高强铝合金搅拌摩擦焊接头组织及薄弱区研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
7050铝合金是航空工业广泛应用的一类重要结构材料,用传统弧焊焊接时,焊缝经常会产生气孔、裂纹、咬边等缺陷。搅拌摩擦焊(FSW)作为一种新型的固相连接方法,它的问世被证实能够避免熔焊焊接易产生的热裂纹、脆性相、残余应力高等缺陷,尤其在以前所谓不可焊接的2000系列、7000系列高强铝合金方面更受亲睐。
     7050铝合金搅拌摩擦焊接头横截面由焊核区(Nugget)、热-机影响区(TMAZ)、热影响区和母材区四部分组成,焊核区由细等轴的再结晶晶粒组成,热-机影响区由变形梯度较大的弧形晶粒组成,热影响区由粗大的母材晶粒组成。焊接参数:如搅拌头尺寸、搅拌头形状、搅拌头材质、搅拌针旋转速度、搅拌针前进速度、下压力的大小任何一个因素的改变都会影响接头的微观组织。
     本文侧重对搅拌针旋转速度,旋转速度与前进速度的比值这两个重要参数对搅拌头组织的影响进行研究。采用光学显微镜、扫面电镜、透射电镜等研究了无缺陷理想接头中焊核区、热-机影响区、热影响区各区的组织特征。试验证明:焊核区组织高倍下观察由细等轴晶构成,低倍下为一簇簇的环组成,类似洋葱的截面,取名“洋葱环”,环的出现是第二相粒子再分布的结果,是由粒子的富集带和粒子的贫乏区间隔构成的。各区位错密度的变化非常明显,析出相的分布、数量、形态差异明显。焊核区主要为热循环过程中未溶解的高温稳定相,热-机影响区既有粗化的析出相又有再析出的细小圆盘状析出相,热影响区晶界析出相粗化且呈连续分布,晶界无析出区数量增多,总之,这样的微观结构决定了其接头的硬度分布特征近似为“W”型。
     热-机影响区、热影响区都有可能成为焊接接头的薄弱区,热-机影响区根部出现“树根”型粒子贫乏区时,该区域成为接头的最薄弱区;当然,热-机影响区无缺陷时,热影响区的粗化成为接头性能低的主要因素,此时热影响区成为接头的最薄弱环节。热-机影响区成为最薄弱区时,焊接态接头的强度系数(接头强度与母材强度的比值)较低,焊后的固溶时效处理难以提高接头强度。热影响区成为最薄弱环节时,接头的强度系数较高,焊后的固溶时效处理可进一步提高接头的强度。
     7050铝合金属时效强化铝合金,焊后的固溶时效处理显得尤为重要。但是,铝合金属于典型的热的不稳定材料,加热到高温时很容易出现晶粒的异常长大现象,影响这种异常长大的因素除了常规的保温温度和保温时间外,因焊接参数的改变,接头组织不同,热的不稳定性不同。搅拌针旋转速度的平方与行走速度的比值更能代表铝合金7050接头热的不稳定性,比值小,接头固溶时稳定性差,焊核区易出现晶粒的异常长大;比值大,接头固溶时相对稳定。提高固溶加热速率可抑制或降低接头热的不稳定性,加热速率高于900℃/h,固溶处理时接头不再出现晶粒的异常长大。再次,固溶保温后,提高冷却液的冷却速度、细化强化相的粒子尺寸也是进一步提高接头强度的途径。
     焊接态的接头其拉伸实验中的断裂位置与焊接参数有关,转速与焊速比约为10的接头,热影响区成为最薄弱的区域,拉伸断裂都发生在热影响区,经过合理有效的固溶时效处理后,断裂位置移向焊核区。提高转速与焊速比,该比值等于15时,不论焊接态、固溶时效态的接头断裂始终在焊核与热-机影响区的交界处。该处始终是接头的薄弱区。
     综上所述,本论文在前人研究的基础上,对高强铝合金搅拌摩擦焊理想接头的组织演化及薄弱区做了分析,对焊后热处理中影响组织的因素做了详尽的调查,找到了提高接头性能的有效措施,论文的研究对于推动铝合金7050的搅拌摩擦焊在航天及其它工业应用中的应用有重要的理论和实际意义。
Aluminium alloy AA7050is one of the strongest aluminium alloys in aviation industrial use today. Some several problems is present during fusion welding, such as porosity, lack-of-fusion, and solidification cracking that renders them very useful in aerospace applications and other industries.Friction stir welding(FSW) is a new kind of solid-phase welding process which is used for butt and lap joints, Relative to fusion welds, the FSW joint may avoid thermal crack, lower residual stresses and eliminating brittleness phase. This new technology can join difficult to weld aluminium alloys by traditional fusion techniques, for example, alloys belonging to the2XXX series and the7XXX series with limited weldability. Friction stir welding has received considerable attention since it is invented.
     Microstructure of transverse cross section of friction stir weld joint of aluminium alloy7050consists of nugget zone, thermo-mechanically affected zone (TMAZ), the heat affected zone (HAZ) and base material. The microstructure of nugget zone is greatly refined due to dynamic recrystallization.crystal grain becomes small. Crystal grains of TMAZ show an elongated shapd due to severely plastic deformation during FSW. The grain structure in the HAZ region, which has not been disturbed mechanically by FSW, is similar to that of the base metal, but it is larger than that of the base metal.All the welding parameters, for example,pin size,pin shape,material of pin, the pin rotation speed, the pin travel speed,axial pressure,which of them influences microstructure when one of these parameters changes.
