超静定网梁结构大型振动筛动态设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着煤炭能源需求的增长,煤炭行业迫切需要处理能力大的振动筛进行筛分作业,同时筛分机械大型化可以减少振动筛的数量,降低设备费用,带来较好的经济效益。但是振动筛的大型化将引起筛体结构强度和刚度不足,严重影响振动筛的使用寿命。目前静强度加运动学分析的传统设计,大多是采用经验数据和安全系数的设计计算方法,不能准确揭示出结构内部动态应力分布状况,因此不能保证产品结构的设计合理性,直接影响产品的使用性能与寿命。所以研究和制造大型振动筛,提升设计水平,提高振动筛的运行可靠性已成为一项重要的研究课题。
     本论文以新设计的超静定网梁结构大型振动筛为研究对象,利用有限元分析法和先进的振动测试手段,将动态设计法应用于大型振动筛的设计中,提高了振动筛的可靠性。
     根据等厚筛分原理,提出了3种筛分效率较高的新型筛分结构。运用机械系统动力学原理建立了前2种振动筛结构较准确的动力学方程;应用多自由度系统振动理论,对振动筛进行了运动分析,计算了筛面上特殊点的振幅、运动速度、抛掷指数等工艺参数,研究了各自的筛分特性;分析了香蕉筛的结构特点和筛分特性,指出了3中筛分结构各自的适用范围。
     对超静定结构的特性和该结构应用于振动筛设计的可行性进行了分析,大型振动筛设计中,在香蕉筛基础上,采用了由管群通过跨中的静定板与两根激振器梁的耦联构成的超静定网梁结构。给出了振动筛的主要技术参数,确定了结构关键部件技术,并对振动筛进行了动力学参数的设计计算。
     进一步分析了大型超静定网梁结构振动筛的动力学特性,研究了振动筛的结构强度和可靠性。给出了提高有限元模型计算精度及稳定性的方法,建立了合理的振动筛有限元计算模型。对螺栓连接,给出了适合的简化方法。应用有限元分析法对振动筛局部重要结构及整体结构进行了固有特性分析。分析结果为结构的动力学修改提供依据,为实验模态分析的测点布置提供参考。同时运用有限元分析法对振动筛进行动力响应分析,获得了工作频率下整体及局部结构的动应力和动应变。分析结果验证了超静定网梁结构的优良特性,为振动筛的结构修改提供参考。
     同时采用先进的测试手段对振动筛进行了振动测试。通过对实体样机进行模态测试实验,获得了结构的模态参数。实验结果验证了有限元分析的正确性,并用于指导振动筛局部结构的修改和修正有限元计算模型。
     在以上工作的基础上,应用灵敏度分析法对振动筛结构进行动力学修改。根据拉格朗日乘子构造法则,用实验模态频率和振型构造目标函数对有限元模型进行修正,给出了适用于有限元模型修正的质量矩阵和刚度矩阵。基于有限元分析和实验模态分析的结果,应用特征灵敏度分析法对振动筛的进料端、出料端及侧板结构进行修改,使其动力学参数更加合理,提高了大型振动筛的刚度和结构稳定性。
     为了解决大型振动筛工作过程中侧板动应力过高易损坏的问题,对振动筛进行了结构优化设计。首先基于多频约束,对振动筛侧板的加强筋尺寸及侧板质量进行了优化,给出了适合多频约束的优化准则,并将解析灵敏度计算程序嵌入到优化分析程序中。其次,应用增广拉格朗日乘子法,编写出收敛速度快、求解精度高的程序,得到了加强筋在振动筛侧板上的最优布置,达到了以最少筋板数目满足较低应力的要求。结构优化后增加了振动筛的刚度,降低了变形,提高了结构的可靠性。该大型振动筛投入生产后,运行稳定,使用效果良好。空载运转实验检测结果表明:整机性能达到了设计所要求的工艺技术指标。
The vibrating screen with high processing capacity is urgently needed in coal industry with the increasing demand of coal energy sources. Meanwhile, the maximization of screening machines can reduce the needed number of vibrating screenings and low the cost of equipments and thus brings a good economic benefit. But the maximization of vibrating screens will lead to the deficiency of structural stiffness and strength and affect service life. Now the traditional design methods, concerning static strength and kinematics analysis, are still in use and most of the products are designed through adopting empirical data and safety factor to calculate design parameters. This method can not reveal dynamic stress state of internal structure and make the design reasonable which affects service performance and life of products. Thus it is an important research subject to design large vibrating screenings, raise the design level and improve working reliability and service life of vibrating screenings.
