纳米石墨微片/Fe_3O_4复合粉末的制备及其在磁场下的自组装
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由石墨层间化合物经过膨化制得的纳米石墨微片具有高的电导率和比表面积,从而赋予它较好的电磁屏蔽性能。根据Schelkoff的电磁屏蔽理论可知,具有优良电磁屏蔽性能的电磁屏蔽材料应具有较高的相对电导率和相对的磁导率。但纳米石墨微片本身是反铁磁性的,为了进一步增强纳米石墨微片的屏蔽性能,希望能将一些磁性微粒包覆到纳米石墨微片表面,得到一种兼有导电性和导磁性的新型复合材料。
     本论文以Fe~(2+)和Fe~(3+)的混合溶液为覆层前驱液,通过湿化学共沉淀包覆法使具有亚铁磁性的四氧化三铁微粒包覆到纳米石墨微片的表面。详细研究了影响Fe_3O_4在包覆过程中转化生成的四个主要因素:铁离子总浓度、Fe~(2+)与Fe~(3+)之比、反应温度以及晶化时间。通过研究这些因素对纳米石墨微片/四氧化三铁复合粉末的物相组成、磁性能和电性能的影响,获得了制备纳米石墨微片/四氧化三铁复合粉末的最佳工艺条件,并运用XRD、SEM、FT-IR、TG-DSC、VSM等仪器表征分析了最佳条件下制备的纳米石墨微片/四氧化三铁复合粉末。研究表明,包覆层粒子为纳米级的四氧化三铁微粒,而且四氧化三铁微粒和纳米石墨微片表面是通过分子间力和化学键结合在一起。
     本论文还研究了纳米石墨微片/四氧化三铁复合粉末在磁场作用下的自组装行为。研究表明,分散在聚合物基体中的改性纳米石墨微
Graphite nanosheets prepared by the intercalated and expanded method have the high conductivity and surface area, thus entrusted it with the good electromagnetic shielding performance. According to Schelkoff's electromagnetic shielding theory, electromagnetic shielding materials with good electromagnetic shielding performance should have higher relative conductivity and relative magnetic conductivity. Graphite nanosheets itself are anti-ferromagnetic, in order to further strengthens the shielding properties of graphite nanosheets, we hope coat some magnetic particle to the surface of graphite nanosheets to enhance the magnetic performance of graphite nanosheets.
    Taking the Fe and Fe mixing solution as coating premonitory solution, magnetite particles with ferromagnetism were coated to the surface of graphite nanosheets by the wet-chemical co-precipitation method. In a detailed study of four main impact factors during the forming and coating process of magnetite particles: the total concentration of iron ions, the ratio of Fe~(2+)/Fe~(3+), the crystallization temperature and the reaction time, the optimum preparation condition of graphite nanosheets/magnetite compound powder were obtained through researching the effect of these factors on the phase composition, magnetic
引文
[1] P K Rohatgi, S Ray, Y Liu. Tribological properties of metal matrix-graphite particle composites[J]. International Materials Reviews, 1992, 37(3): 129-131.
    [2] F H Samuel, H Liu, A M Sanuel. Effect of Melt Cleanlines on the properties of an Al-10 Wt Pct Si-10 Vol Pct SiC(p) Composite[C]. Metallurgical Mater Trans A, 1993, 24A (7): 1637-1639.
    [3] L C Davis, J E Allison. Residual Stresses and Their Effects on Deformation in Particle-Reinforced Metal-Matrix Composites[C]. Metallurgical Mater Trans A. 1993, 24A(11): 2487-2489..
    [4] 荒木庸夫著,赵清译,电子设备的屏蔽设计[M],北京.国防工业出版社,1975,105.
    [5] Y Murakami, H Suematsu. Anisotropic energy and electron migration in multichromophore-laden polymers on metal surfaces [J]. Pure Appl Chem, 1996, 68: 1463-1467.
    [6] T L Makarova, B Sundqvist, R Hohne, et al. Magnetic Carbon[J]. Nature, 2001, 413: 716-719.