     .In this paper, FSW test is done under different rotation speed and the different ratio of rotation to travel speed. For defect-free welding joint, The microstructure features of the nugget zone and TMAZ zone and HAZ zone have been characterized by optical microscopy and scanning electron microscopy.grain size have been measured by mean linear intercept. Distribution of precipitation have been analyzed by transmission electron microscopy.Micrograph feature of nugget is equiaxed recrystallized grains, however, macrograph of nugget demonstrate that a segregated, banded, microstructure consisting of alternating hard particle rich and hard particle poor regions is developed.This band structure is called "onion ring".In addition, Dislocation density is different in each zone. Most grains in TMAZ contained a high dislocation density, is similar to that of the base metal, even higher that of the base metal, Grains in nugget zone contained low density of dislocation. The size, morphologies and distribution of precipitation in different regions are also discussed. In nugget zone, the phase was composed of dissolved high temperature stable phase. In TMAZ zone, strengthening precipitates were severely coarsened and partly dissolved while a small amount of very fine η particles were re-precipitated.In HAZ zone, Precipitates of both intragranular and intergranular coarsen. the precipitate-free zone increases in width and more phase forming. Such a microstructure leads to "W type" the hardness distribution characteristics for the joint.
     Either the HAZ zone or the TMAZ zone will be weakest zone for FSW joints, the TMAZ zone will be weakest zone for FSW joints while hard particle poor regions is developed at the bottom of TMAZ zone. Of course, the HAZ zone will be weakest zone because of grain coarsening when there is not defeat in the TMAZ zone. The strength coefficient of joint is low, at the same time, the strength of joint can not be increased by post-weld solution and aged treatment. When the TMAZ zone will be weakest zone. But if the HAZ zone will be weakest zone, Not only the strength coefficient of joint is high, but also the strength of joint can be increased significantly by post-weld solution and aged treatment.
     Aluminium alloy7050belongs to age hardening aluminium alloys, In order to develop the high mechanical properties of aluminium alloy7050, reduce the negative impact of welding process.Post-weld heat treatment is particularly important.But aluminium alloy is unstability at high temperature, It is easy to appear the abnomal grain growth when it is heated to a high temperature. Temperature and time are two factors that affects grain heat stability.besides, welding parameters also determine stability of the microstructure. For FSW joint of aluminium alloy7050, the ratio of the square of the pin rotating speed to welding speed is on behalf of instability at high temperature. Stability of the joints is low at high temperature for some joints welded with the small ratio of the square of rotation speed to travel speed, It is prone to abnormal grow for nugget grain. thermal stability of the joints welded with the high ratio of the square of rotation speed to travel speed is improved, abnormal grain growth can be resisted or reduced by high heat rate during solution treatment. It is stable during solution treatment at the heat rate of900℃/h.On the other hand, Aluminum alloys containing a high concentration of alloying elements are considered "quench sensitive"where the cooling rate from thermal exposures has an influence on the mechanical properties by fine precipitation. In general, for ideal as-FSW joint, Increasing cooling rate after solution treatment, the abnormal growth of grain is inhibited, the strength of the joint can increased significantly.
     For the as-welded joint, facture location depends on welding parameters. facture in tensile test occurs in the HAZ because of the HAZ zone is weakest zone when the joint is friction stir welded with the parameter,which the ratio of rotation speed to travel speed equals to10.The facture location shifted from the HAZ zone to the stir zone after solution and aged treatment. When the ratio of rotation speed to travel speed tended to reach15, the weakest zone of the joint shifted from the HAZ zone to the TMAZ zone. For this kind of joint, facture happened in the TMAZ zone both as-welded and post heat treatment joint. The TMAZ zone is the weakest zone all the time.
     In summary, this paper has obtained some new ideas and achieved some research results based former studies. microstructure character of defect-free FSW joint and weak zone was analysed in detail, the effect of welding parameter on microstructure and property was investigated, the factor that influence propertier of FSW joints was found during solution and aged treatment.some measures that increase the property of the FSW joints were put forward, which could promote development of FSW process in the connection field of7050aluminium alloy.
引文
[1]张铮。搅拌摩擦焊的特点和应用.材料工程.1999,(2):35-37
    [2].张胜玉.搅拌摩擦焊原理及应用.材料开发与应用.2000.30(1):6-9.
    [3].陈彦宾,曹丽杰.铝合金激光焊接研究现状.焊接,2001,30(2):197.
    [4]李晓梅,申长吉,王蕾,等.LY12薄板焊接热裂纹敏感性探讨.轻合金加工技术,1995,23(7):23-27.
    [5]DAWES C J,THOMAS W M.Friction stir process welds aluminum alloys.Welding Journal (Miami,Fla),1996,75(3):41-45.
    [6]DAWES C J. Introduction to friction stir welding and its development.Welding and Metal Fabrication,1995,63(1):13-15.
    [7]STEWARD W W.Welding of airframes using friction stir.Air & spacefuropf,2001,3 (3/4):64-66.
