水体中重金属、腐殖酸和粘土颗粒物之间的相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然水中存在着大量的重金属元素、天然有机质和粘土颗粒物,其中,重金属污染物不仅污染性强、生物可降解性差,而且各组分之间的相互作用引发的复合污染尤为严重,受到人们的高度重视。吸附是水环境中固液界面普遍存在的作用方式,在很大程度上决定着重金属污染物的形态转化和迁移,因而,对水中污染物之间吸附特性的系统研究,在预测和防治天然水污染工作中具有重要的理论意义和实际意义。
     本论文在综合国内外大量相关文献的基础上,选取重金属Cr、Cu、Zn及腐殖酸、高岭土为研究对象,通过研究金属离子与腐殖酸的吸附行为、络合常数和作用机制,明确了重金属元素在不同形态间的转化过程;探讨了腐殖酸在水中的两种存在形式与高岭土相结合的差异性,确定了基本反应单元;深入研究了溶解态腐殖酸对高岭土吸附重金属的影响作用,并对作用机理进行了分析。
     主要研究内容及结果如下:
     1.采用静态吸附法研究了腐殖酸对水中Cr2O72-、Cu2+、Zn2+的吸附和脱附性能,分析了不同反应条件下的吸附机理。结果表明,腐殖酸对Cr2O72-的还原作用是控制整个反应体系的重要步骤,还原成的Cr3+通过离子交换被吸附到腐殖酸上;而Cu2+和Zn2+在腐殖酸上的吸附机理与pH有关,酸性条件下吸附力以离子交换为主,中性条件下以配位络合为主。用不同的动力学模型验证了吸附行为,结果表明,拟二级动力学方程最适合描述各个浓度和温度下三种金属离子在腐殖酸上的吸附过程。在20℃、2 mg/L溶液中,腐殖酸对Cr2O72-、Cu2+、Zn2+的平衡吸附量分别为0.77 mg/g,8.59 mg/g和1.52 mg/g。当初始浓度增加时,平衡吸附量随之增加,吸附速率反而减小,表明高浓度下达到特定的吸附率需要更长的时间;随着温度的升高,平衡吸附量和吸附速率常数增大,说明化学反应是控制吸附速率的主要步骤,升温有利于反应的进行。
     2.结合不同实验条件对腐殖酸的两种基本结构类型——水杨酸型和邻苯二甲酸型与高岭土的作用机制进行研究,考察了pH、盐浓度、硬度对吸附效果的影响。结果表明,不同pH下腐殖酸与高岭土的结合形式有所不同。在pH 4-7时,吸附主要依靠高岭土的端面带电基团与腐殖酸中羧基的表面配位作用进行,腐殖酸主要以邻苯二甲酸的形式与高岭土结合;当pH>7时,强大的静电斥力阻碍了反应的发生,羧基的配位能力逐渐被羟基取代,此时,腐殖酸与高岭土的作用单元以水杨酸形式为主。整个吸附过程可用Fruendlich吸附模型进行模拟,ΔH值约等于配位交换能量值(≈40 KJ/mol),证实吸附的主要作用力是表面配位。水中的盐离子Na+和硬度金属离子Ca2+、Mg2+对腐殖酸的去除率也有一定影响,主要是通过压缩双电层、絮凝和架桥作用来实现的。
     3.通过研究溶解态腐殖酸对高岭土吸附Cr2O72-的促进作用,并结合不同实验条件对吸附效果的影响,推断反应机理。研究结果表明,高岭土、腐殖酸和Cr2O72-的三重物质体系的吸附过程实际上包括Cr2O72-直接与高岭土端面基团SOH2+形成SOH2+/Cr2O72-表面络合物,以及Cr2O72-被腐殖酸还原成Cr3+后,通过静电作用而实现在粘土表面吸附的过程。平衡实验数据可由Langmuir方程描述,升温有利于反应的进行,吸附质与吸附剂之间存在的范德华力、氢键力、疏水键力等,以及溶液中未被吸附的吸附质分子的熵增,都是促使吸附进行的驱动力,吸附过程为物理吸附。水中的盐离子Na+和硬度离子Ca2+、Mg2+对三元体系中Cr(VI)的去除率有抑制作用,原因是外加离子改变了高岭土的表面电荷,并且使腐殖酸絮凝,从而减弱了腐殖酸对Cr(VI)的还原性,降低了吸附率。三种离子对混合体系cr(VI)吸附率的影响顺序为Mg2+>Ca2+>Na+。这一结果证实了吸附体系属于非专性吸附,表面静电吸引是主要的吸附力。
     4.采用离子交换平衡法研究了腐殖酸铜和腐殖酸锌的络合稳定常数与络合—沉淀机制,考察了pH、高岭土含量、盐浓度及腐殖酸添加量对高岭土吸附Cu2+、Zn2+的影响,进而揭示反应机理。结果表明,溶液中腐殖酸含量的增加使Cu2+、Zn2+的吸附率明显下降,原因是大量的腐殖酸分子通过络合作用结合金属离子,形成腐殖酸—金属络合物留存在溶液中,从而减少了其在粘土上的吸附量。pH=4时,腐殖酸铜和腐殖酸锌的络合稳定常数分别为2.54和1.85。通过腐殖酸与Cu2+、Zn2+络合稳定性的进一步研究证实:腐殖酸与Cu2+、Zn2+的络合—沉淀机制和腐殖酸对金属离子的容纳能力有关,二者通过离子交换、配位络合和共沉淀等多种机制发生作用,在低浓度下,生成的可溶性络合物是导致cu2+、Zn2+吸附率降低的主要原因。动力学研究表明,高岭土/金属二元体系与高岭土/腐殖酸/金属三元体系的吸附过程均符合拟二级动力学方程,说明腐殖酸的存在并没有改变金属离子在粘土上的吸附机理。
There are a lot of heavy metals, natural organic matters and clay particles in natural water. It has been paid more attention to the contaminants for their polluting hazard and poor biodegrability, especially, combined pollution caused by the interactions between pollutants. Adsorption is a common action on the solid liquid interface, which is important to form transformation and migration of heavy metals in water. Therefore, it is essentially to study on the adsorption properties and relationships between aqueous pollutants in theory and actual in practice.
