河南省大别山地区中生代中酸性小岩体特征及钼多金属成矿系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河南省大别山地区位于大别山造山带西段北麓,区内构造演化历史复杂,岩浆活动频繁,其中中生代燕山期侵入岩最为发育。在燕山期侵入岩中,中酸性小岩体数量众多,与钼等多金属矿化关系密切。
     大别山地区中生代中酸性小岩体主要沿北西西向深大断裂分布,受北西西向与北北东向断裂联合控制。小岩体多呈岩株或脉状产出,出露面积多数在1km2以下;岩性主要为花岗斑岩、似斑状花岗岩、二长花岗岩,少量为石英闪长岩及闪长岩等;岩石化学成份以高硅、富碱、多钾、贫镁、少钙为特征,属高钾钙碱性系列或钾玄岩系列。中酸性岩浆主要来源于下地壳的部分熔融,并上升至地壳浅部侵位,属深源浅成型花岗岩类。
     中酸性小岩体与钼多金属矿床具有密切的空间和成因联系。钼多金属矿床主要赋存于小岩体内或其周围区域;小岩体成矿元素丰度高,是钼多金属矿的成矿母岩。大别山地区钼多金属矿床成因类型主要有斑岩型、矽卡岩型、脉型和角砾岩筒型,它们具有相似的成矿环境和成矿作用过程,可厘定为一个统一的斑岩型钼多金属成矿系统。
     矿石硫同位素、铅同位素、辉钼矿Re的含量及稀土元素特征等资料显示,大别山钼多金属矿床成矿物质可能主要来源于下地壳。
     测定母山斑岩型钼矿床和陡坡钼矿化点的辉钼矿Re-Os同位素模式年龄分别为155.7±5.1Ma和140.5±8.2Ma,结合前人测定的同位素年龄资料,认为大别山钼多金属矿床成矿年龄可分为两期:早期成矿年龄为155.7±5.1 Ma~140.5±8.2 Ma,晚期成矿年龄为(122.1±2.4)~(113.1±7.9) Ma,但晚期成矿规模大,为主成矿期。成矿时代从整体上要晚于东秦岭华北克拉通南缘的斑岩型钼成矿带。
     成岩成矿时代表明,晚侏罗至早白垩纪区域构造体制由挤压向伸展的转换和其后伸展体制下岩石圈大规模减薄拆沉是大别山地区中生代中酸性岩浆活动和钼多金属成矿作用的地球动力学背景。
     大别山钼多金属矿床形成后主要受区域隆升和风化剥蚀作用的改造,但整体上矿床保存较好,区内找矿潜力较大。
Dabieshan area of Henan province located in the northern foot of Western Dabie orogenic belt, the structural evolution and magma intrusions are complicated at this region, especially of theYanshanian intrusive rocks. There are many intermediate-acid small intrusive bodies among Yanshanian intrusive rocks and they are usually closed related to Molybdenum-polymetallic mineralization.
     Mesozoic intermediate-acid small intrusive bodies of Dabieshan area mainly distributed along deep-seated faults and controlled by groups of faults with orientations of NWW and NNE. Most of small intrusive bodies are stocks or dikes, and each of the dimension is less than 1km2 ; they are mostly granite-porphyry、porphyritic-granite、monzogranite,a small amouts of them are quartz diorite or diorite; the chemical characters are high content of SiO2、K2O and low content of Mg and CaO, on the SiO2-K2O diagram all the samples fall in the field of high-K calc-alkalic series and shoshonite series. The magma of small intrusive bodies come from partial melting of lower crustal, and intruded in shallow crustal, they belonged to deep-hypabyssal Granites.
     Small intrusive bodies are closely related with the molybdenum-polymetallic deposits in space and genesis. Most molybdenum-polymetallic deposits situated in or around small intrusive bodies; small intrusive bodies which had high abundance of ore-forming elements are source rocks of metallogenesis. The main types of molybdenum-polymetallic deposits in Dabieshan area include porphyry-type Mo deposits, skarn deposit, vein-type deposits and breccia pipe-type deposits, they had the similar ore-forming environments and metallogenetic processes, they can be defined as a unitized porphyry-type molybdenum-polymetallic metallogenic system.