    [8]Fonda R W, Bingert J F, Colligan KJ. Development of grain structure during friction stir welding.Scripta Mater,2004,51:243-248.
    [9]邢丽,柯黎明,刘鸽平.铝合金拌摩擦焊组织及性能分析.焊接学报,2002,23(6):55-58.
    [10]Jun Wang, Hong Zou, Cong Li, et al. The microstructure evolution of type 17-4PH stainless steel during long-term aging at 350℃.Nuclear Engineering and Design.2006, 236:2531-2536.
    [11]Jun Wang, Hong Zou, Cong Li, et al.The effect of microstructural evolution on hardening behavior of type 17-4PH stainless steel in long-term aging at 350 ℃.Materials Characterization,2006,57:274-280.
    [12]H.W. Zhang, Z.Zhang, J.T.Chen.3D modeling of material flow in friction stir welding under different process parameters. Journal of Materials Processing Technology,2007, 183:62-70.
    [13]Jin Man, Li Jing, Shao Guang Jie.The effects of Cu addition on the microstructure and thermal stability of an Al—Mg-Si alloy. Journal of Alloys and Compounds.2007,437): 146-150.
    [14]STEWARD W W.Welding of airframes using friction stir.Air & spacefuropf,2001,3 (3/4):64-66.
    [15]刘小文,鄢君辉,杜随更.LY12搅拌摩擦焊技术.焊接学报,2001,22(4):55-57.
    [16]Donne C, Biallas G. European Conference on Space Craft Structures, Materials and Mechanical Testing,,1998,309-314.
    [17]G. Biallas, R. Braun, C.D. Donne, G. Staniek, W.A. Kaysser, Mechanical properties and corrosion behavior of friction stir welded 2024-T3, in:Proceedings of the First International Symposium on Friction Stir Welding, TWI Ltd, Paper, CA, USA, June 1999, S3-P3.
    [18]吴海亮.航空铝合金搅拌摩擦焊接头疲劳裂纹扩展速率试验研究.天津大学.硕士毕业论文.
    [19]周曙君.高强铝合金搅拌摩擦焊焊接接头疲劳性能研究.南昌航空大学.硕士毕业论文.
    [20]秦占领.沉淀强化铝合金搅拌摩擦焊工艺及接头性能的研究.南昌航空大学.硕士毕业论文.
    [21]张田仓,郭德伦,陈沁刚,等.铝合金搅拌摩擦焊技术研究.机械工程学报,2002,38(2):127-130.
    [22]M.Kumagai, S.Tanaka, Properties of aluminum wide panels by friction stir welding, in: Proceedings of the First International Symposium on Friction Stir Welding, TWI Ltd, CA, USA, June 1999,. S3-P2.
    [23]D.G.Kinchen, Z.X. Li, G.P. Adams, Mechanical properties of friction stir welds in Al-Li 2195-T8, in:Proceedings of the First International Symposium on Friction Stir Welding, TWI Ltd, CA, USA,June 1999, S9-P2.
    [24]Shinoda T. Recent development of f riction stir welding process. Light Metal Welding and Const ruction,1999,37(9):406-412.
    [25]H. Zhang, S.B. Lin, L. Wu, et al. Defects formation procedure and mathematic model for defect free friction stir welding of magnesium alloy[J]. Materials and Design,2006, (27): 805-809.
    [26]赵衍华,林三宝,吴林.2014铝合金搅拌摩擦焊接头缺陷分析.焊接,2005,7:9-12.
    [27]王廷,刘会杰,冯吉才,等.7050-T7451铝合金搅拌摩擦焊焊缝缺陷分析.焊接,2009,3:41-44.
    [28]张健董春林李光.根部缺陷对2024-T3 FSW接头性能的影响.航空制造技术,2009,18:66-68.
    [29]王磊,谢里阳,李兵.铝合金搅拌摩擦焊焊接过程缺陷分析.机械制造,2007,46(522):5-9.
    [30]任淑荣,马宗义.焊后热处理工艺和背部二次焊接对搅拌摩擦焊接7050-T651铝合金性能的影响.金属学报.2007,143(3):225-230.
    [31]H.Okamura, K.Aota, M.Sakamoto, et al. Behavior of oxide during friction stir welding of aluminum alloy and its influence on mechanical properties. Q. J. Jpn. Weld. 2001,19:446-456.
    [32]Adem Kurt, Ilyas Uygurb, Eren Cete.Surface modification of aluminium by friction stir processing.Journal of Materials Processing Technology,2011,211:313—317.
    [33]M.A.Sutton, B.Yang, A.P.Reynolds.et, Microstructural studies of friction stir welds in 2024-T3 aluminum. Materials Science and Engineering,2002, A323:160-166.
    [34]YANG Bang-cheng, TAN Jun-hui, SUTTON M.A.,et al Banded microstructure in AA2024-T351 and AA2524-T351 aluminum friction stir welds.Materials Science and Engineering,2004,A364:55-65.
    [35]William D. Lockwood, Borislav Tomaz, A.P. Reynolds. Mechanical response of friction stir welded AA2024:experiment and modeling. Materials Science and Engineering,2002, A323:348-353.