     A new designed large vibrating screen with hyperstatic net-beam structure was studied in this dissertation. The author applied finite element method (FEM) and advanced vibration test method to design the large vibrating screen. The result shows that the reliability of the vibrating screen is increased.
     Three new types vibrating screens with high screening efficiency were proposed based on the principle of screening process with constant bed thickness. Accurate vibration mechanical models of two screens were built according to their structural features, using dynamics principle of mechanical system. With vibration theory of multi-freedom system applied, the author analyzed motion characteristic of the vibrating screens. Screening technological parameters including amplitude, velocity, throwing index of some specific points on the screen surface were calculated and their screening characteristic were studied.Structure features and screening characteristic of banana vibrating screen and their applicability were analyzed.
     The features of hyperstatic structure and the feasibility of the structure which was applied in the design of large vibrating screen were analyzed. A large vibrating screen was designed based on the banana structure, adopting hyperstatic net-beam structure which is composed of static plates, exciting beams and crossbeams. Main technical parameters, critical components and the dynamic parameters of the vibrating screen were established.
     The dynamic characteristic of banana vibrating screen was analyzed and the structural strength and reliability was studied. The method of improving calculation accuracy of the finite element model was given. A proper finite element model of the vibrating screen was set up and an adaptive method was showed for the simplification of the bolts. The FEM was used to solve natural characteristic of local important structure and integral structure of the vibrating screen. The results offer a basis for the dynamic modification of the structure and provide a reference for the test points’arrangement of the modal experiment. The author made a dynamic response analysis of the vibrating screen, applying the FEM. The dynamic stress and strain of the integral and local structure at the working frequency were obtained. The results show a better performance of the hyperstatic net-beam structure and find out structure defect of the vibrating screen.
     The vibration test on the vibrating screen’s prototype was accomplished, applying advanced test experimental technology. The modal parameters of the vibrating screen were gained by means of the modal experiment test. The results reveal the effectiveness of the finite element analysis and point out the weakness part of the vibrating screen.
     The sensitivity analysis method was used to modify the structure of vibrating screen.The paper used experimental modal frenquency and vibration modes to construct goal function according to the lagrangian multiplier method. The mass update matrix and stiffness update matrix which is applicable to the finite element model were given. The sensitivity analysis method was applied to modify local structural parametres of the vibrating screen based on the results of FEM and experimental modal analysis which made the dynamic parameters more reasonable and improved the structural stiffness and stability of the large vibrating screen.
     In order to solve the problem of high dynamic stress which led to the damage of the large vibrating screen, the author made a structural optimization of the vibrating screen. The size of reinforcing ribs and the mass of the side plate were optimized based on several frequency constraints. An applicable optimization criterion was given and the algorithmic method of analytical sensitivity was embedded in the program. The author complied a program with high convergence rapidity and solving accuracy, applying augumented lagrangian multiplier method, to confirm the best position of reinforcing ribs on the side plate and obtain lower dynamic stress with the least number of reinforcing ribs. The optimal results show that the structural stiffness of the side plate is improved and the deformation is decreased and thus the structural reliability is enchanced. The vibrating screen was stable and reliable when it was used in production. The test results of no-load running experiment show that the performance of the vibrating screen accord with the design requirements well.
引文
[1]刘奎胜,谭兆衡.筛分机械的应用和发展[J].矿山机械,1998(7):56-57.
    [2]王峰,王皓.筛分机械[M].北京:机械工业出版社,1998.