     Characters of S istopic compositions, Pb istopic compositions, contents of Re in molybdenite and characters of REE reveals that ore-forming materials of molybdenum-polymetallic deposits in Dabieshan area came from lower crustal.
     Re-Os model ages of molybdenite at Mushan porphyry-type Mo deposit and Doupo Mo ore spot are 155.7±5.1Ma and 140.5±8.2Ma, respectively. Combined with others isotopic ages, it’s considered that the metallogenetic ages of molybdenum-polymetallic deposits can be devided into two groups: the earlier group is 155.7±5.1 Ma~140.5±8.2 Ma and later 122.1±2.4~113.1±7.9 Ma, and the metallogenetic scale of the later group is larger, so it’s the main metallizing stage. The metallogenetic age is later than it is in Eastern Qinling porphyry-type Mo metallogenic belt.
     Rock-and ore-forming ages reveal that the geodynamicas setting of magma activities and molybdenum-polymetallic metallogenesis was transition of the regional structural stress field from compressional to extensional and large scale lithospheric delamination at late Jurassic to early Cretaceous.
     Molybdenum-polymetallic deposits in Dabie mountain are reformed by uplift of weathering, but mainly preserved well, this area is potential for ore prospecting.
引文
[1]卢欣祥.河南省秦岭—大别山地区燕山期中酸性小岩体的基本特征和成矿作用.中国区域地质,1985,13:115~123.
    [2]杨泽强.河南商城县汤家坪钼矿辉钼矿铼-锇同位素年龄及地质意义.矿床地质,2007,26(3):289~295.
    [3]Kirkham R V,Sinclair W D. Porphyry copper,gold, molybdenum,tungsten,tin and silver:Geology of Canadian mineral deposit . Geol N Am,1995(1):421~446.
    [4]侯增谦.斑岩Cu Mo Au矿床:新认识与新进展.地学前缘(中国地质大学,北京),2004,11(1):131~144.
    [5]李颖,刘连登,胡春生.斑岩型金矿的概念及相关问题讨论.世界地质,1999,18(1):16~20.
    [6]Hollister V F. Geology of the porphyry copper deposits of the Western Hemisphere. New York:Soc Mining Engineers AIME,1978,219.
    [7]高合明.斑岩铜矿床研究综述.地球科学进展,1995,10(1):40~46.
    [8]毛景文,李晓峰,李厚民,等.中国造山带内生金属矿床类型、特点和成矿过程探讨.地质学报,2005,79(3):342~372.
    [9]Sillitoe R H. A plate tectonic model for the origin of porphyry copper deposits. Econ Geol,1972,67:184~197.
    [10]Uyeda S,Kanamori H. Back-arc opening and the model of subduction. Jour Geophys Res,1979,84:1040~1061.
    [11]Mitchell A H G, Garson M S, Mineral deposits and global tectonic setting. London: Academic Press,1981.
    [12]李永峰,毛景文,胡华斌,等.东秦岭钼矿类型、特征、成矿时代及其地球动力学背景.矿床地质,2005,24(3):292~304.
    [13]侯增谦,潘小菲,杨志明,等.初论大陆环境斑岩铜矿.现代地质,2007,21(2):332-351.
    [14]张旗,王焰,刘伟,等.埃达克岩的特征及其意义.地质通报, 2002, 21(7): 431-435.
    [15]Richards JP. Tectono-magmatic precursors forporphyryCu-(Mo-Au) deposit formation. Economic Geology,2003,98:1515-1533.
    [16]张旗,王焰,王元龙.燕山期中国东部高原下地壳组成初探:埃达克质岩同位素Sr、Nd制约.岩石学报, 2001,17(4):504-513.
    [17]罗铭玖,张辅民,董群英,等.中国钼矿床.郑州:河南科学技术出版业,1991.
    [18]卢欣祥.河南省秦岭-大别山地区燕山期中酸性小岩体的基本地质特征及成矿专属性.河南地质, 1983,1(1):49~55 .