    [36]S.Benavides, Y.Li, L.E. Murr, et al, Lowtemperature friction stir welding of 2024 aluminum, Scripta Mater.1999,41:809-815.
    [37]Anthony P.Reynolds, Bangcheng Yang, Robert Taylor. Mixed mode I/II fracture of 2024-T3 friction stir welds. Engineering Fracture Mechanics.2003,70:2215-2234.
    [38]赵衍华,林三宝,申家杰,吴林.2014铝合金搅拌摩擦焊接头的微观组织及力学性能.航空材料学报,2006,26(1):67-70.
    [39]S.Benavides,Li Y,L.E Murr,et al.Low-temperature friction-stir welding of 2024 aluminum alloy.Scripta Materialia,1999,41(8):809-815.
    [40]F.C.Liu, B.L.Xiao,K.Wang, et al.Investigation of superplasticity in friction stir processed 2219A1 alloy.Materials Science and Engineering.2010,A527:4191-4196.
    [41]G. CAO, S.KOU Friction Stir Welding of 2219 Aluminum:Behavior of the ta (A12Cu) particles.Welding Journal,2005,84(1):1-8.
    [42]Y.C. Chen, J.C. Feng, H.J. Liu.Precipitate evolution in friction stir welding of 2219-T6 aluminum alloys.Materials scharacterization,2009,60:476-481.
    [43]Wei feng Xu, Jin he Liu. Microstructure and pitting corrosion of friction stir welded joints in 2219-0 aluminum alloy thick plate.Corrosion Science.2009,51:2743-2751.
    [44]P. Bala Srinivasan, W.Dietzel, R.Zettler. Effects of inhibitors on corrosion behaviour of dissimilar aluminium alloy friction stir weldment. Corrosion Engineering,Science and technology,2007,42(2):161-167.
    [45]Y.C.Chen, H.J.Liu, J.C. Feng. Effect of post-weld heat treatment on the mechanical properties of 2219-0 friction stir welded joints. Journal of materials science,2005,40:4657-4659.
    [46]Y.S.Sato, H.Kokawa, M.Enomoto,et al Microstructural evolution of 6063 aluminum during friction-stir welding. Metall. Mater.Trans,1999,A30:2429-2437.
    [47]Y.S.Sato, H.Kokawa, M.Enomoto, et al, Precipitation sequence in friction stir weld of 6063 aluminum during aging.Metall. Mater. Trans,1999, A30:3125-3130.
    [48]Y.S.Sato, H.-Kokawa, Distribution of tensile property and microstructure in friction stir weld of 6063 aluminum.Metall. Mater. Trans,2001,A32:3023-3031.
    [49]G. Bussu, P.E.Irving. The role of residual stress and heat affected zone properties on fatigue crack propagation in friction stir welded 2024-T351 aluminium joints. International Journal of Fatigue,2003,25(1):77-88.
    [50]GBussu, P.E.Irving, Fatigue performance of friction stir welded 2024-T351 aluminum joints, in:Proceedings of the First International Symposium on Friction Stir Welding, Paper No. S3-P1, CA, USA,June 1999, TWI Ltd.
    [51]Biallas G, Braun R, Donne C,et,al 1st International FSW Symposium, Oaks, CA, USA: Rockwell Science Center,14-16 June 1999,213-218.
    [52]C.M. Chen and R. Kovacevic, Finite Element Modelling of Friction Stir Welding-Thermal and Thermomechanical Analysis[J]. Int. J. Mach. Tools Manuf,2003, 43:1319-1326.
    [53]J.A. Schneider and A. C. Nunes, Characterisation of Plastic Flow and Resulting Microtextures in a Friction Stir Weld. Metall. Mater. Trans. B,2004,35:777-783.
    [54]K. Colligan, Dynamic Material Deformation during Friction Stir Welding of Aluminum, Proc. First Int. Symp. on Friction Stir Welding, Thousand Oaks, CA June 1999, TWI:234-240.
    [55]K.Colligan, Material Flow Behavior during Friction Stir Welding of Aluminum.Weld J.Suppl,1999,78(7):229-237.
    [56]K. N. Krishnan. The effect of post weld heat treatment on the properties of 6061 friction stir welded joints. Journal of materials science,2002,37:4537-4543.
    [57]A.P. Reynolds, Visualisation of Material Flow in Autogenous Friction Stir Welds, Sci. Technol. Weld. Join,2000,5 (2):120-124.
    [58]. Y.H. Zhao, S.B. Lin, F.X. Qu,et al Influence of Pin Geometry on Material Flow in FSW Process, Mater.Sci. Technol,2006,22 (1):45-50.
    [59].Cavaliere P,Squlooace A,Campanile G,Panella F.Effect of welding parameters on mechanical and microstructure properties of AA6056 joints produced by friction stir welding.Mater process Technol,2006,180:263-270.
    [60]S.G. Lim,S.S. Kim,C.G. Lee, Tensile Behavior of Friction Stir Welded Al 6061-T651 Journal of the Korean Institute of Metals and Materials,2004,42(l):29-36.
    [61]Y.S. Sato, M. Urata;H. Kokawa, Effect of Friction Stirring on Microstructure in qual Channel Angular Pressed Aluminum Alloys. Materials Science Forum,2003, 426:2947-1954.
