实验研究[J].仪器仪表学报,2008,29(4):237-241.
    [51]黄克智,陆明万,薛明德.弹性薄壳理论[M].北京:高等教育出版社,1988:157-176.
    [52]李子昂.半球陀螺谐振子的力学性能及振动特性分析[D].哈尔滨工业大学,2007.
    [53] Fan Shang-chun, Liu Guang-yu, Wang Zhen-jun. On Flexural Vibration ofHemispherical Shell[J]. Applied Mathematics and Mechanics,1991.12(10):1023-1030.
    [54] Shatalov M Y, Joubert S V, Coetzee C E. The influence of mass imperfectionson the evolution of standing waves in slowly rotating spherical bodies[J].Journal of Sound and Vibration,2011,330:127-135.
    [55] Shatalov M Y, Joubert S V, Coetzee Charlotta E, et al. Free vibration ofrotating hollow spheres containing acoustic media[J]. Journal of Sound andVibration,2009,332:1038-1047.
    [56] Samuel F A, Jihyun C. Dynamic stability of ring-based angular rate sensors[J].Journal of Sound and Vibration,2006,295:571–583.
    [57] Eley R, Fox C H J, William S Mc. Coriolis coupling effects on the vibrationof rotating rings[J]. Journal of Sound and Vibration,2000,238(3):459–480.
    [58] Friedland B, Hutton M F. Theory and Error Analysis of Vibrating-MemberGyroscope[J]. IEEE Transactions on Automatic Control,1978, AC-23(4):545-556.
    [59] Lovedy P W, Rogers C A. Free vibration of elastically supported thin cylindersincluding gyroscopic ef-fects[J].Journal of Sound and Vibration,1998,217(3):547-562.
    [60]景荣春.四次方程解法改进[J].镇江船舶学院学报,1990,4(4):79-84.
    [61]王跃华.浅谈三次方程与四次方程的解法[J].沈阳大学学报,2010,22(6):8-9.
    [62]陈友朋,钱明钟,陈滨.两类微分方程组的特解表达式[J].高等数学研究,2011,14(3):3-5.
    [63] Lynch D D. Vibratory Gyro Analysis by the Method of Averaging[C]//Proceedings of the2nd International Conference on Gyroscopic Technologyand Navigation, St Petersburg, Russia,1995.
    [64] Watson W S. Vibratory Gyro Skewed Pick-off And Driver Geometry[J].Journal of Micro Ma-chines,2010,4(10):171-179.
    [65] Hui Peng, Ke Lin, Qiang Zhou, Chunqiao Jiang. Error analysis ofhemispherical resonator gyro drift data[C]//The2nd International Symposiumon Systems and Control in Aeronautics and Astronautics, Shenzhen,2008,12.
    [66] Qi Jiayi, Chen Xue, Ren Shunqing, Wang Changhong. Dynamic ErrorMechanism Analysis of HRG[C]\\ISSCAA2008, Shenzhen,2008,12.
    [67]倪受东,吴洪涛,嵇海平,朱剑英.微型半球陀螺仪的误差源研究[J].传感器与微系统,2007,(01).
    [68] Zhu K B, Zhang C X, Song N F. Modeling and identification of random driftfor FOG[J]. Journal of Beijing University of Aeronautics and Astronautics,2006,32(11):1354-1357.
    [69] Wan Dejun, Huang Ren, Ren Xingming. Modeling random drift ofgyroscopes[J]. Journal of Nanjing University of Technology,1988,18(3):57-64.
    [70] Wang H N, Yi G X, Shen B C, Jiang W. Research on HRG System Based onVirtual Instrument[C]//Proceedings of the20061st International Symposiumon System and Control in Aerospace and Astronautics(ISSCAA),2006:110-114.
    [71]祁家毅,任顺清,冯士伟等.半球谐振陀螺仪随机误差分析[J].中国惯性技术学报,2009,17(1):98-101.
    [72] Matthews A, Bauer D A. The hemispherical resonator gyro for precisionpointing applications[C]//Space Guidance, Control, and Tracking II, ProcSPIE.1995,2466(1):128-139.
    [73] Harasty G A. Computational Requirements for a Digital Analytic InertialPlatform System[C]//The12th East Coast Conference on Aerospace andNavigation Electronics, Baltimore, Md.1965.
    [74]吴铁军,马龙华,李宗涛.应用捷联惯导系统分析[M].北京:国防工业出版社,2011.
    [75]邓正隆.惯性技术[M].哈尔滨:哈尔滨工业大学出版社,2006:1-3.
    [76] Savage P G. Strapdown Inertial Navigation Integration Algorithm Design, Part1: Attitude Algorithm[J]. Journal of Guidance, Control and Dynamics,1998,21(1):19-28.