    [19]卢欣祥,于在平,冯有利,等.东秦岭深源浅成型花岗岩的成矿作用及地质构造背景.矿床地质,2002,21(2):168~178.
    [20]卢欣祥,李明立,尉向东,等.东秦岭斑岩型钼矿地质地球化学特征.云南地质. 2008,25(4):415~417.
    [21]黄典豪,吴澄宇,杜安道,等.东秦岭地区钼矿床的铼—锇同位素年龄及其意义.矿床地质. 1994,13(3):221~229.
    [22]杜安道,赵敦敏,王淑贤,等. 2001.Carius管溶样和负离子热表面电离质谱准确测定辉钼矿铼-锇同位素地质年龄.岩矿测试,20(4):247~252.
    [23]屈文俊,杜安道,2003.高温密闭溶样电感耦合等离子体质谱准确测定辉钼矿铼-锇地质年龄.岩矿测试, 22(4) :254~257.
    [24]毛景文,Stein H,杜安道,等.2004 .长江中下游地区铜金矿Re-Os年龄精测及其对成矿作用的指示.地质学报,78(1):121~131.
    [25]李永峰,王春秋,白凤军,等.东秦岭钼矿Re-Os同位素年龄及其成矿动力学背景.矿产与地质,2004,18(6):571~578.
    [26]郭保健,毛景文,李厚民,等.秦岭造山带秋树湾铜钼矿床辉钼矿Re-Os定年及其地质意义.岩石学报,2006,22(9):2341~2348.
    [27]张哲儒.流体的热力学前缘研究.地学前缘(中国地质大学,北京),1996,3(3-4):80~88.
    [28]潘桂棠,徐强,侯增谦,等.西南三江多岛弧造山过程成矿系统与资源评价.北京:地质出版社,2003.
    [29]贾跃明.流体成矿系统与成矿作用研究.地学前缘(中国地质大学,北京) ,1996,3(3-4):253~258.
    [30]肖荣阁,张宗恒,陈卉泉,等.地质流体自然类型与成矿流体类型.地学前缘(中国地质大学,北京),2001,8(4):245~251.
    [31]谭文娟,魏俊浩,郭大招,等.地质流体及成矿作用研究综述.矿产与地质, 2005 19(3):227~232.
    [32]季克俭,吴学汉,张国柄.热液矿床的矿源、水源和热源及矿床分布规律.北京:北京科学技术出版社,1989,1~131.
    [33]张德会,张文淮,许国建.岩浆热液出溶和演化对斑岩成矿系统金属成矿的制约.地学前缘(中国地质大学,北京),2001,8(3):193~202
    [34]Giggenbach W F. The origin and evolution of fluids in magmatic hydrothermal systems. BARNES H L. Geochemistry of Hydrothermal Ore Deposits. New York:John Wiley ,1997 ,737~796.
    [35]Hedengquist J W,Arribas A Jr. Evolution of an intrusion centered hydrothermal system:Far Southeast Lepanto porphyry and epithermal Cu-Au deposits, Philippines . EconGeol,1998,93:373~404.
    [36]Lowenstern J B. A review of the contrasting behavior of two magmatic volatiles:chlorine and carbon dioxide . Journal of Geochemical Exploration,2000,69-70:287~290.
    [37]Roedder E,Coombs D. S. Immiscibility in granitic melts indicated by fluid inclusions in ejected granitic blocks from Ascension,Island . J Petrol,1967,8:417~451.
    [38]Clien J S,Vanko D A. Magmatically generated saline brines related to molybdenum at Questa,New Mexico,USA. Thompson J F H. Mamas, Fluids, and Ore Deposits. Mineralogical Association of Canada Short Course Series,23. Mineralogical Association of Canada ,1995 ,153~174.
    [39]Bodnar R J. Fluid inclusion evidence for a magmatic source for metals in porphyry copper deposits. Thompson J FH. Mgmas, Fluids, and Ore Deposits. Mineralogical Association of Canada Short Course Series,23 . Mineralogical Association of Canada ,1995,139~152.
    [40]Candela P. A.,Holland D. H.,The partitioning of copper and molybdenum between silicate melts and aqueous fluids. Geochim.Cosrnochim .Acta, 1984,48:373~380.