    [62]U.F.H.R. Suhuddin,S. Mironov;Y.S. Sato;H. Kokawa, Grain structure and texture evolution during friction stir welding of thin 6016 aluminum alloy sheets. Materials Science and Engineering,2010,45:1200-1211.
    [63]L. Magnusson, L. Kallman, Mechanical properties of friction stir welds in thin sheet of aluminum 2024,6013 and 7475. Proceedings of the Second International Symposium on Friction Stir Welding, Gothenburg, Sweden, TWI Ltd. and IVF, June 2000,:S2-P3.
    [64]张田仓,郭德伦,陈沁刚,等.铝合金搅拌摩擦焊技术研究.机械工程学报,2002,38(2):127-130.
    [65]王希靖,张杰,牛勇,等.焊接速度对7050-T7451铝合金搅拌摩擦焊接头疲劳性能的影响.宇航材料工艺,2008,4:66-69.
    [66]V. Balasubramanian. Relationship between base metal properties and friction stir welding process parameters. Materials Science and Engineering,2007, A58:112-121.
    [67]P. CAVALIERE, E. CERRI. Mechanical response of 2024-7075 aluminium alloys joined by Friction Stir Welding. Journal of materials science,2005,40:3669-3676.
    [68]K.V. Jata, S.L. Semiatin. Continuous dynamic recrystation during friction stir welding of high strength aluminium alloys.Scripta mater,2000,43:743-749.
    [69]Jata K V, Semiatin S L. Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys. Scripta Mater,2000,43:743-751.
    [70]Shibayanagi T, Maeda M. Microstructure and hardness of friction stir welded 7075 aluminium alloy joints. Welding international,2005,19(6):425-432.
    [71]Fuller, Christian B, Mahoney, et al. Evolution of microstructure and mechanical properties in naturally aged 7050 and 7075 Al friction stir welds. Materials Science and Engineering,2010,527(9):2233-2240.
    [72]David P. Field, Tracy W. Nelson. Tool Geometry Dependence of Local Texture in Friction Stir Welds of 7050 Aluminum Plate. Materials Science Forum,2002, 426(4):150-1512.
    [73]A. Hassan, A. Norman, P. Prangnell, The Effect of Welding Conditions on the Microstructure and Mechanical Properties of the Nugget Zone in AA7010 Alloy Friction Stir Welds, Third International Symposium on Friction Stir Welding, (Kobe,Japan),TWI, Sept 27-28,2001,
    [74]A. Hassan, A. Norman, P. Prangnell. The Effect of the Welding Conditions on the Nugget Zone in Friction Stir Welds in an AA7010 Alloy, Sixth International Trends in Welding Research Conf. Proceedings, ASM International, Materials Park, OH,2003,287-292.
    [75]A. Steuwer, M.Dumont, M.Peel et.The variation of the unstrained lattice parameter in an AA7010 friction stir weld. Acta Materialia.2007,55:4111^120.
    [76]M. Dixit, R.S. Mishra, K.K. Sankaran. Structure-property correlations in Al 7050 and Al 7055 high-strength aluminum alloys. Materials Science and Engineering,2007, A235:660-671.
    [77]M. Mahoney, C. Rhodes, J. Flintoff, et al. Properties of Friction Stir Welded 7075 T651 Aluminum, Metall. Mater. Trans. A,1998,29:1955-1964.
    [78]D. Allehaux, G. Petit, M. Campagnac, GLapasset, and A. Denquin, Microstructure and Properties of a Friction Stir Welded 7349-T6 Aluminum Alloy. Fourth International Symposium on Friction Stir Welding, City, UT, TWI,2003, May 14-16,483-493.
    [79]R. Talwar, D. Bolser, R. Lederich, et al.Friction Stir Welding of Airframe Structures Second International Symposium on Friction Stir Welding, Gothenburg, Sweden 2000, 320-329.
    [80]Svensson LE, Karlsson L, Larsson H,et al. Microstructure and mechanical roperties of friction stir welded aluminium alloys with special reference to AA 5083 and AA 6082. Sci Technol Weld Join,2000,5(5):285-96.
    [81]M. Peel, A. Steuwer, M. Preuss, et al. Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds. Acta Materialia.2003,51:4791-4801.
    [82]Soundararajan V, Zekovic S, Kovacevic R. Thermo-mechanical model with adaptive boundary conditions for friction stir welding of Al 6061. Int J Mach Tools Manuf 2005;45:1577-87.
    [83]Hanadi G. Salem, Friction stir weld evolution of dynamically recrystallized AA 2095 weldments.Scripta Materialia.2003,49:1103-1110.
    [84]ERICSSON M, SANDSTROM R. Influence of welding speed on the fatigue of friction stir welds, and comparison with M1G and TIG. International Journal of Fatigue,2003, 25(12):1379-1387.
    [85]M.G. Dawes, S.A. Karger, T.L. Dickerson, J. Przyoatek, Strength and fracture toughness of friction stir welds in aluminum alloys, in:Proceedings of the Second International Symposium on Friction Stir Welding, Gothenburg, Sweden, TWI Ltd. and IVF,June 2000, S2-P1.