    [7] Y Shibayama, H Sato, T Enoli, et al. Disordered Magnetism at the Metal-Insulator Threshold in Nano-Graphite-Based Carbon Materials[J]. Phys Rev Lett, 2000, 84: 1744-1747.
    [8] B L V Prasad, H Sato, T. Enoki, et al. Heat-treatment effect on the nanosized graphite p-electron system during diamond to graphite conversion[J]. Phys Rev B, 2000, 62: 11209-11218.
    [9] Y Kopelevich, P Esquinazi, J H S Torres, et al. Ferromagnetic and Superconducting-Like Behavior of Graphite[J]. J Low Temp Phys, 2000, 119: 691 -702.
    [10] M Fujita, M Igami, K Nakada. Lattice Distortion in Nanographite Ribbons [J]. J Phys Soc Jpn, 1997, 66: 1864-1867.
    [11] K Wakabayashi, M Sigrist, M Fujita. Spin Wave Mode of Edge-Localized Magnetic States in Nanographite Zigzag Ribbons [J]. J Phys Soc Jpn, 1998, 67: 2089-2093.
    [12] Y Miyamoto, K Nakada, M Fujita. First-principles study of edge states of H-terminated graphitic ribbons [J]. Phys Rev B, 1999, 59: 9858-9861.
    [13] K Harigaya. The mechanism of magnetism in stacked nanographite: theoretical study[J]. J Phys: Condens Matter, 2001, 13: 1295-1302.
    [14] K Harigaya. New type of antiferromagnetic state in stacked nanographite[J]. Chem Phys Lett, 2001, 340: 123-128.
    [15] S Okada, A Oshiyama. Magnetic Ordering in Hexagonally Bonded Sheets with First-Row Elements[J]. Phys Rev Lett, 2001, 87: 146803-146806.
    [16] K Harigaya T Enoki. Mechanism of magnetism in stacked nanographite with open shell electrons [J]. Chem Phys Lett, 2002, 351: 128-134.
    [17] K Kusakabe, M Maruyama. Magnetic nanographite[J]. Phys Rev B, 2003, 67: 0924061-0924064.
    [18] P Esquinazi, D Spemann, R Hvhne, et al. Induced Magnetic Ordering by Proton Irradiation in Graphite[J]. Phys Rev Lett, 2003, 91: 227201-227204.
    [19] A W Mombrz, H Pardo, et al. Multilevel ferromagnetic behavior of room temperature bulk magnetic graphite [J]. Phys Rev B, 2005, 71, 100404-100406.
    [20] S Cahen, R Vangelisti, C Bellouard. Structural and magnetic properties of a stage-2 HoCl_3-graphite intercalation compound [J]. Carbon, 2006, 44(2): 259-266.
    [21] K Enomoto, T Yamaguchi, T Terashima, et al. Investigation of interlayer coherency and angular-dependent magnetoresistance oscillations in magnetic graphite intercalation compounds[J]. Synthetic Metals, 2005, 154: 289-292.
    [22] B David, N Pizzrova, O Schneeweiss, et al. Magnetic properties of iron/graphite core shell nanoparticles prepared by annealing of Fe C N-based nanocomposite [J]. Journal of Magnetism and Magnetic Materials, 2005, 290-291: 179-182.
    [23] 传秀云.膨胀石墨CuCl_2-NiCl_2-层间化合物磁性研究[J].无机材料学报,2000.15:1077-1082.
    [24] M Suzuki, I S Suzuki. Successive magnetic phase transitions of a CoCl_2-FeCl_3 graphite bi-intercalation compound[J]. Phys Rev B, 1999, 59: 004221-004234.
    [25] M Suzuki, I S Suzuki, C R Burr, et al. Structural and magnetic properties of CuCl_2 graphite intercalation compounds[J]. Phys Rev B, 1994, 50: 009188-009199
    [26] M Suzuki, I S Suzuki, J Walter. Magnetic properties of palladium-Graphite multilaver [J]. Phvs Rev B, 2000, 62: 14171 14180.