     Synthetizing references, relationships of humic acid (HA), kaolin particles and heavy metals including Cr, Cu and Zn were studied. The adsorption properties and complexing constants of metal ions and HA were investigated to define the species transformation of metal elements. And the difference of two forms of HA combined with kaolin was discussed. Furthermore, the influence of dissolved HA on the metal adsorption onto kaolin was explained mainly.
     The main contents and results are following:
     1. Adsorption/desorption properties of particulate HA for Cr2O72-, Cu2+ and Zn2+ were studied by static adsorption method and mechanism under different conditions was analyzed. The results showed that the reducibility of HA in process of Cr2O72-adsorption was the control step, while the mechanism of Cu2+/Zn2+ adsorption onto granular HA was related to pH. The adsorption force was ion exchange in acidic solution and complexation in neutral condition. Three kinetic models were used to fit the experimental data, and it was found that the pseudo-second-order equation was most appropriate to describe the adsorption kinetics with different initial concentrations and s. The saturated adsorption uptake of Cr(VI), Cu2+ and Zn2+ were 0.77 mg/g,8.59 mg/g and 1.52 mg/g, respectively. With increasing concentration, the saturated amount adsorbed increased but the adsorption rate declined, which meant that it needed more time to reach the same percentage in high concentration. In addition, the equilibrium adsorption amount and rate constant increased with increasing temperature, which indicated the adsorption mechanism. Increasing temprature favored for the adsorption proceeding.
     2. Combined with the influence of different experimental condition on the adsorption of kaolin and the two basic forms of dissolved HA, the reaction mechanism was studied. The results showed that the adsorption took place mainly by the complexation between the charged groups on kaolin surface and carboxyls of HA in pH range 4-7. Above pH 7, the complexing ability of carboxyl was weaker than that of hydroxy because of electrostatic repulsion, so the form of salicylic acid (SA) became dominant rather than the form of phthalic acid (PA). The results of adsorption thermodynamics indicated that the adsorption could be described well by Freundlich model and the adsorption process was favourable. The positive AH indicated the endothermic process and its value was about 40 kJ/mol accounted for the surface complexation. Additional salt ions, e.g. Na+, Ca2+ and Mg2+ were also influential to HA removal, which accured by compression of double charged, flocculation and bridging effect.
     3. The adsorption mechanism was concluded based on the study of effect of HA on Cr(VI) adsorption onto kaolin. The results showed that in the kaolin/Cr2O72-/HA ternary system, the adsorption mechanism of kaolin for Cr(VI) actually included complexation between Cr2O72- and SOH2+, as well as reduction reaction, by which Cr2O72- was reduced to Cr3+ by HA molecule. The whole adsorption process could be simulated by the Langmuir adorption model. Both the Van der Waals force, hydrogen bond force and hydrophobic bond force and the increase of entropy of unadsorbed Cr in solution were the driving force for the adsorption process. The inhibited effect of ionic strength on adsorption was remarkable because HA molecules could be flocculated and thereby reducibility was weakened. So the Cr removal decreased. The order of salt ions affected the adsorption percentage of Cr(VI) was Mg2+>Ca2+>Na+ which fact confirmed the non-specific adsorption system and the main adsorption force was surface electrostatic attraction.
     4. Based on the static adsorption method, the complexing stable constants of Cu-HA and Zn-HA were determined and the precipitation interaction was investigated. By studying the influence factors on the adsorption, the mechanism of HA affecting the Cu2+/Zn2+ adsorption on kaolin was revealed. The results showed that the increasing amount of HA in solution declined the metal cations adsorption obviously due to the formation of dissolved complex. On the same condition, the complexing stable constants of Cu-HA and Zn-HA were 2.54 and 1.85, respectively. Through the study of precipitation interaction between HA and metals, the precipitation mechanism was concluded. It is found that the stability of HA-metal complex was related to the holding capacity of HA for metals. The precipitation mechanism was comprehensive, including ion exchange, complexing reaction and coprecipitation, etc. In low concentration, dissolved HA-metal complex was the primary reason to decrease metal adsorption. The pseudo-second-order model best described the adsorption behavior of Cu2+/Zn2+ onto kaolin particle in planar and ternary system. It is indicated that the existing of HA in solution didn't change the adsorption mechanism.
引文
[1]Iken A., Egiebor N.O., Nyavor K.. Trace elements in water, fish and sediment from Tuskegee Lake, Southeastern USA [J]. Water, Air, and Soil Pollution,2003, 149:51-75.