    [41]Barmes H L. Solubilities of ore minerals. In:Barnes H.L.(ed.) Geochemistry of hydrothermal ore deposits,Wiley & Sons,1979, 404~460.
    [42]张德会.关于成矿流体地球化学研究的几个问题.地质地球化学,1997,3:49~57.
    [43]Candela P A. Magmatic ore-forming fluids:thermodynamic and mass transfer calculations of metal concentrations. Whitney J A, Naldrett A J. Ore Deposition Associated with Magmas .Reviews in Economic Geology,1989,203~777.
    [44]赵伦山,岑况,叶荣.热液流体泵吸上侵管流动力学模拟及其预测意义.地学前缘(中国地质大学,北京),2000,7(1):205~215.
    [45]张德会.热液成矿环境中络合物研究的进展.地质科技情报,1994,13(3):69~80.
    [46]Crerar D A. Wood S A, Brantley S. Chemical controls on solubility of ore-forming minerals in hydrothermal solutions. Can. Miner,1985,23:333~352.
    [47]Henley R. W.,The geothermal framework of epithermal deposits. In; Berger B. R. and Bethke P. M. (Editors),Geology and geochemistry of epithermal systems. Reviews in Economic Geology. Society of Economic Geologists, Texas, 1985, 2:1~24.
    [48]Pirajno F,Hydrothermal Mineral Deposits. Springer-verlag Berlin Heidelberg, 1992.
    [49]Barnes H L. Geochemistry of HydrothermalOre Deposits. John Wiley & Sons, 1979. 404~460.
    [50]Crerar D A, Barnes H L. Ore solution chemistry V. Solubilities of chalcopyrite and chalcocite assemblages in hydrotherm al solutions at 2000C to 3500C . Econ. Geol,1976, 71:772~794.
    [51]张德会.成矿流体中金属沉淀机制研究综述.地质科技情报,1997 ,16(3): 53~58.
    [52]Shenberger D M,Barnes H L. Solubility of gold in aqueous sulfide solutions from 150 to 3500C . Geochim. Cosmochim. Acta,1989,53:269~278.
    [53]Gammons C H,Barnes H L. The solubility of Ag2S in near-neutral aqueous sulfide solutions at 25 to 3000C . Geochim Cosmochim. Acta, 1989, 53: 279~290.
    [54] Bourcier W H, Barnes H L. Ore solution chemistryⅦStabilities of chloride and bisulfide complexs of zinc to 3500C . Econ. Geol,1987, 82:1839~1863.
    [55] HayashiK, SugakiA, Kitakaze A. Solubilities of sphalerite in aqueous sulfide solutions at temperatures between 25 and 2400C . Geochim. Cosmochim. Acta, 1990, 54: 715~725.
    [56] Spycher N F, Reed M H. Evolution of a Broad lands-Type epitherm al ore fluid along alternative p-T paths: in placations for the transport and deposition of base, precious, and volatile metals. Econ. Geol,1989,84:328~359.
    [57] Drummond S E, Ohmoto H. Chemical evolution and mineral deposition in boiling hydrothermal systems. Econ. Geol 1985,80:126~147.
    [58] Hemley J J, Hunt J P. Hydrothema Hydrothermal ore-forming processes in the light of studies in rock-buffered systems. 11 . Some general geological annlications. Econ Geo1 .1992, 87: 23~43.
    [59] Hayba D O, Bethke P M,Healed P, Foley N K. Geologic, m ineralogic, and geochem icalcharacteristics of volcanic-hosted epithermal precious-metal deposits. In: Berger B R, Bethke P M eds. Geology and Geochemistry of Epithermal Systems. Reviews in Economic Geology, 1985, 2: 129~167.
    [60] Cooke DR, M cPhail D C, Bloom M S. Epitherm al gold mineralization, Acupan, Baguio district, Philippines: geology, mineralization, alteration, and the thermochemical environment of ore deposition. E con. Geol,1996, 91:243~247.
    [61] Haynes D W,Cross K C, Bills R T, Reed M H. Olympic Dam ore genesis: a fluid-m ixing model, Econ. Geol,1995, 90:281~307.