    [27] 任慧,焦清介,沈万慈等.超微粉石墨层间化合物FeCl_3-NiCl_2-GICs的制备及电磁性能研究[J].材料科学与工程学报,2003,21(3):346-349.
    [28] Y H Zou, H B Liu, Li Yang, et al. The influence of temperature on magnetic and microwave absorption properties of Fe/graphite oxide nanocomposites[J]. J Magn Magn Mater, 2006, 302(2): 343-347.
    [29] 任慧,康飞宇,焦清介等.掺杂磁性铁粒子膨胀石墨的制备及其对毫米波的干扰作用[J].新型炭材料,2006,21:24-29.
    [30] 彭俊芳,康飞宇,黄正宏.填充氧化铁颗粒的石墨基复合材料[J].材料科学与工程,2002,20(4):469~472.
    [31] E Kneller, A Berkowitz. Magnetism and Metallurgy [M]. Academic Press: New York, 1969, 1: 365-369.
    [32] J Frenkel, J Dorfman. Nature 1930, 126: 274.
    [33] C Kittel. Theory of the Structure of Ferromagnetic Domains in Films and Small Particles [J]. Phys Rev, 1946, 70: 965-971.
    [34] C P Bean. Superparamagnetism [J]. J Appl Phys. 1959, 30: s120-s129.
    [35] M Steen, C Gunnar. Influence of magnetic anisotropy on the superferromagnetic ordering in nanocomposites [J]. J Appl Phys, 1993, 73: 6955-6957.
    [36] L Niel. J Phys Soc Japan, 1962, 17, suppl. B-1: 677.
    [37] D L Leslie-Pelecky, R D Rieke. Magnetic Properties of Nanostructured Materials [J]. Chem Mater, 1996, 8: 1770-1783.
    [38] Z M Staduik, P Griesbaoh, G Debe, et al. ~(61)Ni Mvssbauer study of the hyperfine magnetic field near the Ni surface [J]. Phys Rev B, 1987, 35: 6588-6592.
    [39] 都有为,薛荣华.镍正如细微颗粒的磁性[J].物理学报,1992, 41:149-154.
    [30] M N Baibich, J M Broto, A Fert, et al.Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices [J]. Phy Rev Lett,1988, 61:2472-247.
    [41] M Ohmori, E Matijevix. Preparation and properties of uniform coated colloidal particles. VII. Silica on hematite [J]. J Colloid Interface Sci, 1992,150:594-598.
    [42] W Stvber, A Fink, E Bohn. Controlled growth of monodisperse silica spheres in the micron size range [J]. J Colloid Interface Sci,1968, 26: 62-69.
    [43] S A Adriana, D Jose, A Waldemar, et al. A study of nano-crystalline NiZn-ferrite-SiO_2 synthesized by sol-gel [J]. J Magn Magn Mater, 1999,192(2):277-280.
    [44] L N Donselaar, A P Philipse. Interactions between Silica Colloids with Magnetite Cores: Diffusion, Sedimentation and Light Scattering [J]. J Colloid Interface Sci, 1999, 212:14-23.
    [45] L M Ohmori, A P Philipse. Synthesis and Optical Properties of Gold-Labeled Silica Particles [J].J Colloid Interface Sci, 1995,176:459-466.
    [46] V Blaskov, V Petkov, V Rusanov. Magnetic properties of nanophase CoFe_2O_4 particle[J].J Magn Magn Mater.1996,162: 331-337.
    [47] M Mikhaylova, D K Kim, N Bobrysheva, et al. Superparamagnetism of Magnetite Nanoparticles: Dependence on Surface Modification [J]. Langmuir, 2004,20: 2472-2477.
    [48] J L Lyon, D A Fleeting, M B Stone, et al. Synthesis of Fe Oxide Core/Au Shell Nanoparticles by Iterative Hydroxylamine Seeding [J]. Nano Lett. 2004, 4: 719-723.
    [49] N Hiratsuka, K Kakizaki. Crystal structure of acicular fine barium ferrite particles [J]. Metal Powder Rep, 1999,54(1): 37-40.