    [77] Miller R B. A new strap-down attitude algorithm[J]. Journal of GuidanceControl and Dynamics.1983,6(4):287-291.
    [78] Savage P G. Strapdown Inertial Navigation Integration Algorithm Design, Part2Velocity and Position Algorithms[J]. Journal of Guidance, Control andDynamics,1998,21(2):208-221.
    [79]杨亚非,谭久彬,邓正隆.惯导系统初始对准技术综述[J].中国惯性技术学报,2002,10(2):68-72.
    [80]钱伟行,刘建业,赵伟,等.基于转动基座的SINS初始对准方法研究[J].宇航学报,2008,29(3):928-932.
    [81]王跃钢,蔚跃,雷堰龙,陈苏邑,王潇屹.捷联惯导一种优化的惯性系粗对准方法[J].科学技术与工程,2013,(04):1102-1105.
    [82] Baziw J, Leondes C T. In-flight alignment and calibration of inertialmeasurement units-Part I: General formulation[J]. IEEE Transactions onAerospace and Electronic Systems.1972,8(4):439-449.
    [83] Zhang Chuanbin, Tian Weifeng, Jin Zhihua. A novel method improving thealignment accuracy of a strapdown inertial navigation system on a stationarybase[J]. Measurement Science and Technology.2004,15(4):765-769.
    [84] Schneider A M. Kalman filter formulation for transfer alignment of strapdowninertial units[J]. Journal of the Institute of Navigation.1983,30(1):72-89.
    [85]曲从善,许化龙,谭营.非线性贝叶斯滤波算法综述[J].电光与控制,2008,15(8):64-71.
    [86] Anderson B D O, Moore J B. Optimal Filtering[M]. Englewood Cliffs:Prentice Hall,1979:193-211.
    [87]武元新.对偶四元数导航算法与非线性高斯滤波研究[D].长沙:国防科技大学机电工程与自动化学院,2005.
    [88]丁杨斌,申功勋. Unscented粒子滤波在静基座捷联惯导系统大方位失准角初始对准中的应用研究[J].航空学报,2007,28(2):397-401.
    [89]熊凯,张洪钺.粒子滤波在惯导系统非线性对准中的应用[J].中国惯性技术学报,2003,11(6):20-26.
    [90] Crisan D, Del Moral P, Lyons T. Discrete Filtering Using Branching andInteracting Particle Systems[J]. Markov Processes and Related Fields.1999,5(3):293-318.
    [91] Crisan D. Particle Filters-A Theoretical Perspective, In Sequential Monte arloMethods in Practice[M]. Springer-Verlag,2001:17-42.
    [92] Crisan D, Doucet A. A Survey of Convergence Results on Particle FilteringMethods for Practitioners[J]. IEEE Transactions on Signal Processing.2002,50(3):736-746.
    [93] Kotecha J H, Djuric P M. Gaussian particle filtering[J]. IEEE Transactions onSignal Processing.2003,51(10):259-260.
    [94] Djuric P M, Goodsill S J. Guest Editorial Special Issue on Monte CarloMethods for Statistical Signal Processing[J]. IEEE Transactions on SignalProcessing.2002,50(2):173.
    [95] Haykin S N. de Freitas. Special Issue on Sequential State Estimation[C]//Proceedings of the IEEE.2004,92(3):399-400.
    [96] Handschin J E. Monte Carlo Techniques for Prediction and Filtering ofNonlinear Stochastic Processes[J]. Automatica.1970,6:555-563.
    [97] Zaritskii V S, Svetnik V B, Shimelevich L I. Monte Carlo Techniques inProblems of Optimal Information Processing[J]. Automation and RemoteControl.1975,36(3):2015-2022.
    [98] Akashi H, Kumamoto H. Random Sampling Approach to State Estimation inSwitching Environments[J]. Automatica.1977,13:429-434.
    [99] Gordon N, Salmond D J, Smith A F M. Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation[J]. IEE Proceedings-Radar, Sonar&Navigation.1993,140(2):107-113.
    [100]Hol J D, Schon T B, Gustafsson F. On Resampling Algorithms for ParticleFilters[C]//IEEE Nonlinear Statistical Signal Processing Workshop,Cambridge, UK:2006:79-82.
    [101]Wang F S, Lin Y J. Improving particle filter with a new sampling strategy[C]//20094th International Conference on Computer Science and Education.Nanning, China.2009:408-412.
    [102]Schn T, Gustafsson F. Marginalized particle filters for mixed linear/nonlinearstate-space models[J]. IEEE Transactions on Signal Processing,2005,53(7):2279-2289.
    [103]王丹力,张洪钺.惯导系统初始对准的非线性滤波算法[J].中国惯性技术学报,1999,(03):18-22+47.