    [2]Kot A., Namiesnik J.. The role of speciation in analytical chemistry [J]. Trends in Analysis Chemistry,2004,19:69-79.
    [3]罗小三,周东美,李连祯等.水、沉积物和土壤中重金属生物有效性/毒性的生物配体模型研究进展[J].土壤学报,2008,45:535-543.
    [4]Casadevall M., Fresco P.C., Kortenkamp A.. Chromium(VI)-mediated DNA damage:oxidative pathways resulting in the formation of DNA breaks and abasic sites [J]. Chemico-Biological Interactions,1999,123:117-132.
    [5]Kazimierz S., Kasprzak F., William Sunderman Jr., et al. Nickel carcinogenesis [J]. Mutation Research,2003,533:67-97.
    [6]Theophanides T., Anastassopoulou J.. Copper and carcinogenesis [J]. Critical Reviews in Oncology/Hematology,2002,42:57-64.
    [7]Fu P.Q., Wu F.C., Liu C.Q., et al. Spectroscopic characterization and molecular weight distribution of dissolved organic matter in sediment porewaters from Lake Erhai, Southwest China [J]. Biogeochemistry,2006,81:179-189.
    [8]Wu F.C, Kothawala D.N., Evans R.D., et al. Relationships between DOC concentration, molecular size and fluorescence properties of DOM in a stream [J]. Applied Geochemistry,2007,22:1659-1667.
    [9]Kitis M., Kilduff J.E., Karanfil T.. Isolation of dissolved organic matter (DOM) from surface waters using reverse osmosis and its impact on the reactivity of DOM to formation and speciation of disinfection by-products [J]. Water Research, 2001,35:2225-2234.
    [10]Sachse A., Henrion R., Gelbrecht J., et al. Classification of dissolved organic carbon (DOC) in river systems:Influence of catchment characteristics and autochthonous processes [J]. Org Geoehem,2005,36:923-935.
    [11]田玉红,余炜,刘正西.痕量金属在悬浮颗粒物上的吸附交换机理[J].广西
    工学院学报,2004,15:73-77.
    [12]Schmitt D., Taylor H.E., Aiken G.R., et al.. Influence of natural organic matter on the adsorption of metal ions onto clay minerals [J]. Environmental Science & Technology,2002,36:2932-2938.
    [13]Arias M., Barral M.T., Mejuto J.C.. Enhancement of copper and cadmium adsorption on kaolin by the presence of humic acids [J]. Chemosphere,2002,48: 1081-1088.
    [14]USEPA. Water Quality Criteria and Standards Plan Priorities for the Future [R]. EPA 822-R-98-003, Washington DC:USEPA,2003.
    [15]夏青,陈艳卿,刘宪兵.水质基准与水质标准[M].北京:中国标准出版社,2002.
    [16]王艳,黄玉明.我国水环境中重金属污染行为和相关效应的研究进展[J].癌变畸变突变,2007,19:198-201.
    [17]杨丽原,沈吉,张祖陆等.南四湖表层底泥重金属和营养元素的多元分析[J].中国环境科学,2003,23:206-209.
    [18]李鸣,吴结春,张小林.鄱阳湖五河入湖口重金属污染和分析评价[J].南昌大学学报,2008,32:483-485.
    [19]何孟常,王子健,汤鸿霄.乐安江沉积物重金属污染及生态风险性评价[J].环境科学,1999,20:7-10.
    [20]万金保,闰伟伟,谢婷.鄱阳湖流域乐安河重金属污染水平[J].湖泊科学,2007,19:421-427.
    [21]池俏俏,朱广伟.太湖梅梁湾水体悬浮颗粒物中重金属的含量[J].环境化学,2005,24:582-585.
    [22]陈双雅.中国水环境重金属污染的研究现状与防治对策[J].漳州职业大学学报,2002,4:54-58.
    [23]刘振东,刘庆生,杜耘等.武汉市东湖沉积物重金属与城市污染环境的关系[J].湖泊科学,2006,18:79-85.
    [24]裴新.大桥水库水质的预测分析[J].四川水利,1997,18:18-22.
    [25]陈志强,张海生,刘小涯.三亚湾和榆林湾海水溶解态Cu、Pb、 Zn、 Cd、 Cr的分布[J].海洋环境科学,1999,18:31-37.
    [26]何雪琴,温伟英,何清溪.海南三亚湾海域水质状况评价[J].台湾海峡,2001,20:165-170.
    [27]覃振邦,梁涛,林健枝等.香港河流重金属污染及潜在生态危害研究[J].北京大学学报,1997,33:485-492.
    [28]柯东胜.广东近海水域重金属含量及其分布规律的研究[J].环境科学学报,1991,11:9-16.
    [29]黎秉铭,万国江,江成忠等.滇池、洱海水及沉积物中重金属元素的行为[J].环境科学,1994,16:50-53.
    [30]张晓华,肖邦定,陈珠金等.三峡库区香溪河中重金属元素的分布特征[J].长江流域资源与环境,2002,11:269-273.
    [31]王建军,范成新,张路等.太湖底泥间隙水中金属离子分布特征及相关性[J].中国环境科学,2004,24:120-124.
    [32]徐晓达,林振宏,李绍全.胶州湾的重金属污染研究[J].海洋科学,2005,29:48-53.