    [50] H Du, P Zhang, F Q Liu, et al. Trilayer Composite Poly(styrene/butyl acrylate/acrylic acid) Terpolymer Microspheres with Fe_2O_3 Middle Layer: Synthesis and Characterization [J]. Polym Int, 1997,43(3): 274-280.
    [51] X M Qian, X T Zhang, H B Shao, et al. UV-Vis and Surface Photovoltage Spectra of Fe_2O_3/PoIystyrene Composite Microspheres [J]. Chem Res Chinese U, 2002,18(1): 75-78.
    [52] Sudaryanto, T Nishino, M Ueno, et al. Interfacial and mechanical properties of γ-Fe_2O_3/segmented polyurethane/poly(vinyl chloride) composites [J]. J Appl Polym Sci., 2001, 82(12):3030-3035.
    [53] K Suri, S Annapoorni, R P Tandon, et al. Nanocomposite of polypyrrole-iron oxide by simultaneous gelation and polymerization [J]. Synth. Met, 2002, 126(23):137-142.
    [54] V S Zaitev, D S Filimonor, I A Presrryakov, et al. Physical and Chemical Properties of Magnetite and Magnetite-Polymer Nanoparticles and Their Colloidal Dispersions [J]. J Colloid Interface Sci., 1999,212(1): 49-57.
    [55] Y Deng, W Yang, C Wang, et al. A Novel Approach for Preparation of Thermoresponsive Polymer Magnetic Microspheres with Core-Shell Structure [J]. Adv Mater, 2003,15:1729-1732.
    
    [56] D Wang, J He, N Rosenzweig, et al. Superparamagnetic Fe_2O_3 Beads-CdSe/ZnS Quantum Dots Core-Shell Nanocomposite Particles for Cell Separation [J]. Nano Lett, 2004, 4:409-413.
    [57] F Caruso, M Spasova, A Susha, et al. Magnetic Nanocomposite Particles and Hollow Spheres Constructed by a Sequential Layering Approach[J]. Chem Mater, 2001,13:109-116.
    [58] K S Mayya, B S choeler, F Caruso. Preparation and Organization of Nanoscale Polyelectrolyte-Coated Gold Nanoparticles[J]. Advanced Functional Materials, 2003,13(3):183-188.
    [59] K Yamaguchi, K Matsumoto, T Fujii. Magnetic anisotropy by ferromagnetic particles alignment in a magnetic field[J]. J Appl Phys,1990,67:493-495.
    [60] L Hakho, M P Alfreda, C Vincent,et al. Controlled Assembly of Magnetic Nano-particles from Magnetotactic Bacteria Using Microelectromagnets Arrays[J].Nano Lett,2004,4:995-998.
    [61] H L Niu, Q W Chen, H F Zhu, et al. Magnetic field-induced growth and self-assembly of cobalt nanocrystallites[J].J Mater Chem,2003,13:1803-1805.
    [62] 沈辉,徐雪青,王伟.磁性液体表面形貌与颗粒排列结构的电子显微镜观察[J].中国科学(E辑),2003,33:25-28.
    [63] M Tanase, L A Bauer, A Hultgern, et al. Magnetic Alignment of Fluorescent Nanowires [J]. Nano Lett, 2001, 1(3): 155-158.
    [64] E L Bizdoaca, M Spasova, M Farle, et al. Magnetically directed self-assembly of submicron spheres with a Fe3O4 nanoparticle shell[J]. J Magn Magn Mater, 2002, 240: 44-46.
    [65] K Zahn, R Lenke, G Maret, et al. Two-Stage Melting of Paramagnetic Colloidal Crystals in Two Dimensions[J]. Phys Rev Lett, 1999, 82: 2721-2724.
    [66] R Bubeck, C Bechinger, S Neser, et al. Melting and Reentrant Freezing of Two- Dimensional Colloidal Crystals in Confined Geometry[J]. Phys RevLett, 1999, 82: 3364-3367.