    [3]王峰.我国矿山振动技术及设备的新发展[J].矿山机械,1991,(4):24-27.
    [4]程秀芳.提高大型振动筛筛分效率的实践[J].矿山机械,1999(4):46-47.
    [5] Courtney Dehn.Novel screening unit provides alternative to conventional shale shaker[J].Oil & Cas Journal.l999, 97(15):40-48.
    [6]曾本仁.国外筛分机的发展[J].矿山设计研究,1986(2):10-14.
    [7] Jacques steyn.Fatigue failure of deck support beams on a vibrating screen[J].Int.J.pres.Ves.& Piping,1995,(61):315-327.
    [8]王正浩,范改燕.振动筛结构强度研究的现状[J].沈阳建筑工程学院学报,1999 (3):278-281.
    [9]刘瑞宏,陈少华.筛分机械大型化的发展趋向[J].内蒙古石油化工,1999(3):87-88.
    [10]朱福先,殷样超,徐小丽.基于有限元法的单、双通道振动筛筛体动态特性分析[J].煤矿机械,2006(7):60~62.
    [11]陈文龙.煤用特大型振动筛现状与对策[J].煤质技术与科学管理,1997(2):21-24.
    [12]王峰,刘恋华.筛分机的动态特性分析[J].矿山机械,1989(10):41-43.
    [13]李岿然.27m2大型直线振动筛可靠性的研究[D].天津:天津大学,2002.
    [14] Jachna W.M?glichkeiten zur Verminderung der Kon structions masse bei Siebmashinen mit gr?sen Breiten.Aufbereitungs Techink [J],1984(7):403-407.
    [15]谭兆衡.国内筛分设备的现状和展望[J].矿山机械,2004(1):34-37.
    [16]王峰.筛分机械的发展与展望[J].矿山机械,2004(1):37-39.
    [17]孙刚.大型潮湿细粒物料筛分机的研制和应用[J].煤炭加工与综合利用,2004(1):18-20.
    [18]周传荣.结构动态设计[J].振动、测试与诊断,2001,21(1):1-8.
    [19]陈新,贾玉兰.机械结构动态设计理论方法及应用[M].北京:机械工业出版社,1997.
    [20] Fox R L,KaPoor M P.Structural optimization in the dynamic regime:A computational approach[J].AIAA J.,1970,8(10):1798-1804.
    [21] Chahande A I,Arora J S.Optimization of large structures subjected to dynamic loads with the multiplier method[J].International Journal for Numerical Methods in Engineering,1994(37):413-430.
    [22] Ramana Grandhi.Structural optimization with frequency constraints-A review [J].AIAA Journal,1993,31(12):2296-2303.
    [23] Wang Ranfeng,Yao Haisheng,Xiong Shibo.Research on Large-scale vibrating screen dynamic parameters based on test modal analysis technology[J].Proceedings of the International Symposium on Test and Measurement,2003(1):763-766.
    [24]李宏男.利用调液阻尼器减振的结构控制研究进展[J].地震工程与工程振动,1995(3):99-109.
    [25]徐燕申.机电产品现代设计统一培训教材-机械动态设计[M].北京:机械工业出版社,1992.
    [26]曹树谦,张文德,萧龙翔.振动结构模态分析—理论、实验与应用[M].天津:天津大学出版社,2001.
    [27]张令弥,何柏庆,袁向荣.特征向量导数计算各种模态法的比较和发展[J].应用力学学报,1994,11(3):69-73.
    [28]林家浩.结构动力优化中的灵敏度分析[J].振动与冲击,1995,14(1):1-6.
    [29]赵又群,刘中生,陈塑寰.模态截断与简谐载荷的响应灵敏度分析[J].计算结构力学及其应用,1996,13(3):313-318.
    [30]荣见华,葛祖德,姚起杭.动态优化中的动响应高阶修改及灵敏度分析[J].航空学报,1992,13(9):529-533.