    [104]郝燕玲,牟宏伟,贾鹤鸣. ICDKF在SINS大方位失准角初始对准中的应用[J].系统工程与电子技术,2013,(01):152-155.
    [105]Ali J, Nzar M. Realization of initial alignment algorithm for strapdown inertialnavigation system using central difference filter[C]//17th World Congress,International Federation of Automatic Control,2008,17(1):4731-4736.
    [106]Nrgaard M. Poulsen N K, Ravn O. New developments in state estimation fornonlinear systems[J]. Automatica,2000,36(11):1627-1638.
    [107]Van Merwe R D, Wan, E A, Julier S I. Sigma-point Kalman filters fornonlinear estimation and sensor-fusion-applications to integratednavigation[C]//AIAA Guidance, Navigation, and Control Conference.Providence, RI, United states.2004,3:1735-1764.
    [108]Daum F. Nonlinear filters:Beyond the Kalman filter[J]. IEEE Transactions onAerospace and Electronic Systems.2005,20(8):57-69.
    [109]潘泉,杨峰,叶亮等.一类非线性滤波器-UKF综述[J].控制与决策,2005,20(5):481-489.
    [110]Van Der Merwe R, Wan E A. The square-root unscented Kalman filter for stateand parameter-estimation[C]//2001IEEE Interntional Conference onAcoustics, Speech, and Signal Processing, Salt Lake, UT, United states,2001,6:3461-3464.
    [111]Julier S J, Uhlmann J K. A consistent, debiased method for converting betweenpolar and Cartesian coordinate systems[C]//Acquisition, Tracking, andPointing XI, Orlando, FL, United states.1997,3086:110-121.
    [112]Julier S J, Uhlmann J K, Durrant-Whyte H F. A New Method for the NonlinearTransformation of Means and Covariances in Filters and Estimators [J]. IEEETransactions on Automatic Control,2000,45(3):477-482.
    [113]Julier S J, Uhlmann J K. Reduced sigma point filters for the propagation ofmeans and covariances through nonlinear transformations[C]//2002AmericanControl Conference, Anchorage, AK, United states.2002,2:887-892.
    [114]Julier S J,Uhlmann J K. Unscented Filtering and Nonlinear Estimation[J].Proceedings of the IEEE(S0018-9219),2004,92(3):401—422.
    [115]Song Qi, Han JianDa. An adaptive UKF algorithm for the state and parameterestimation of a mobile robot[J]. Acta Automatica Sinica,2008,34(1):72-79
    [116]Julier S J. The spherical simplex unscented transformation[C]//Proceedings ofthe American Control Conf. Denver, Colorado,2003:2430-2434.
    [117]郝燕玲,杨峻巍,陈亮,郝金会.基于SRCKF的水下航行器动基座初始对准技术[J].华中科技大学学报(自然科学版),2012,(02):123-127.
    [118]Arasaratnam I, Haykin S. Cubature kalman filters[C]//IEEE Transactions onAutomatic Control,2009.54(6): p.1254-1269.
    [119]Arasaratnam I, Haykin S, Hurd T R. Cubature Kalman filtering forcontinuous-discrete systems: Theory and simulations[C]//IEEE Transactionson Signal Processing,2010,58(10):4977-4993.
    [120]Kazufumi Ito, Kaiqi Xiong. Gaussian Filters for Nonlinear Filtering Problems[J]. IEEE Transactions on Automatic Control(S0018—9286),2000,45(5):910-927.
    [121]袁泽剑,郑南宁,贾新春.高斯-厄米特粒子滤波器[J].电子学报,2003,31(7):970-973.
    [122]Arasaratnam I, Haykin S, Elliott R J. Discrete-time nonlinear filteringalgorithms using Gauss-Hermite quadrature [J]. Proceedings of the IEEE,2007,95(5):953-977.
    [123]Bar-Itzhack I Y, Goshen-Meskin D. Identity between INS position and velocityerror models[J]. Journal of Guidance, Control, and Dynamics,1981,4(5):568-570.
    [124]Bar-Itzhack I Y, Goshen-Meskin D. Identity between INS position and velocityerror equations in the true frame[J]. Journal of Guidance, Control, andDynamics,1988,11(6):590-592.
    [125]Bar-Itzhack I Y, Goshen-Meskin D. Control theoretic approach to inertialnavigation systems [J]. Journal of Guidance, Control, and Dynamics,1988,11(3):237-245.
    [126]秦永元,张洪钺,汪叔华.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社,2007:33-34.
    [127]Kubo Y, Fujioka S, Nishiyama M, et al. Nonlinear filtering methods for theINS/GPS in-motion alignment and navigation[J]. International Journal ofInnovative Computing, Information and Control,2006,2(5):1137-1151.