    [67] A S Dimitrov, T Takahashi, K Furusawa, et al. Two-Dimensional Patterns of Magnetic Particles at Air-Water or Glass-Water Interfaces Induced by an External Magnetic Field: Experimental Observation and Dependencies[J]. J Phys Chem, 1996, 100: 3163-3168.
    [68] A S Dimitrov, T Takahashi, K Nagayama. Two-Dimensional Patterns of Magnetic Particles at Air-Water or Glass-Water Interfaces Induced by an External Magnetic Field: Theory and Simulation of the Formation Process[J]. J Phys Chem, 1996, 100: 3157-3162.
    [69] Y Saado, M Goloslvsky, D Davidov, et al. Fabrication of artificial crystals with tunable lattice constant via self-assembly of floating magnetic particles[J]. Synthetic Metals, 2001, 116: 427-432.
    [70] M Golosobsky, Y Neve-Oz, D Davidov. Magnetic-field tunable photonic stop band in metallodielectric photonic crystals[J]. Synthetic Metals, 2003, 139: 705- 709.
    [71] Y Saado, T Ji, M Golosovsky, et al. Self-assembled heterostructrees based on magnetic particles for photonic bandgap applications[J]. Opt Mater, 2001, 17: 1-6.
    [72] 宋正芳.碳石墨制品的性能及其应用[M].机械工业出版社,1987,87.
    [73] 雀部博之.导电高分子材料[M].北京:中国科学出版社,1989,120.
    [74] 朱伯铨,管红梅,刘文超.以表面活性剂改善水对鳞片石墨的润湿性研究.[J].武汉科技大学学报,1990,3:242-244.
    [75] 秦海莉,何润霞,兰辉.石墨分散剂的研究[J].内蒙古石油化工,1998,24(4):9-11.
    [76] 李侃社,闰竹英,邵水源等.LDPE/石墨复合材料的制备和性能[J].西安科技学报,2003,23(2):191-194.
    [77] 周文雅,杨友生,肖建平.隐晶石墨粉表面改性工艺条件实验研究[J].矿产保护与利用,2005,4:22-25.
    [78] 张启彪,乔英杰.TiC改性炭石墨材料的微观结构与性能研究[J].炭素,2005,2:8-12.
    [79] 宋文生,胡成秋,尚尔超.锂离子二次电池炭负极材料-沥青包覆石墨改性研究[J].冶金能源,2000,20(6):27-31.
    [80] 杨志红,汪晓建,李洪辉.异丙醇铝的石墨表面改性[J].中国非金属矿业导刊,2004,2:11-12.
    [81] G H Chen, W G Weng, D J Wu, et. al. Exfoliation of graphite flake and its nanocomposites [J]. Carbon, 2003, 41: 579-625.
    [82] G H Chen, W G Weng, D J Wu, et. al. Preparation of polystyrene/graphite nanosheet composite [J]. polymer, 2003, 44: 1781-1784.
    [83] 何晓勇,张锐等.氧化铜包覆边界陶瓷电容器的研制[J].郑州大学学报,2004,24(4):78—82.
    [84] N Zhang, Q K Cai, et al. Coating of SiC Powder with Nano YAG Phase [J]. Jouranl of Rare Earths, 2005, 23(3): 299-303.
    [85] H Kawaguchi, K Fujimoto, Y Nakazawa et al. Modification and functionalization of hydrogel microspheres [J]. Colloids Surf A, 1996, 109: 147-154.
    [86] M Kryszewski, J K Jeszka. Nanostructured conducting polymer composites-superparamagnetic particles in conducting polymers. [J]. Synthetic Metals, 1998, 94, 99. -104.
    [87] 程彬,朱玉瑞,江万权等.无机-高分子磁性复合粒子的制备与表征[J].化学物理学报,2000,13(3):359—362.
    [88] H Shiho, Y Manabe, N Kawahashi. Magnetic compounds as coatings on polymer particles and magnetic properties of the composite particles [J]. J Mater Chem, 2000, 10: 333-336.