    [33]蒋萏芳,郑乐平,孙为民.淀山湖上覆水与沉积物孔隙水中重金属的分布特征[J].环境化学,2003,22:318-323.
    [34]冯素萍,李鑫,赵祥峰等.大明湖底泥沉积物中重金属形态分析[J].现代科学仪器,2006,6:96-98.
    [35]张念礼,高效江,吴灵灵等.长江口潮滩沉积物中活性重金属的提取方法比较研究[J].复旦学报:自然科学版,2003,42:481-485.
    [36]王小庆,郑乐平,孙为民.淀山湖沉积物孔隙水中重金属元素分布特征[J].中国环境科学,2004,24:400-404.
    [37]Roditi H.A., Fisher N.S., Sanudo-Wilhehny S.A.. Field testing a metal bioaccumulali on model for zebra mussels [J]. Environmental Science & Technology,34:2817-2825.
    [38]赵红霞,周萌,詹勇等.重金属对水生动物毒性的研究进展[J].中国兽医杂志,2004,40:39-41.
    [39]Chi Q.Q., Zhu G.W., Langdon A.. Bioaccumulation of heavy metals in fishes from Taihu Lake, China [J]. Journal of Environmental Sciences,2007,19:
    1500-1504.
    [40]Memmert U.. Bioaccumulation of zinc in two freshwater organisms [J]. Water Research,1987,21:99-106.
    [41]Prosi F.. Factors controlling biological availability and toxic effects of lead in aquatic organisms [J]. Science of The Total Environment,1989,79:157-169.
    [42]Timmermans K.R., Walker P.A.. The fate of trace metals during the metamorphis of Chironomids [J]. Environmental Pollution,1989,62:73-85.
    [43]简敏菲,弓晓峰,游海等.鄱阳湖水土环境及其水生维管束植物重金属污染[J].长江流域资源与环境,2004,13:589-593.
    [44]Stumm W., Branner P.A.. Chemical Speciation [M]. New York:Academic Press, 1975.
    [45]汤鸿霄.试论重金属的水环境容量[J].中国环境科学,1985,5:38-43.
    [46]山根靖弘,内山充.环境污染物质与毒性[M].重庆:四川人民出版社,1981.
    [47]Stumm W., Huang C.P., Jenkins S.R.. Specific chemical interaction affecting the stability of dispersed systems [J]. Croatica Chemica Acta,1970,42:223-245.
    [48]潘纲.亚稳平衡态吸附(MEA)理论—传统吸附热力学理论面临的挑战与发展[J].环境科学学报,2003,23:156-173.
    [49]Barros H., Abril J.M.. Constraints in the construction and/or selection of kinetic box models for the uptake of radionuclides and heavy metals by suspended pariculate matter [J]. Ecological Modelling,2005,185:371-385.
    [50]Martinez C.E., McBride M.B.. Dissolved and labile concentrations of Cd, Cu, Pb and Zn in aged ferrihydrite-organic matter systems [J]. Environmental Science & Technology,1999,33:745-750.
    [51]Yavuz O., Altunkaynak Y., Guzel F.. Removal of Cu, Ni, Co and Mn from aqueous solution by kaolinite [J]. Water Research,2003,37:948-952.
    [52]吴丰昌,王立英,黎文.天然有机质及其在地表环境中的重要性[J].湖泊科学,2008,20:1-12.
    [53]Kohl S.D., Rice J.A.. The binding of contaminants to humin:A mass balance [J]. Chemosphere,1998,36:251-261.
    [54]Yin Y.J., Allen H.E., Huang C.P., et al. Kinetics of mercury(Ⅱ) adsorption and desorption on soil [J]. Environmental Science and Technology,1997,31:496-503.
    [55]Warren L.A., Haack E.A.. Biogeochemical controls on metal behavior in freshwater environments [J]. Earth Science Reviews,2001,54:261-320.
    [56]Hwang S.J.. Carbon dynamics of plankton communities in nearshore and offshore Lake Erie:The significance of the microbial loop for higher trophic levels [D]. Kent State University,1995.
    [57]Wu F.C., Tanoue E., Liu C.Q.. Fluorescence and amino acid characteristics of molecular size fractions of DOM in the waters of Lake Biwa [J]. Biogeochemistry, 2003,65:245-257.
    [58]赵巧华,秦伯强.太湖有色溶解有机质光谱吸收空间的分异特征[J].中国环境科学,2008,28:289-293.
    [59]Wu F.C., Kothawala D.N., Evans R.D., et al. Relationships between DOC concentration, molecular size and fluorescence properties of DOM in a stream. Applied Geochemistry,2007,22:1659-1667.
    [60]傅平青,刘丛强,吴丰昌.水环境中腐殖质—金属离子键合作用研究进展[J].生态学杂志,2004,23:143-148.
    [61]Gamble D.S., Schnitzer M., Kerndorff H.. Multiple metal ion exchange equilibria with humic acid [J]. Geochimica et Cosmochimica Acta,1983,47:1311-1323.
    [62]Stumm W., Morgan J.J.. Aquatic chemistry:chemical equilibria and rates in natural waters. New York:John Wiley and Sons Ltd,1996.
    [63]Lee C., Henrichs S.M.. How the nature of dissolved organic matter might affect the analysis of dissolved organic carbon. Marine Chemistry,1993,41:105-120.