    [86]A.V. Strombeck, J.F.D. Santos, F. Torster, P. Laureano, M. Kocak,Fracture toughness behaviour of FSW joints on aluminum alloys, in:Proceedings of the First International Symposium on Friction Stir Welding,, California, USA, June 1999, TWI Ltd. S9-P1.
    [87]T.Hashimoto, S.Jyogan, K.Nakada, Y.GKim, M.Ushio, FSW joints of high strength aluminum alloy, in:Proceedings of the First International Symposium on Friction Stir Welding, Paper No. S9-P3,CA, USA, June 1999, TWI Ltd.
    [88]T.U.Seidel, A.P.Reynolps, Visualization of the material flow in AA2195 friction-stir welds using a marker insert technique, Metall.Mater. Trans. A 32 (2001) 2879-2884.
    [89]G.Liu, L.E.Murr, C.S.Niou, et al Microstructural aspects of the friction-stir welding of 6061-T6 aluminum,Scripta Mater.1997,37:355-361.
    [90]L.E.Murr, GLiu, J.C. Mcclure, A TEM study of precipitation and related microstructures in friction-stir welded 6061 aluminum,J. Mater.1998,33:1243-1251.
    [91]H.J. Liu, H.Fujii, M.Maedaa, et al, Tensile properties and fracture locations of friction-stir-welded joints of 2017-T351 aluminum alloy. Journal of Materials Processing Technology,2003,142:692-696.
    [92]William D.Lockwood, Borislav Tomaz,et. Mechanical response of friction stir welded AA2024:experimentand modeling. Materials Science and Engineering.2002, A323: 348-353.
    [93]Jun hui Yan, Michael A Sutton, Anthony P Reynolds. Notch tensile response of mini-regions in AA2024 and AA2524 friction stir welds. Materials Science and Engineering.2006, A427:289-300.
    [94]P.M.kelly.The effect of particle shape on dispersion hardening. Scriptal Metallurgical. 1972,6:647-656.
    [95]F. J. HUMPHREYS. A unified theory of recovery,recrystallization and grain growth,based on the stability and growth of cellular microstruction-11.The effect of second-phase particles. Acta mafer.1997,45(12):5031-5039.
    [96]H.Jazaeri, F.J.Humphreys. The transition from discontinuous to continuous recrystallization in some aluminium alloys II-annealing behaviour [J] Acta Materialia. 2004,52:3251-3262.
    [97]N. Kamp, A.Sullivan, R.Tomasi,Modelling of heterogeneous precipitate distribution evolution during friction stir welding process. Acta Materialia,2003,20:201-208.
    [98]RHODES C G, MAHONEY M W, BINGEL W H, et al.Effects of friction stir welding on microstructure of 7075 aluminum. Scripta Materialia,1997,36(1):69-75.
    [99]王大勇,冯吉才,王攀峰.搅拌摩擦焊接Al-Li合金接头的微观组织及力学性能.金属学报,2004,40(5):504-508.
    [100]K. Elangovan, V. Balasubramanian. Influences of post-weld heat treatment on tensile properties of friction stir-welded AA6061 aluminum alloy joints. Materials characterization,2008 (59):1168-1177.
    [101]A. GERLICH, G. AVRAMOVIC-CINGARA, T.H. NORTH. Stir Zone icrostructure and Strain Rate during Al 7075-T6 Friction Stir Spot Welding. Metallurgical and materials transactions A,2006,37A:2772-2785.
    [102]MISHRA R S, MA Z Y. Friction stir welding and processing. Mater Sci Eng,2005, 50(12):178-185.
    [103]MISHRA R S, MA Z Y, CHARIT I. Friction stir processing:a novel technique for fabrication of surface composite. Mater Sci Eng,2003,34(1/2):307-310.
    [104]I. Charit, R.S. Mishra.Abnormal grain growth in friction stir processed alloys. Scripta Materialia.2008,58:367-371.
    [105]X. Sauvage, A. D'ed'e, A. Cabello Mu-noz, et al. Precipitate stability and recrystallisation in the weld nuggets of friction stir welded Al-Mg-Si and Al-Mg-Sc alloys. Materials Science and Engineering.2008, A 491:364-371.
    [106]Kh. A.A. Hassan, A.F. Norman, D.A. Price et al,Stability of nugget zone grain structures in high strength Alalloy friction stir welds during solution treatment. Acta Materialia.2003,51:1923-1936.
    [107]APIETRAS, LZADROGA, MLOMOZIK. Characteristics of welds formed by pressure welding incorporating stirring of the weld material (FSW), Welding nternational, 2004,18(1):5-10.
    [108]H.R. KRONINGER, A.P. REYNOLDS. R-curve behaviour of friction stir welds in aluminium-lithium alloy 2195. Fatigue and Fracture of Engineering Materials and Structures,2002,25(3):283-290.
    [109]Yutaka S. Sato, Hideaki Takauchi, Seung Hwan C. Park. Characteristics of the kissing-bond in friction stir welded Al alloy 1050. Materials Science and Engineering, 2005, A 405:333-338.
    [110]沈洋,王快社,吕爽,等。7075铝合金搅拌摩擦焊研究.特种铸造及有色合金,2007,27(2):145-147.