    [31]傅志方.振动模态分析与参数辩识[M].北京:上海交通大学出版社,2000.
    [32] Taroco E.,Feijoo R.A..A unified approach for shape sensitivity analysis of elastic shells[J].Structural and Multidisciplinary Optimization,2004,27(1-2):66-79.
    [33] Zhang Jianping,Gong Shuguang,Huang Yunqing,et,al.Structural dynamic shape optimization and sensitivity analysis based on RKPM[J].Structural and Multidisciplinary Optimization,2008,36(3):307-317.
    [34] Park Chan-Kyoo,Kim Woo-Je.,Lee Sangwook,et,al.Positive sensitivity analysis in linear programming [J].Asia-Pacific Journal of Operational Research,2004,21(1):53-68.
    [35]方远翔,陈安宁,董卫平.振动模态分析技术[M].北京:国防工业出版社,1993.
    [36]李仁宪.有限元法基础[M].北京:国防工业出版社,2002.
    [37]何正嘉,陈雪峰,李兵等.小波有限元理论及其工程应用[M].北京:科学出版社,2006.
    [38]李兵,陈雪峰,向家伟等.基于小波有限元法的悬臂梁裂纹识别的试验研究[J].机械工程学报,2005,41(5):114-119.
    [39]马军星.Daubechies小波有限元理论及工程应用研究[D].西安:西安交通大学,2003.
    [40]沈鹏程,何沛祥.多变量样条有限元法[J].固体力学学报,1994,15(3):234-243.
    [41] Wang Renhong.Multivariate Splines and its Application[M].Beijing:China Machine Press,2006.
    [42] Gong S X,Meguid S A.A general treatment of the elastic field of an elliptical inhomogeneity under antiplane shear[J].ASME Journal Applied Mechanics,1992(59):131 - 1351.
    [43]曹宗杰,王铭伟,全吉成.基于奇异有限元法对大曲率缺口断裂问题的数值分析[J].空军工程大学学报(自然科学版),2006,7(2):85-86.
    [44]舒适,朱少茗.一类自适应的奇异小波有限元法数学理论与应用[J].1999,19(2):58-62.
    [45]俞云书.结构模态实验分析[M].北京:宇航出版社,2000.
    [46] Lardies J,TaM N,Berthillier M.Modal parameter estimation based on the wavelet transform of output data [J].Archive of Applied Mechanics,2004,73 (9-10) :718-733.
    [47] Le T.P.,Argoul P..Continuous wavelet transform for modal identification using free decay response[J].Journal of Sound and Vibration,2004,277 (1-2) :73-100.
    [48]张阿舟,姚起航.振动控制与设计[M].北京:航空工业出版社,1997.
    [49]左鹤声,彭玉莺.振动试验模态分析[M].北京:中国铁道出版社,1995.
    [50]饶寿期.有限元法和边界元法基础[M].北京:北京航空航天大学出版社,1990.
    [51]魏权龄,王日爽.数学规划引论[M].北京:航空航天大学出版社,1991.
    [52] Schmit L A..Structural design by systematic synthesis[C].Proc.2nd Conf.On Electronic Computation,ASCE,New York,1960:105-122.
    [53] Hopfield J J,Tank D W..Neural computation of decision in optimization[J].Bol Cybern,1985(52):141-152.
    [54] Bertoni A,Dorigo M.Implicit parallelism in genetic algorithms[J].Artificial Intelligence,1993,61(2):207-314.
    [55] Kirkpatrick S.,Gelatl C.D.,Vecchi M P.Optimization by simulated annealing[J].J.Science,1983(22):671-680.
    [56] Chen Shuxun,Ye Shanghui.A Guide-Weight Criterion Method for the optimal design of antenna structures[J].Engineering Optimization,1986,10 (3) :326-332.
    [57]钱令希,隋允康,张近东.多单元、多工况、多约束的结构优化设计一DDDU程序系统[J].大连工学院学报,1980,19 (4).
    [58]陈树勋.精密复杂结构的几种现代设计方法[M],北京航空航天大学出版社,1992.