    [64]Stepanauskas R., Leonardson L., Yranvik L.J.. Bioavailability of wetland-derived DON to freshwater and marine bacterioplankton [J]. Limnology and Oceanograp, 1999,44:1477-1485.
    [65]Hung C.C., Warnken K.W., Santschi P.H.. A seasonal survey of carbohydrates and uronic acids in the Trinity River, Texas [J]. Organic Geochemistry,2005,36: 463-474.
    [66]陶澍,骆永明,朱利中等.典型微量有机污染物的区域环境过程[J].环境科
    学学报,2006,26:168-171.
    [67]陈静生.水环境化学[M].北京:高等教育出版社,1987.
    [68]Campbell P.G.C.. Interactions between trace metals and aquatic organisms:A critique of the free-ion activity model [M]. New York:John Wiley & Sons Ltd, 1995.
    [69]Ohlenbusch G, Kumke M.U., Frimmel F.H.. Sorption of phenols to dissolved organic matter investigated by solid phase microextraction [J]. The Science of the Total Environment,2000,253:63-74.
    [70]Wu J., West L.J., Stewart D.I.. Effect of humic substances on Cu(II) solubility in kaolin-sand soil [J]. Journal of Hazardous Materials,2002,94:223-238.
    [71]姚爱军,青长乐,牟树森.腐殖酸对矿物结合汞环境迁移性的影响及其机制研究[J].生态学报,2004,24:274-277.
    [72]Takahashi Y., Minai Y, Ambe S., et al. Simultaneous determination of stability constants of humate complexes with various metal ions using multit race technique [J]. Science of The Total Environment,1997,198:61-71.
    [73]Schmitt D., Taylor H.E., Aiken GR., et al. Influence of natural organic matter on the adsorption of metal ions onto clay minerals [J]. Environmental Science & Technology,2002,36:2932-2938.
    [74]Dalang F., Buffle J., Haerdl W.. Study of the influence of fulvic substances on the adsorption of copper(II) ions at the kaolin ite surface[J]. Environmental Science & Technology,1984,18:135-141.
    [75]Xing B.S., Pignatello J.J.. Dual-mode sorption of low polarity compounds in glassy poly(vinyl chloride) and soil organic matter [J]. Environmental Science & Technology,1997,31:792-799.
    [76]Bai Y.C., Wu F.C., Liu C.Q., et al. Interaction between carbamazepine and humic substances:A fluorescence spectroscopic study [J]. Environmental Toxicology and Chemistry,2008,27:95-102.
    [77]田玉红,余炜,刘正西.痕量金属在悬浮颗粒物上的吸附交换机理[J].广西工学院学报,2004,15:73-77.
    [78]杨艳玲,李星,李圭白.水中颗粒物的检测及应用[M].北京:化学工业出版社,2007.
    [79]Hayward D.O., Trapnell B.M.W.. Chemisorption [M]. London:Butterworths, 1964.
    [80]Grdgg S.J., Sing K.S.W.. Adsorption, Surface Area and Porosity [M]. London: Academic Press,1982.
    [81]章燕豪.吸附作用[M].上海:上海科学技术文献出版社,1989.
    [82]Langmuir I. The constitution and fundamental properties of solids and liquids. Part I. Solids [J]. Journal of the American Chemical Society,1916,38:2221-2295.
    [83]Brunauer S., Emmett P. H., Teller E. Adsorption of Gases in Multimolecular Layers [J]. Journal of the American Chemical Society,1938,60:309-319.
    [84]Henry D. C. A kinetic theory of adsorption [J]. Philosophical Magazine,1922,44: 689-705.
    [85]Jura G, Harkins S. D. A new adsorption isotherm which is valid over a very wide range of pressure [J]. Journal of Chemical Physics,1943,11:430.
    [86]龚霞,刘淑娟,曹维鹏等.鄱阳湖及支流底泥中重金属形态研究[J].江西农业大学学报,2006,28:620-624.
    [87]刘恩峰,沈吉,杨丽原等.南四湖及主要入湖河流表层沉积物重金属形态组成及污染研究[J].环境科学,2007,28:377-382.
    [88]杨春霖,欧阳通,张珞平等.厦门西海域表层沉积物中重金属的赋存形态[J].厦门大学学报(自然科学版),2007,46:89-93.
    [89]王亚军,朱琨,王进喜.腐殖酸对铬在砂质土壤中吸附行为的影响研究[J].安全与环境学报,2007,7:42-47.
    [90]董德明.天然水体中细菌胞外聚合物对重金属的吸附规律[J].吉林大学学报,2003,41:71-74.
    [91]王文军,王文华,张学林等.生物膜及其各种组分对4-氯酚化合物的吸附特征[J].环境科学,2001,22:19-24.
    [92]文启孝.土壤有机质研究法[M].北京:农业出版社,1984.
    [93]Turan P., Dogan M., Alkan M.. Uptake of trivalent chromium ions from aqueous solutions using kaolinite [J]. Journal of Hazardous Materials,2007,148:56-63.
    [94]戴树桂.环境化学[M].北京:高等教育出版社,2006.
    [95]Dzombak D.A., Morel F.M.M.. Surface Complexation Modeling Hydrous Ferric Oxide [M]. New York:Wiley,1990.
    [96]Smith D.S., Kramer J.R.. Multi-site proton interactions with natural organic matter [J]. Environmetal International,1999,25:307-314.