    [128]李葆华,刘国良,刘睿,王常虹.天文导航中的星敏感器技术[J].光学精密工程,2009,(07):1615-1620.
    [129]Michael K, Sharon P, Ilan S, etal. Geometric voting algorithm for startrackers[J]. IEEE Transactions on Aerospace and Electronic Systems,2008,44(2):441-456.
    [130]刘朝山,刘光斌.弹载星敏感器应用方案比较研究[J].现代防御技术,2012,(01):81-84.
    [131]王素娟,郭强,许健民. FY-4气象卫星定位用导航星选取方法[J].应用气象学报,2010,21(02):149-156.
    [132]Ali J, Zhang Changyun, Fang Jiancheng. An algorithm for astro-inertialnavigation using CCD star sensors[J]. Aerospace Science and Technology.2006(10):449-454.
    [133]Liebe C C. Accuracy performance of star trackers-A tutorial[J]. IEEETransactions on Aerospace and Electronic Systems,2002,38(2):587-599
    [134]龚德铸,武延鹏,卢欣.一种提高星敏感器动态性能的方法[J].空间控制技术与应用,2009,(06):19-23.
    [135]刘海波,谭吉春,沈本剑,郝云彩.像差对星敏感器星点定位精度的影响[J].光学技术,2009,(03):471-473.
    [136]李德良,阮锦.一种适用于星敏感器的星点提取方法[J].激光与红外,2009,(12):1348-1350.
    [137]王宏力,陈聪,崔祥祥,等.适用于弹道导弹的导航星选取方法[J].北京航空航天大学学报,2013,(02):143-147.
    [138]Li B H,Zhang Y CH, Li H Y. A star tracking algorithm suitable for starsensor[C]\\Fundamental Problems of Optoelectronics and Microelectronics III,Harbin,China.2006.
    [139]Mortari D, Junkins J L,Samaan M A. Lost-in-space pyramid algorithm forrobust star pattern recognition[C]\\Guidance and Control2001,Proceedingsof the Annual AAS Rocky Mountain Conference. Breckenridge, Colorado:IEEE,2001:49-68.
    [140]Mortari D. Search-less algorithm for star pattern recognition[J]. The Journal ofthe Astronautical Sciences,1997,45(2):179-194.
    [141]Liebe C C. Accuracy performance of star trckersa tutorial[J]. IEEETransactions on A erospace andnElectronic Systems,2002,38(2):587-599.
    [142]Na M, Zheng D N, Jia P F. Modified grid algorithm for noisy all-skyautonomous star identification[J]. IEEE Transactions on Aerospace andElectronic Systems2009,45(2):516-522.
    [143]房建成,宁晓琳.天文导航原理及其应用[M].北京:北京航空航天大学出版社,2006:262-266.
    [144]赵长山,秦永元,夏家和. SINS/星敏感器组合导航方案研究[J].西北工业大学学报,2008,26(5):631-635.
    [145]穆荣军,韩鹏鑫,崔乃刚.星光导航原理及捷联惯导/星光组合导航方法研究[J].南京理工大学学报,2007,31(5):585-589.
    [146]杨波,王跃钢,单斌,周小刚.长航时环境下高精度组合导航方法研究与仿真[J].宇航学报,2011,32(5):1054-1059.
    [147]Carl C L. Star trackers for attitude determination[J]. IEEE Aerospace andElectronic Systems Magazine,1995,10(6):10-16.
    [148]Quang L, Craig W, Sanford A, et al. Noise estimation for star trackercalibration and enhanced precision attitude determination[C]\\The FifthInternational Conference on Information Fusion, Annapolis, USA,2002.
    [149]Henzeh L, Yoonhyuk C, Hyochoong Jong-Oh B P. Spacecraft attitudeestimation by unscented filtering[J]. Institute of Control, Robotics andSystems,2008,14(9):865-872.
    [150]Creamer G. Spacecraft Attitude Determination using Gyros and QuarternionMeasurements[J]. The Journal of the Astronautical Sciences,1996,44(3):357-371.
    [151]Hwang D B, Lim D W, Cho S L, Lee S J. Tightly-coupled GPS/INS systemdesign for autonomous urbannavigation[J]. IEEE Aerospace and ElectronicSystems Magazine,2011,23(6):30-38.
    [152]Isaac M, Mark C. Sensitivity analysis of a tightly-coupled GPS/INS system forautonomous navigation[J]. IEEE Transactions on Aerospace and ElectronicSystems,2012,48(2):1115-1135.
    [153]Langel S E, Khanafseh S M, Chan F C, Pervan B S. Tightly coupled GPS/INSintegration for differential carrier phase navigation systems usingdecentralized estimation[C]//IEEE/ION Position, Location and NavigationSymposium, PLANS2010,2010:397-409.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700