    [59]刘惟信.机械最优化设计(第二版)[M].北京:清华大学出版社,1994.
    [60]谢柞水.结构优化设计概论[M].北京:国防工业出版社,1997.
    [61]严峰,刘焕胜.筛分机械[M].北京:煤炭工业出版社,1995.
    [62]王敦曾.选煤新技术的研究与应用[M].北京:煤炭工业出版社,1999.
    [63]闻邦椿,刘树英,何勍.振动机械的理论与动态设计方法[M].北京:机械工业出版社,2002.
    [64]王学文.潮湿原煤深度筛分理论及大型筛机动态设计的研究[D].徐州:中国矿业大学,2001.
    [65]王志伟,孟玲琴.直线振动筛分机筛箱质心的计算机辅助设计[J].农机化研究所,2004(5):231-232.
    [66]李文英.大型振动筛动力学分析及动态设计[D].太原:太原理工大学,2004.
    [67]武登山.轻型矿用接近共振筛的虚拟仿真研究[D].西安:西安点子科技大学,2007.
    [68]赵茂俞.自同步直线振动筛CAD设计与仿真[D].淮南:安徽理工大学,2005.
    [69]程秀芳.提高大型振动筛筛分效率的实践[J].矿山机械,1999(4):46-47.
    [70]商乃信,那杰夫.2TYA1842椭圆振动筛[J].矿山机械,1990(2):20-24.
    [71]叶恒棣.椭圆等厚筛分技术及其应用长沙[J].烧结球团,1999,5(3):30-33.
    [72]闻邦椿,刘风翘.振动机械的理论及应用[M].北京:机械工业出版社,1982.
    [73]刘初升,赵跃民.振动筛面上单颗粒运动的非线性特性的研究[J].矿山机械,1999(1):45-48.
    [74]马天宝.平面惯性振动筛力心的几何确定[J].矿山机械,1996(12):40-42.
    [75]叶恒棣.物料振动筛分过程分析及高效筛分途径[J].矿山机械,1992(10):15-17.
    [76]郝凤印主编.选煤手册(工艺与设备)[M].北京:煤炭工业出版社,1993.
    [77]董春燕,吴娟.ZD3075新型等厚筛机的设计与研究[J].冶金设备,2003(2).32-33,52.
    [78]张恩广.筛分破碎及脱水设备[M].北京:煤炭工业出版社,1991.
    [79] Khoury.D.L..Coal Cleaning Technology[M].Noyes Data Corporation,U.S.A,1981.
    [80]倪振华.振动力学[M].西安:西安交通大学出版社,1989.
    [81]机械振动手册(第2版)[M]:第20章振动的利用.北京:机械工业出版社,2000.4
    [82]朱维兵.复杂运动轨迹振动筛的工作原理及计算机模拟[J].矿山机械,2004,10:34-36.
    [83] Peder Mogensen.The Mogensen E-Series-A new Screening Concept [J].Aufbereitungs Technik,1996,7(37):311-315.
    [84]Э.Э.Лавендел.ВИБРАЦИИВТЕХНИКЕ[M].Машиностроение,1981.
    [85]杨永柱,刘春玉.国产大型振动筛及香蕉形直线振动筛的现状一瞥[J].矿山机械,2004(9):84-85.
    [86]孙旖,王兆申.大型香蕉筛的研究与设计[J].选煤技术,2005(6):4-7.
    [87]任德树.粉碎筛分原理与设备[M].北京:冶金工业出版社,1984.
    [88]王铁牛. ZD1894等厚振动筛设计与分析[J].鞍山科技大学学报,2006,29(5):463-466.
    [89]邓毅红. ZD3060直线等厚筛的研制[J].煤质技术,2003(3):39-42.
    [90]吴宏礼,刘颖.土木工程力学[M].上海:东华大学出版社,2007.
    [91]吴代华.材料力学[M].武汉:武汉理工大学出版社,1994.
    [92]单辉祖.材料力学(1)[M].北京:高等教育出版社,2003.