    [62]张国伟,董云鹏,姚安平.秦岭造山带基本组成与结构及其构造演化.陕西地质,1997,15(2):1~14.
    [63]徐树桐,董树文,周海渊,等.大别山东段(安徽)大别杂岩的断层岩和推覆构造.科学通报,1984,29(2):117~125.
    [64]徐树桐,江利来,刘贻灿,等.大别山(安徽部分)的构造格局和演化.地质学报,1992,66(1):1~14.
    [65]董树文,孙先如,张勇,等.大别山造山带的基本结构.科学通报,1993,38(6):542~545.
    [66]潘国强,赵连泽,夏木林.大别山碰撞造山带的构造模型及其地质演化.中国区域地质,1997,16(1):43~50.
    [67]李炳华.秦岭-桐柏-大别造山带深部构造及其与南北两侧陆块关系之探讨.陕西地质,2001,19(1):59~70.
    [68]王清晨,林伟.大别山碰撞造山带的地球动力学.地学前缘(中国地质大学,北京),2002,9(4):257~265.
    [69]林伟,王清晨,Michel Faure等.大别山的构造变形期次和超高压岩石折返的动力学.地质学报,2003,77(1):44~54.
    [70]李曙光,Hart S R,郑双根,等.中国华北、华南陆块碰撞时代的钐-钕同位素年龄证据.中国科学(B辑),1989,32:1391~1400.
    [71]李曙光,刘德良,陈移之,等.大别山南麓含柯石英榴辉岩的Sm-Nb年龄.科学通报,1992,37(4):346~349.
    [72]李曙光,黄方,李晖.大别-苏鲁造山带碰撞后的岩石圈拆离.科学通报,2001,46(17):1487~1491.
    [73]李曙光.大别山超高压变质岩折返机制与华北华南陆块碰撞过程.地学前缘(中国地质大学,北京),2004,11(3):63~70.
    [74]游振东,钟增球,韩郁菁,等.秦岭大别碰撞造山带根部结晶基底隆升的变质岩石学证迹.地球科学—中国地质大学学报,1997,22(3):305~310.
    [75]杜建国,张建珍,张友联,等.大别山榴辉岩的氦、氩同位素组成及其岩石成因.地震地质.,1999,21(4):431~435.
    [76]简平,刘敦一,杨巍然,等.大别山西部河南罗山熊店加里东期榴辉岩锆石特征及SHRIMP分析结果.地质学报,2000,74(3):259~264.
    [77]高山,Yumin Qiu,凌文黎,等.大别山英山和熊店榴辉岩单颗粒锆石SHRIMP U-Pb年代学研究.地球科学——中国地质大学学报,2002,27(5):558~564.
    [78]刘贻灿,徐树桐,李曙光,等.大别山北部榴辉岩的大地构造属性及冷却史.地球科学—中国地质大学学报, 2003,28(1):11~16.
    [79]李石,王彤.桐柏山-大别山花岗岩类地球化学.武汉:中国地质大学出版社,1991.
    [80]王人镜,王强,何勇.大别山造山带核部九资河—天堂寨花岗岩的成因和时代.矿物岩石地球化学通报,1998,17(4):224~228.
    [81]王强,许继锋,赵振华,等.大别山燕山期亏损重稀土元素花岗岩类的成因及动力学意义.岩石学报,2001,17(4):551~564.
    [82]马昌前,杨坤光,明厚利等.大别山中生代地壳从挤压转向伸展的时间:花岗岩的证据.中国科学(D辑),2003,33(9):817~827.
    [83]夏群科,郑永飞,E. Deloule,等.大别山碰撞后火山岩的锆石U-Pb年龄和氧同位素组成.高校地质学报,2003,9(2):163~171.
    [84]谢智,郑永飞,闫峻,等.大别山沙村中生代A型花岗岩和基性岩的源区演化关系.岩石学报,2004,20(5):1175~1184.
    [85]赵子福,郑永飞,魏春生,等.大别山中生代中酸性岩浆岩锆石U-Pb定年、元素和氧同位素地球化学研究.岩石学报,2004,20(5):1151~1174.