    [89] J Lee, T Isobe, M Senna. Preparation of Ultrafine Fe_3O_4 Particles by Precipitation in the Presence of PVA at High pH [J]. Journal of Colloid and Interface Science, 1996, 177: 490-494.
    [90] H P克鲁格,L E亚历山大.盛世雄.X射线衍射技术[M].第二版,北京,冶金工业出版社,1986,晶粒尺寸的测定:442-453.
    [91] S Hyun, T Ko, K Han, et al. A wet-chemical preparatioin of a Fe_3O_4-CuO composite powder in core-shell structure[J]. Phys Stat Sol, 2004, 12: 3468-3471.
    [92] 刘建永.锂离子电池负极材料改性研究,硕士学位论文,长沙,中南大学,2003.
    [93] A Loaiza-Gil, B Fontal, F Rueda, J Mendialdua, R Casanova[J]. Appl Catal, A Gen. 1999, 177: 193-196.
    [94] 文潮,金志浩,关锦清等.炸药爆轰合成纳米石墨微片的红外光谱研究[J].高等学校化学学报,2004,25:1043-1045.
    [95] 秦润华.磁靶向放射性核素载体——聚多糖基磁性复合粒子的制备,硕士学位论文,南京,南京理工大学,2004.
    [96] C A Mirkin, R L Letsinger, R C MUcic et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials [J]. Nature, 1996, 382: 607-609.
    [97] A K Boal, V M Rotello. Fabrication and Self-Optimization of Multivalent Receptors on Nanoparticle Scaffolds[J]. J Am Chem Soc, 2000, 122(4): 734-735.
    [98] R P Andres, J D Bielefld, D B Janes, et al. Self-Assembly of a Two Dimensional Superlattice of Molecularly Linked Metal Clusters [J]. Science, 1996, 273: 1690-1693.
    [99] V Patil, K S Mayya, S D Pradhan, et al. Evidence for Novel Interdigitated Bilayer Formation of Fatty Acids during Three-Dimensional Self-Assembly on Silver Colloidal Particles [J]. J Am Chem Soc, 1997, 119(39): 9281-9282.
    [100] F Caruso, R Caruso, H Mvhwald. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating [J]. Science, 1998, 282: 1111-1114.
    [101] F Caruso, R Caruso, H Mohwald. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating [J]. Science, 1998, 282: 1111-1114.
    [102] P A Kralchevskyan, N D Denkou. Capillary forces and structuring in layers of colloid particles [J]. Curr Opin Colloid Interface Sci, 2001, 6(4): 383-401.
    [103] D Sohn. Kinetic studies of magnetic latex particles' self-assembly under applied magnetic field[J]. J Magn Magn Mater., 1997, 173(3): 305-313.
    [104] Y Sahoo, M Cheon, S Wang, et al. Field-Directed Self-Assembly of Magnetic Nanoparticles [J]. J Phys Chem B, 2004, 108(11): 3380-3383.
    [105] T Takayama, Y L Kezoe, H Uetake, et al. Self-organization of nonmagnetic spheres by magnetic field[J]. Appl Phys Lett, 2005, 86(23): 234103-234105.
    [106] V M Prida, M Hernandez, M Cervera, et al. Magnetic behaviour of arrays of Ni nanowires by electrodeposition into self-aligned titania nanotubes Magnetic behaviour of arrays of Ni nanowires by electrodeposition into self-aligned titania nanotubes [J]. J Magn Magn Mater, 2005, 294: 69-72.
    [107] F E Osterloh. Solution Self-Assembly of Magnetic Light Modulators from Exfoliated Perovskite and Magnetite Nanoparticles[J]. J Am Chem Soc, 2002, 124: 6248-6249.
    [108] M S Ao-Haik, H Garmestani, D S Li, et al. Mechanical properties of magnetically oriented epoxy[J]. J Polym Sci Part B: Polym Phys, 2004, 42: 1586-1589.
    [109] 吕雪松,赵昱,李洪钟.横向旋转磁场作用下的液固流态化[J].化工冶金,1998,19(4):339—344.1586-1600.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700