    [93]张成勇.一种超静定网梁激振大型振动筛:中国,02112809.X[P],2003-10-08.
    [94]孙旖,王兆申.大型高效筛分设备的研究[J].选煤技术,2006(9):31-35.
    [95]张书辉.振动筛的损坏原因分析及其结构改进[J].岳阳师范学院学报(自然科学版),2000,13(4):23-25.
    [96]朱福先.大型振动筛结构强度研究[D].徐州:中国矿业大学,2006.
    [97]胡欣峰.自同步椭圆振动筛动力学设计[D].成都:西南石油学院,2004.
    [98]陆梅.双通道单层振动脱水筛的结构优化设计和动力分析[D].北京:中国矿业大学北京研究生部,1997.
    [99] Willianm T.Thomson,胡宗武译.振动理论及其应用[M].北京:煤炭工业出版社,1980.
    [100]王敦曾.选煤新技术的研究与应用[M].北京:煤炭工业出版社,1999.
    [101] Wodzinski,P.Tendencies in screen design[J].Powder handling & processing, 1993:Pol., 357-361.
    [102] Vorster W., Hinde A., Schiefer F. Increased screening efficiency using a Kroosher unit coupled with a Sweco screen[J].Minerals Engineering, South Africa, 2002(16):107-110.
    [103]饶寿期.有限元法和边界元法基础[M].北京:航空航天大学出版社,1990.
    [104]周昌玉,贺小华.有限元法分析的基本方法及工程应用[M].北京:化学工业出版社,2006.
    [105]高旭,崔文好.振动筛侧板强度有限元分析及试验研究[J].建筑机械,1999(5):34-36.
    [106]李运忠.振动筛侧板压制工艺设计[J].中州煤炭2002(3):39-40.
    [107]梁坤京,白勇军,邵佩森.动态设计在2ZKP3660直线振动筛中的应用[J].矿山机械,2001(7):36-37.
    [108] G.Kerschen,V.Lenaerts,J. C.Golinval.VTT Benchmark. Application of the restoring force surface method[J].Mechanical Systems and Signal Processing,2003,17(1):189-193.
    [109] R.D.库克著,关正西,强洪夫译.有限元分析的概念和应用[M].西安:西安交通大学出版社,2007.
    [110]刘尔烈,崔恩第,徐振铎.有限单元法及程序设计[M].天津:天津大学出版社,1999.
    [111]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997.
    [112]张洪武,关振群,李云鹏等.有限元分析与CAE技术基础[M].北京:清华大学出版社,2004.
    [113]邵忍平.机械系统动力学[M].北京:机械工业出版社,2005.
    [114]杜平安,甘娥忠,于亚婷.有限元法—原理、建模及应用[M].北京:国防工业出版社,2004 .
    [115] Saeed Moaveni著.王崧,董春敏,金云平等译.有限元分析—ANSYS理论与应用(第二版)[M].北京:电子工业出版社,2005 .
    [116]梁坤京,白重军,邵佩森.动态设计在2ZKP3660直线振动筛中的应用[J].矿山机械,2001(7):36-37.
    [117]张成勇.2SZKB3060型双通道直线振动筛的设计[J].矿山机械,1998(7):37-39.
    [118]李慧彬.振动理论与工程应用[M].北京:北京理工大学出版社,2006.
    [119]傅志方,华宏星.模态分析理论与应用[M].上海:上海交通大学出版杜,2000.
    [120]段进,倪栋,王国业.ANSYS结构分析从入门到精通[M].北京:兵器工业出版社,2006.
    [121]贺孝梅,刘初升,张成勇.超静定网梁激振结构大型振动筛动态特性[J].煤炭学报,2008(9):1040-1044.
    [122]和世超.赵尚民.振动筛筛框模态分析及动力响应[J].焦作工学院学报,2001(5):400~403.
    [123]马富强.振动筛动态特性浅析[J].矿山机械,1996l(6):40.