    [111]Shusheng Di, Xinqi Yang, Dapeng Fang et al. The influence of zigzag-curve defect on the fatigue properties of friction stir welds in 7075-T6 Al alloy. Materials Chemistry and Physics,2007, xxx () xxx-xxx
    [112]王涛,尹志民.高强变形铝合金的研究现状和发展趋势.稀有金属,2006,30(2):197。
    [113]田福泉,李念奎,崔建忠.超高强铝合金强韧化的发展过程及方向.轻合金加工技术,2005,33(12):121-126.
    [114]戴晓元,夏长清,吴安如,王杰文,李杨勇.含钪超高强铝合金的研究现状及发展趋势.材料导报,2006,20(5):104-109.
    [115]邢丽,柯黎明,周细应,等.防锈铝LF6的固态塑性连接工艺.中国有色金属学报,2002,12(6):1162-1166.
    [116]周鹏展,钟掘,贺地求,舒霞云.2519厚板搅拌摩擦焊接工艺组织分析.中南大学学报,2006,37(4):114-118.
    [117]贺地求,邓航,周鹏展.2219厚板搅拌摩擦焊组织及性能分析.焊接学报,2007,28(9):13-16.
    [118]S.M. Chowdhury, D.L. Chen, S.D. Bhole,et al. Tensile properties of a friction stir welded magnesium alloy:Effect of pin tool thread orientation and weld pitch. Materials Science and Engineering.2010, A 527 (:) 6064-6075.
    [119]A. Bigot, F. Danoix, P. Auger, D. Blavette, A. Menand.3D reconstruction and analysis of GP zones in AI-I.7Cu (at%)a tomographic atom probe investigation。 Applied Surface Science,1996, vol 94/95:261-266.
    [120]严铿,雷艳萍,章正,等.铝合金搅拌摩擦焊时焊接速度与热输入的关系.焊接学报,2009,30(1):73-78.
    [121]S.M. Chowdhury, D.L. Chen, S.D. Bhole, et al. Effect of pin tool thread orientation on fatigue strength of friction stir welded AZ31B-H24 Mg butt joints. Procedia Engineering,2010,2:825-833.
    [122]T.U. Seidel, A.P. Reynolds, Two-dimensional friction stir welding process model based on fluid mechanics. Metall. Mater. Trans.2001,A 32:2879-2884.
    [123]N. Shanmuga Sundaram, N. Murugan. Tensile behavior of dissimilar friction stir welded joints of aluminium alloys. Materials and Design,2010,31:4184-4193.
    [124]ROTERS F. Realisierung eines Mehrebenenkonzeplcs in der lastizilatsmodellierung Von der Versetzungsdy-namik Zur Finite Elemente Simulation. Hochschule Aachen. Germany.1998,198-210.
    [125]Roters F,Raabe D,Gottstein G. Calculation of stress strain curves by using 2 dimensional dislocation dynamics. Computational Materials Science,1996,7:56-62.
    [126]Roters F,Raabe D,Gottstein G. Work hardening in helerogeneous alloys microstructure approach based on there internal slale variables. Acla Materia.2000,48:4181-4189.
    [127]赵衍华,林三宝,吴林.2014铝合金搅拌摩擦焊接过程塑性金属流变可视化.焊接学报,2005,26(6):73-76.
    [128]王希靖,韩晓辉,李常峰,包孔,郭瑞杰.厚铝合金板搅拌摩擦焊塑性金属不同深度的水平流动状况.中国有色金属学报,2005,15(2):198-203.
    [129]Y. Li, L.E. Murr, J.C. McClure. Flow visualization and residual microstructures associated with the friction-stir welding of 2024 aluminum to 6061 aluminum Scr. Mater.1999,40:1041-1046.
    [130]T.U. Seidel, A.P. Reynolds, Metall. Visualization of the material flow in AA2195 friction-stir welds using a marker insert technique. Mater. Trans.2001,A 32:2879-2884.
    [131]P.A. Colegrove, H.R. Shercliff, J.3-Dimensional CFD modelling of flow round a threaded friction stir welding tool profile. Mater. Process. Technol.2005,169:320-327.
    [132]R. Nandan, G.G. Roy, T. Debroy, Numerical Simulation of Three-Dimensional Heat Transfer and Plastic Flow During Friction Stir Welding Metall. Mater. Trans.2006,A 37(4):1247-1259.
    [133]H.W. Zhang, Z. Zhang, J.T. Chen, J. The finite element simulation of the friction stir welding process Mater. Proc. Technol.2007,183 (1-2) 62-70.
    [134]H. Zhang, S.B. Lin, L. Wu, J.C. Feng, S.L. Ma, Defects formation procedure and mathematic model for defect free friction stir welding of magnesium alloy Mater. Des. 2006,27 (9):805-809.
    [135]C.S. Paglia, R.G. Buchheit. The time-temperature-corrosion susceptibility in a 7050-T7451 friction stir weld. Materials Science and Engineering.2008, A 492:250-254.
    [136]王希靖,孙桂苹,张杰,等.焊后热处理对高强铝合金搅拌摩擦焊接头的影响.中国有色金属学报,2009,19(3):484-489.
    [137]姜锋,赵娟,蹇海根,等.焊后热处理对Al-Mg-Sc合金板材焊接接头组织与力学性能的影响.金属学报.2008,44(10):1277-1280.