    [97]Kadirvelu K., Namasivayam C. Activated carbon from coconut coirpith as metal adsorbent:adsorption of Cd(II) from aqueous solution [J]. Advance in Environmental Research,2003,7:471-478.
    [98]Mor S., Ravindra K., Bishnoi N.R.. Adsorption of chromium from aqueous solution by activated alumina and activated charcoal [J]. Bioresource Technology, 2007,98:954-957.
    [99]Mayes M.A., Jardine P.M., Larsen I.L., et al. Multispecies transport of metal-EDTA complexes and chromate through undisturbed columns of weathered fractured saprolite [J]. Journal of Contaminant Hydrology,2000,45:243-265.
    [100]Pamukcua S., Weeksa A., Wittle J.K.. Electrochemical extraction and stabilization of selected inorganic species in porous media [J]. Journal of Hazardous Materials,1997,55:305-318.
    [101]Kent D.B., Davis J.A., Anderson L.C.D., et al. Transport of chromium and selenium in the suboxic zone of a shallow aquifer:Influence of redox and adsorption reactions [J]. Water Resource Research,1994,30:1099-1114.
    [102]Davis A., Olsen R.L.. The geochemistry of chromium migration and remediation in the subsurface [J]. Ground Water,1995,33:759-768.
    [103]Hasan S., Ghosh T.K., Viswanath D.S., et al. Dispersion of chitosan on perlite for enhancement of copper(II) adsorption capacity [J]. Journal of Hazardous Material,2008,152:826-837.
    [104]Noordwijkv M., Cerri C, Woomer P.L.. Soil carbon dynamics in the humid tropical forest zone [J]. Geoderma,1997,79:187-225.
    [105]Li Y.J., Gao B.Y., Wu T, et al.. Adsorption kinetics for removal of thiocyanate from aqueous solution by calcined hydrotalcite [J]. Colloids and Surface A: Physicochemistry Engineer Aspects,2008,325:38-43.
    [106]Ho Y.S., McKay G. The kinetics of sorption of divalentmetal ions onto sphagnum moss peat [J]. Water Research,2000,34:735-742.
    [107]詹怀宇,李志强,蔡再生.纤维化学与物理[M].北京:科学出版社,2005.
    [108]Yang X.Y., Bushra A. D.. Application of branched pore diffusion model in the adsorption of reactive dyes on activated carbon [J]. Chemical Engineering Journal, 2001,83:15-23.
    [109]Aksu Z.. Biosorption of reactive dyes by dried activated sludge:equilibrium and kinetic modeling [J]. Biochemical Engineering Journal,2001,7:79-84.
    [110]Benaissa H., Elouchi M.A.. Removal of copper ions from aqueous solutions by dried sunflower leaves [J]. Chemical Engineering and Processing,2007,46: 614-622.
    [111]Juang R., Chen M.. Application of the Elovich equation to the kinetics of metal sorption with solvent-impregnated resins [J]. Industrial and Engineering Chemistry Research,1997,36:813-820.
    [112]丁世敏,封享华,汪玉庭等.交联壳聚糖多孔微球对染料的吸附平衡及吸附动力学分析[J].分析科学学报,2005,21:127-130.
    [113]Chang M.Y., Juang R.S.. Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay [J]. Journal of Colloid and Interface Science,2004,278:18-25.
    [114]Ho Y. S., McKay G. Pseudo-second Order Model for Sorption Processes [J]. Process Biochemistry,1999,34:451-465.
    [115]杨利民,倪志鑫,李晓波等.闽江水体镉的络合容量和配合物易变性常数[J].环境化学,2008,27:795-799.
    [116]Arias M., Perez-Novo C, Lopez E.. Competitive adsorption and desorption of copper and zinc in acid soils [J]. Geoderma,2006,133:151-159.
    [117]Miller W.P., McFee W.W., Kelly J.M.. Mobility and retention of heavy metals in sandy soils [J]. Journal of Environmental Quality,1983,12:579-584.
    [118]Kitis M., Kilduff J.E., Karanfil T.. Isolation of dissolved organic matter (DOM) from surface waters using reverse osmosis and its impact on the reactivity of DOM to formation and speciation of disinfection by-products [J]. Water Research,
    2001,35:2225-2234.
    [119]Stumm W., Morgan J.J.. Aquatic chemistry:chemical equilibria and rates in natural waters [M]. New York:John Wiley and Sons Ltd,1996:744.
    [120]Gu B.H., Schmitt J., Chen Z.H., et al. Adsorption and desorption of natural organic matter on iron oxide:mechanisms and models [J]. Environmental Science & Technology,1994,28:38-48.
    [121]Avena M.J., Vermeer A.W.P., Koopal L.K.. Volume and structure of humic acids studied by viscometry:pH and electrolyte concentration effects [J]. Colloids and Surfaces A:Physico-chemical and Engineering Aspects,1999,151:213-224.
    [122]Sposito G. The surface chemistry of Soil [M]. New York:Oxford University Press,1984:256.
    [123]Gu B., Schmitt J., Liang L., et al. Adsorption and desorption of natural organic matter on iron oxide:Mechanisms and models [J]. Environmental Science & Technology,1994,28:38-46.
    [124]Davis J.A.. Adsorption of natural dissolved organic matter at the oxide/water interface [J]. Geochimica et Cosmochimica Acta,1982,46:2381-2393.