    [124] Pal Thomas G.,Schmidtberg Rupert A. Combining analytical and experimental modal analysis for effective structural dynamic modeling[C].Proceedings of the International Modal Analysis Conference & Exhibit.,Orlando:Union Coll,1982:265-271.
    [125] Ward Heylen,Stefan Lammens,Paul Sas.Modal analysis theory and testing[M].Prentice Hall Tnc.,1999.
    [126]张阿舟.实用振动工程(1)—振动理论与分析[M].北京:航空工业出版社,1996.
    [127]吴正大,杨林耀,张永瑞.信号与线性系统分析[M].北京:高等教育出版社,1998.
    [128]胡广书.数字信号处理—理论、算法与实现[M].北京:清华大学出版社,1997.
    [129]顾松年.结构动力修改的发展与现状[J].机械强度,1991,13(1):1-9.
    [130]于德介,周先雁.一种桥梁结构动力特性修改逆问题求解方法[C].1992年全国桥梁结构学术大会.上海:同济大学出版社,1992.
    [131]李书,卓家寿.广义特征值方法在动力模型修正中的应用[J].振动与冲击, 1998,17 (2) : 63-66.
    [132] Menahem Baruch. Optimal correction of mass and stiffness matrices using meuasred modes[J].A IAA J. ,1982,20(11):1623- 1626.
    [133]张宏,熊诗波,张纪平.基于实验模态和有限元分析的轧机故障诊断[J].机械设计,2006,23(9):36-39.
    [134]原亮明,王成国,刘金朝等.一种求解多体系统微分代数方程的拉格朗日乘子方法[J].中国铁道科学,2001,22(2):51-54.
    [135]李惠彬.振动理论与工程应用[M].北京:理工大学出版社,2006.
    [136]张永峰,尹忠俊.振动筛的动应力分析[J].冶金设备,2005(4):42-43.
    [137]焦红光,赵跃民,骆振福,等.概率筛面的参数优化研究[J].中国矿业大学学报,2006,35(3):384-388.
    [138]翟宏新,杨丽,李君.工业型弛张筛系统参数的整体优化[J].煤炭学报,2004,29(1):105-108.
    [139]王辉明,赵文,乐风江.基于有限元分析的平面桁架结构优化设计研究[J].新疆大学学报,自然科学版,2004(1):434-437.
    [140]陈劲,张泽鹏.频率约束下的桥梁结构优化设计探讨[J] .中南公路工程,2001,26(4):67-69.
    [141] N.S.Khot.Optimization of structures with multiple frequency constraints[J].Comput.Structures, 1985, 20(5): 869- 876.
    [142]刘涛,杨凤鹏,李贵敏等.精通ANSYS [M].北京:清华大学出版社,2001.
    [143] ZHU Y,Qiu J,Du H,etc,.Simultaneous optimal design of structural topology,actuator locations and control parameters for a plate structure [J].Computational Mechanics,2002(29):89-97.
    [144] Bertsekas D P. Constrained optimization and Lagrange multipliers methods [M].New York:Academic Press,1982.
    [145] Hestenes M R. Multiplier and gradient methods [J]. J Optim Theory Appl,1969(4):303-320.
    [146] Lucidi S. New results on a class of exact augmented Lanrannians[J].J Optim Theory Appl, 1988,58( 2):259-282.
    [147]曾亚森,梁飞华,莫才颂.整体法兰拉格朗日乘子法优化设计[J].石油机械,2005,33(8):27-29.
    [148] Powell M J D,Grippo L. A method for nonlinear constraints in minimization problems [C]//Fletcher R.Optimization. New York:Academic Press,1969:283-298.
    [149]石英,肖金生,刘春晓.配气凸轮优化设计的惩罚函数法和增广拉格朗日乘子法[J].武汉理工大学学报(交通科学与工程版),2002,26(3):365-368.
    [150]贺孝梅,刘初升,张成勇.基于增广拉格朗日乘子法的大型振动筛动态优化设计[J].中国矿业大学学报,2009,38(1):80-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700