    [86]彭练红,王建新,邓乾忠,等.大别山区花岗质片麻岩特征及其地质演化.资源环境与工程,2007,21(3):232~239.
    [87]徐树桐,刘贻灿,陈冠宝,等.中国中东部大别山的几何结构和运动学.地质学报,2005,330.
    [88]徐树桐,刘贻灿,江利来,等.大别山造山带的构造几何学和运动学.合肥:中国科学技术大学出版社,2002.
    [89]刘少峰,张国伟,程顺有,等.东秦岭-大别山及邻区挠曲类盆地演化与碰撞造山过程.地质科学,1999,34(3):336~346.
    [90]李忠,李任伟,孙枢.大别山中生代构造演化:来自盆地充填记录的启示.地质通报,2002,21(8-9):547~553.
    [91]张交东,刘成斋,刘德良,等.晚侏罗世大别山强烈隆升的地层证据.地学前缘(中国地质大学,北京),2003,10(1):34.
    [92]简平,杨巍然,李志昌,等.大别山西部熊店加里东期榴辉岩:同位素年代学的证据.地质学报,1997,71(2)133~140.
    [93]刘贻灿,徐树桐,李曙光,等.大别山北部榴辉岩的退变质特征及其地质意义.矿物岩石地球化学通报,2003b,22(4):299~304.
    [94]王道轩,刘因,李双应,等.大别超高压变质岩折返至地表的时间下限:大别山北麓晚侏罗世砾岩中发现榴辉岩砾石.科学通报,2001,46(14):1216~1220.
    [95]简平,杨巍然,周慧芳.大别山东部柯石英榴辉岩锆石U-Pb测年:多期超高压变质作用的证据.华南地质与矿产,1996,(4):14~21.
    [96]马昌前,明厚利,杨坤光.大别山北麓的奥陶纪岩浆弧:侵入年代学和地球化学证据.岩石学报,2004a,20(3):393~402.
    [97]马昌前,佘振兵,许聘,等.桐柏-大别山南缘的志留纪A型花岗岩类:SHRIMP锆石年代学和地球化学证据.中国科学D辑地球科学,2004b, 34 (12): 1100~1110.
    [98]Xue F, Rowlele D B, Tucker R D, et al. U-Pb zircon ages of granitoids rook in the north Dabie complex easten Dabie Shan,China . Geol. 105:744~753.
    [99]Hacker R R,Ratschbacher L,Webb L, Ireland T, et al. U/Pb zircon ages constrain the arcltitercture of ultrahigh-pressure Qin1ing-Dabie Orogen,China. Earth Planet. Sci. Lell.,1998,161:215~230.
    [100]路玉林,钱存超,贾士军.安徽大别山团岭花岗岩体岩石学特征及其成因.安徽地质,9(3):172~177.
    [101]黄方.大别造山带碰撞后岩浆岩地球化学:壳慢相互作用和深部过程. [硕士学位论文]合肥:中国科学技术大学,2002.
    [102]马昌前,杨坤光,许长海,等.大别山中生代钾质岩浆作用与超高压变质地体的剥露机理.岩石学报,1999,15(1):379~394.
    [103]Rapp R P, Watson E B. Dehydration melting of metabasalt at 8-32 kbar:implications for continental growth and crust-mantle recycling. Petrol. 1995,36:891~931.
    [104]Petford N,Atherton M. Na-rich partial melts from newly underplated basaltic crust:the Cordillera Blanca Batholith,Peru. Petrology, 1996,37:1491~1521.
    [105]Rudnick R L. Making continental crust. Nature, 1995. 378:571~578.
    [106]Kay R W, Kay S M. Creation and destruction of lower continental crust. Geologiche Rundschau, 1991,80:259~278.
    [107]Gao, S.,Zhang, B. R.,Jin, Z.,Kern, et al. How mafic is the lower continental crust? Earth Planet. Sci. Lett. 1998,161:101~117.
    [108]邱顺才.河南大银尖钼钨(铜)矿床地质特征.矿业快报,2006,8:62~64.