    [125]Sumithra M., Mukesh D..3-D QSAR studies of microtubule stabilizing antimitotic agents towards six cancer cell lines [J]. QSAR & Combinatorial Science,2006,25:952-960.
    [126]Konan K.L., Peyratout C., Bonnet J.P., et al. Surface properties of kaolin and illite suspensions in concentrated calcium hydroxide medium [J]. Journal of Colloid and Interface Science,2007,307:101-108.
    [127]Sverjensky D.A., Sahai N.. Theoretical prediction of single-site surface protonation equilibrium constants for oxides and silicates in water [J]. Geochimica et Cosmochimica Acta,1996,60:3773-3797.
    [128]Elfarissi F., Pefferkom E.. Kaolinite/humic acid interaction in the presence of aluminium ion [J]. Colloids and Surfaces A:Physico-chemical and Engineering Aspects,2000,168:1-2.
    [129]Schlautman M.A., Morgan J.J.. Adsorption of aquatic humic substances on colloidal-size aluminum oxide particles:Influence of solution chemistry [J]. Geochimica et Cosmochimica Acta,1994,58:4293-4303.
    [130]Zachara J.M., Resch C.T., Smith S.C.. Influence of humic substances on Co2+ sorption by a subsurface mineral separate and its mineralogic components [J]. Geochimica et Cosmochimica Acta,1994,58:553-566.
    [131]Murphy E.M., Zachara J.M., Smith S.C.. The sorption of humic acids to mineral surfaces and their role in contaminant binding [J]. Science of The Total Environment,1992,117:413-423.
    [132]Davis J., Kent D.B.. Surface complexation modeling in aqueous geochemistry [J]. Reviews in Mineralogy,1990,23:177-260.
    [133]Biswas S.C., Chattoraj D.K.. Kinetics of adsorption of cationic surfactants at silica-water interface [J]. Journal of Colloid and Interface Science,1998,205: 12-20.
    [134]Weng L.P., Riemsdijk W.H.V., Hiemstra T.. Adsorption of humic acids onto goethite:Effects of molar mass, pH and ionic strength [J]. Journal of Colloid and Interface Science,2007,314:107-118.
    [135]Duan J., Wilson F., Graham N., et al. Adsorption of humic acid by powered activated carbon in saline water conditions [J]. Desalination,2003,151:53-66.
    [136]Stumm W., Morgan J.. Aquatic chemistry-chemical equilibria and rates in natural waters [M]. New York:Wiley and Sons,1996.
    [137]Suo W.H., Qiang Z.A., Sheng W.L.. Immobilization study of biosorption of heavy metal ions onto activated sludge [J]. Journal of Environmental Science, 2004,16:640-645.
    [138]Breen C. The characterisation and use of polycation-exchanged bentonites [J]. Applied Clay Science,1999,15:187-219.
    [139]Onyango M.S., Kojima Y, Aoyi O., et al. Adsorption equilibrium modeling and solution chemistry dependence of fluoride removal from water by trivalent-cation-exchanged zeolite F-9 [J]. Journal of Colloid and Interface Science,2004,279:341-350.
    [140]Mahramanlioglu M., Kizilcikli I., Bicer I.O.. Adsorption of fluoride from aqueous solution by acid treated spent bleaching earth [J]. Journal of Fluorine
    Chemistry,2002,115:41-47.
    [141]Tsai W.T., Lai C.W., Hsien K.J.. Effect of particle size of activated clay on the adsorption of paraquat from aqueous solution [J]. Journal of Colloid and Interface Science,2003,263:29-34.
    [142]陈季华,奚旦立,杨大通.废水处理工艺设计及实例分析[M].北京:高等教育出版社,1990,120-121.
    [143]Chiou C.T., Peters L.J., Freed V.H.. Soil-water equilibria for nonionic organic compounds [J]. Science,1981,213:684-692.
    [144]Breen C.. The characterisation and use of polycation-exchanged bentonites [J]. Applied Clay Science,1999,15:187-219.
    [145]傅献彩,沈文霞,姚天扬.物理化学[M].北京:高等教育出版社,1990:201-202.
    [146]Garcla-Delgado R.A., Cotouelo-Minguez L.M., Rodfiguez J.J.. Equilibrium study of single-solute adsorption of anionic surfactants with polymeric XAD resins [J]. Separation Science and Technology,1992,27:975-978.
    [147]Gokmen V., Serpen A.. Equilibrium and kinetic studies on the adsorption of dark colored compounds from apple juice using adsorbent resin [J]. Journal of Food Engineering,2002,53:221-227.
    [148]宋应华,朱家文,陈葵等.大孔吸附树脂对红霉素的平衡吸附行为及其热力学性质[J].化工学报,2006,57:715-718.
    [149]Geng X.P.. Study on the fractions of thermodynamic function changes for both adsorption and desorption from a liquid-solid system [J]. Thermochimica Acta, 1998,308:131-138.
    [150]Von Oepen B., Kordel W., Klein W.. Sorption of nonpolar and polar compounds to soils:Processes, measurement and experience with the applicability of the modified OECD-guideline [J]. Chemosphere,1991,22:285-304.
    [151]Farrah H., Pickering W.F.. Sorption of lead and cadmium by clay minerals [J]. Australian Journal of Chemistry,1977,30:1417-1422.