    [138]陈继强,尹志民,何振波,等.铝锌镁钪锆合金搅拌摩擦焊接头组织与性能.焊接学报.2009,30(10):68-73.
    [139]王希靖,李树伟,牛勇,张杰.A7075搅拌摩擦焊疲劳裂纹扩展速率试验分析.焊接学报,2008.29(9):5-8.
    [140]A. Deschamps, G. Texier, S. Ringeval. Influence of cooling rate on the precipitation microstructure in a medium strength Al-Zn-Mg alloy. Materials Science and Engineering.2009, A 501:133-139.
    [141]杨德庄位错与金属强化机制,哈尔滨工业大学出版社出版,1990.
    [142]Adler P N,Delasi R.Influence of microstructure on the mechanical properties and stress corrosion susceptibility of 7075 aluminum alloy.Metallurgical Transactions.1972, 3(9):3191-3200.
    [143]华明建,李春志,王鸿渐,微观组织对7075铝合金的屈服强度和抗应力腐蚀性能的影响.金属学报,1988,24(1):41-45.
    [144]. Adler P N,Delasi R.Geschwind G. Influence of microstructure on the mechanical Matall Trans,1972,12(3):3191-3200.
    [145].王祝堂,田荣璋.铝合金及其加工手册[M].中南工业大学出版社,1989.
    [146].Song.R G,Tseng M K,Zhang B J. The application of artificial neural networks to the investigation of aging dynamics in 7175 aluminium alloys. Acta Mater,1996,44:3241.
    [147].Unwin P.N.T,Smith G.C.J. The nucleation and initial stages of growth of grain boundary precipitates in Al-Zn-Mg and Al-Mg alloys Inst Metals,1969,17(11):1379-1393.
    [148]P.N.T. Unwin;G. W. Lorimer and R. B. Nicholson The origin of the grain boundary precipitate free zone. Acta Metallurgica.1969,17(11):1363-1377.
    [149].大西忠一,杨湘生,等.铝加工技术,1993,(2):308-314.
    [150]R.W. Fonda;J.F. Bingert Texture variations in an aluminum friction stir weld. Scripta materialia,2007,57(11):1052-1053.
    [151]李杰.热处理对7055合金组织和性能的影响,中南大学,硕士毕业论文,2005,14-15.
    [152]G. Bussu, P.E. Irving. The role of residual stress and heat affected zone properties on fatigue crack propagation in friction stir welded 2024-T351 aluminium joints International Journal of Fatigue,2003,25:77-88.
    [153]戴晓元,夏长清,刘昌斌,等.固溶处理及时效对7xxx铝合金组织与性能的影响. 材料热处理学报.2007,28(4):59-63.
    [154]张善.材料强度学[M].哈尔滨工业大学出版社,2004:177-179.
    [155]C.R布鲁克斯。著,有色合金的热处理、组织与性能.冶金工业出版社.1988,26-30.
    [156]Moataz M. Attallah, Hanadi G. Salem. Friction stir welding parameters:a tool for controlling abnormal grain growth during subsequent heat treatment. Materials Science and Engineering.2005, A 391:51-59.
    [157]C. Antonione, F. Marino, G. Riotino,et al. Effect of slight deformations on grain growth in iron. Mater. Sci.1977,12 (4):747-759.
    [158]C.L. Briant, F. Zaverl, W.T. Carter, The effect of deformation on abnormal grain growth in tungsten ingots Acta Metall. Mater.1994,42(8):2811-2821.
    [159]D.J. Srolovitz, G.S. Grest, M.P. Anderson, Impurity effects on domain-growth kinetics. II. Potts model Acta Metall.1985,32(5):3021-3025.,
    [160]. S. Muthukumaran, S. K. Mukherjee. Multi-layered metal flow and formation of onion rings in friction stir welds.
    [161]Z.Y. Ma, R.S. Mishra, M.W. Mahoney,et al. High strain rate superplasticity in friction stir processed Al-Mg-Zr alloy. Mater. Sci. Eng.2003,351 (1-2) 148.
    [162]Y.Nagano, S.Jogan, T.Hashimoto, Mechanical properties of aluminum die casing jointed by FSW, in:Proceedings of the Third International Symposium on Friction Stir Welding, Paper No. Post-12,Kobe, Japan, September 2001, TWI Ltd.
    [163]J.Hagstrom, R.Sandstrom, Mechanical properties of welded joints in thin walled aluminum extrusions, Sci. Technol. Weld. Join.1997,2:199-208.
    [164]Won-Bae Lee, Yun-Mo Yeon, Seung-Boo Jung, The joint properties of dissimilar formed Al alloys by friction stir welding according to the fixed location of materials. Scripta Materialia 49 (2003) 423-428.
    [165]WANG xun-hong, WANG Kuai-she, Microstructure and properties of friction stir butt-welded AZ31 magnesium alloy. Materials Science and Engineering,2006, A431:114-117
    [166]唐文冠,赖祖涵,万华明.7050铝合金时效动力学研究,江西科学,1992,10(1):19-27.
    [167]P. Upadhyay, A.P. Reynolds. Effects of thermal boundary conditions in friction stir welded AA7050-T7 sheets. Materials Science and Engineering,2010,527(6):1537 1543.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700