    [109]田玉山,张宏颖,范继章.河南母山斑岩钼(铜)矿床的构造控制.地质找矿论丛,2007,22(2):100~103.
    [110]刘永春,靳拥护,班宜红,等.东秦岭-大别山钼成矿带赋矿地层分布规律.中国钼业,2007,31(1):12~17.
    [111]杨泽强.河南商城县汤家坪钼矿成矿模式研究. [工程硕士学士论文].北京:中国地质大学(北京),2007b.
    [112]张国伟,孟庆任,于在平,等.秦岭造山带的造山过程及其动力学特征.中国科学(D辑),1996,26(3):193~200.
    [113]张宗清,刘敦一,付国民.秦岭变质地层同位素年代学研究.北京:地质出版社,1994.
    [114]李宝芳,马文璞,张惠良,等.大别山北麓石炭纪盆地沉积和构造研究.地学前缘(中国地质大学,北京),2000,7(3):153~167.
    [115]桑隆康,游振东.大别山前寒武纪变质地体基本组成.地质论评,1994,40(3):265~273.
    [116]叶伯丹等.桐柏一大别造山带北坡苏家河地体拼接带及其构成和演化.武汉:中国地质大学出版社,1993.
    [117]燕长海,彭翼,曾宪友,等.东秦岭二郎坪群铜多金属成矿规律.北京:地质出版社,2007.
    [118]卢欣祥,彭万夫,刘长命,等.河南省秦岭—大别山地区中酸性小岩体地质与矿化特征.河南省地质局地质科学研究所,1980.
    [119]罗铭玖,黎世美,卢欣祥,等.河南省主要矿产的成矿作用及矿床成矿系列.北京:地质出版社,2000.
    [120]赵敬红.大别山北坡斑岩型钼多金属矿床(田)物质组成及金属(元素)组份分带.华南地质与矿产,2008,2:37~42.
    [121]Middlemost E A K. Naming materials in the magma/igneous rock system.Earth-Science Reviews. 1994,37(3~4):215~224.
    [122]卢欣祥.河南省大别山地区的构造岩浆活动及中生代斑岩矿带.大别山地区地质找矿研讨会论文集(地矿部大别山重点片),1986,56~67.
    [123]迟清华,鄢明才.应用地球化学元素丰度手册.北京:地质出版社,2007.
    [124]杨泽强,万守全,马宏卫,等.河南商城县汤家坪钼矿床地球化学特征与成矿模式.地质学报,2008,82(6):788~794.
    [125]张旗,王焰,李承东,等.花岗岩按照压力的分类.地质通报,2006a,25(11):1274~1278.
    [126]张旗,王焰,李承东,等.花岗岩的Sr-Yb分类及其地质意义.岩石学报,2006b,22(9):2249~2269.
    [127]李厚民,王登红,张冠.河南白石坡银矿区花岗斑岩中锆石的SHRIMP U-Pb年龄及其地质意义.地质学报,2007,81(6):808~813.
    [128]李靖辉.大别山(北麓)斑岩型钼矿床成矿系列及成矿规律.东华理工大学学报(自然科学版),2008,31(1):25~30.
    [129]马宏卫.河南商城汤家坪钼矿地球化学异常特征及找矿标志.矿产与地质,2007,21(5):520~526.
    [130]袁德志,赵瑞强,李吉林.河南省商城县汤家坪钼矿床成因研究.矿业快报,2008,8:21~24.
    [131]邱顺才.河南省母山钼矿地质特征及找矿方向.矿产与地质,2006b,20(4,5):403~408.
    [132]王波华,邬宗玲,张怀东,等.安徽省金寨银沙地区中生代岩浆岩地质地球化学特征及其找矿意义.安徽地质,2007,17(4):244~248.
    [133]王玉贤.安徽省金寨县银沙益井爆发角砾岩筒成矿特征.安徽地质,2006,16(3):180~189.
    [134]彭智,陆三明,徐晓春.北淮阳构造带东段金-多金属矿床区域成矿规律.合肥工业大学学报(自然科学版),2005,28(4):364~368.
    [135]陆三明,徐晓春,彭智.北淮阳构造带东段隐爆角砾岩型多金属矿床的地质特征及成因.地质与勘探,2005,41(3):7~11.
    [136]陆三明,彭海辉,盛中烈.北淮阳构造带东段铅锌矿找矿前景.安徽地质, 2002,12(2):114~119.
    [137]张理刚.稳定同位素在地质科学中的应用.西安:陕西科学技术出版社, 1985.
    [138]徐兆文,杨荣勇,陆现彩,等.河南省栾川县上房斑岩钼矿床地质地球化学特征及成因.地质与勘探,, 2000,36(1):14~16.
    [139]徐兆文,杨荣勇,陆现彩,等.金堆城斑岩钼矿床地质地球化学特征及成因.地质找矿论丛, 1998,13(4):18~27.
    [140]Mao Jingwen, Zhang Zhaochong, Zhang Zuoheng. Re-Os isotopic dating of molybdenites in the Xiaoliugou W (Mo) deposit in the northern Qillian Mountains and its geological significance. Geochimica et Cosmochimica Acta, 1999,63(11~12):1815~1818.
    [141]Stein H J,Markey R J,Morgan J W, et al.,Highly precise and accurate Re-Os ages for molybdenum from the East Qinling molybdenum belt,Shannxi Province,China.Economic Geology, 1997,98:175~180.
    [142]杜建国.大别山造山带中生代岩浆作用与成矿地球化学研究:[博士学位论文].合肥:合肥工业大学,2000.
    [143]杨艳,张静,刘家军,等.河南汤家坪钼矿床流体成矿作用研究.中国地质,2008,35(6):1240~1248.
    [144]王运,陈衍景,马宏卫,等.河南省商城县汤家坪钼矿床地质和流体包裹体研究. 2009,25(2):468~480.
    [145]卢焕章,范宏瑞,倪培,等.流体包裹体.北京:科学出版社,2004.
    [146]徐友灵.汤家坪钼矿床地质特征.矿业快报,2005,7:27~29.
    [147]杨泽强.商城县汤家坪钼矿地球化学特征及找矿远景.物探与化探,2008,32(6):590~594.
    [148]毛景文,张作衡,余金杰,等.华北及邻区中生代大规模成矿的地球动力学背景:从金属矿床年龄精测得到启示.中国科学(D辑),,2003,33 (4):289~299.
    [149]翟裕生.论成矿系统.地学前缘(中国地质大学,北京). 1999, 6(1):13~27.
    [150]翟裕生.成矿系统研究与找矿.地质调查与研究,2003,26(2):65~71.
    [151]Meng Qingren, Zhang Guowei. Geologic framework and tectonic evolution of the Qinling orogen, central China. Tectonophysics,2000,323:183~196.
    [152]张国伟,张本仁,袁学诚,等.秦岭造山带与大陆动力学.北京:科学出版社,2001.
    [153]任纪舜,陈廷愚,牛宝贵,等.中国东部及邻区大陆岩石圈的构造演化与成矿.北京:科学出版社,1992.
    [154]芮宗瑶,陈仁义,王龙生.隆坳交接带为斑岩铜(钼)矿一种重要区域控制因素.有色金属矿产与勘查,1998,7(3):129~135.
    [155]张本仁,骆庭川,高山,等.秦巴地区岩石圈地球化学特征和演化及其地质意义.见:张本仁等,编.秦巴区域地球化学文集.武汉:中国地质大学出版社,1990. 1~24.
    [156]张德会,周圣华,万天丰,等.矿床形成深度与深部成矿预测.地质通报,2007,26(12):1509~1518.
    [157]邓晋福,罗照华,苏尚国,等.岩石成因、构造环境与成矿作用.北京:地质出版社,2004.
    [158]高明.河南商城县汤家坪钼矿床地质特征及找矿标志研究.矿业快报,2008,7:73~75.
    [159]翟裕生,彭润民,邓军,等.区域成矿学与找矿新思路.现代地质,2001,15(2):151~156.
    [160]丁汝鑫,周祖翼,许长海,等.大别山区域低温剥露作用:基于(U-Th)/He和裂变径迹年代学数据的模拟.中国科学D辑地球科学,2006,36(8):689~697.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700