    [152]Gagnon C., Arnac M., Brindle J.R.. Sorption interaction between trace metals (Cd and Ni) and phenolic substances on suspended clay minerals [J]. Water Research,1992,26:1067-1072.
    [153]Huang C.P., Rhoads E.A., Hao O.J.. Adsorption of Zn(II) onto hydrous aluminosilicates in the presence of EDTA [J]. Water Research,1988,22: 1001-1009.
    [154]Garcia-Miragaya J., Page A.L.. Sorption of t race quantities of Cd by soils with different chemical and mineralogical compo sition [J]. Water, Air & Soil Pollution, 1978,9:289-299.
    [155]Morel M.M., Price N.M.. The biogeochemical cycles of trace metals in the oceans [J]. Science,2003,300:944-947.
    [156]Arias M., Barral M.T., Mejuto J.C.. Enhancement of copper and cadmium adsorption on kaolin by the presence of humic acid [J]. Chemosphere,2002,48: 1081-1088.
    [157]余贵芬,蒋新,吴泓涛.镉铅在粘土上的吸附及受腐殖酸的影响[J].环境科学,2002,23:109-112.
    [158]Sposito G. On points of zero charge [J]. Environmental Science & Technology, 1998,32:2815-2819.
    [159]Taylor M.D., Theng B.K.G.. Sorption of Cd by complexes of kaolinite with humic acid [J]. Communications in soil science and plant analysis,1995,26: 765-776.
    [160]白庆中,宋燕光,王晖.有机物对重金属在粘土中吸附行为的影响[J].环境科学,2000,21:64-67.
    [161]Mikami N., Sasaki M., Klkuchi T., et al.. Kinetics of adsorption-desorption of chromate on y-alumina surface using the pressure-jump technique [J]. Journal of Physical Chemistry,1983,87:5245.
    [162]Weckhuysen B.M., Wachs I.E., Schoonheydt R.A.. Surface chemistry and spectroscopy of chromium in inorganic oxides [J]. Chemical Reviews,1996,96: 3327-3349.
    [163]Biswas S.C., Chattoraj D.K.. Kinetics of adsorption of cationic surfactants at silica-water interface [J]. Journal of Colloid and Interface Science,1998,205: 12-20.
    [164]Fairhurst A.J., Warwick P., Richardson S.. The influence of humic acid on the adsorption of europium onto inorganic colloids as a function of pH [J]. Colloids and Surface A:Physicochemical and Engineering Aspects,1995,99:187-199.
    [165]Yue Q.Y., Li Q., Gao B.Y., et al. Formation and characteristics of cationic-polymer/bentonite complexes as adsorbents for dyes [J]. Applied Clay Science,2007,35:268-275.
    [166]Yue Q.Y., Li Y, Gao B.Y. Impact factors and thermodynamic characteristics of aquatic humic acid loaded onto kaolin [J]. Colloids and Srface B:Biointerfaces, 2009,72:241-247.
    [167]廖立兵,Donald G. Fraser,铬酸根离子在羟基铁离子—蒙脱石体系中的吸附行为研究[J].中国地质大学学报,2002,27:584-591.
    [168]Ainsworth C.C., Girvin D.C., Zachara J.M., et al. Chromate adsorption on goethite-effects of aluminium substitution [J]. Soil Science Society of America Journal,1989,53:411-418.
    [169]Zachara J.M., Ainsworth C.C., Cowan C.E., et al. Adsorption of chromate by subsurface soil horizons [J]. Soil Science Society of America,1989,53:418-428.
    [170]Karel M., William F.. Chromate and oxalate adsorption on goethite:Calibration of surface complexation models [J]. Environmental Science & Technology,1992, 26:2357-2364.
    [171]叶振华.吸着与分离过程基础[M].北京:化学工业出版社,1988,72-74.
    [172]李静,岳钦艳,李倩等.阳离子聚合物改性膨润土对六价铬的吸附特性研究[J].环境科学,2009,30:180-185.
    [173]. Li Y.J, Gao B.Y., Wu T., et al. Hexalacent chromium removal from aqueous solution by adsorption on aluminum magnesium mixed hydroxide [J]. Water Research,2009,43:3067-3075.
    [174]唐树和,王京平.超高交联吸附树脂吸附对硝基苯乙酮的热力学研究[J].离子交换与吸附,2004,20:452-457.
    [175]宋应华,朱家文,陈葵等.大孔吸附树脂对红霉素的平衡吸附行为及其热力学性质[J].化工学报,2006,57:715-718.
    [176]Boekhold A.E., Temmingghoff E.J.M.. Influence of electrolyte composition and pH on Cd sorption by an acid sandy soil [J]. Journal of Soil Science,1993,44: 85-96.
    [177]James R.O., Barrow N.J.. Copper reaction with inorganic components of soils including uptake by oxide and silicate minerals [J]. Copper in soils and plants, Aust ralia:Academic Press,1981,47-68.
    [178]Chang M.Y., Juang R.S.. Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay [J]. Journal of Colloid and Interface Science,2004,278:18-25.
    [179]Stevenson F.J.. Humus Chemistry [M]. New York:John Wiley & Sons Ltd, 1982,332-333.
    [180]Stevenson F.S.. Nature of divalent transition metal complexes of humic acids as recealed by a modified potentiometric titration method [J]. Journal of Soil Science, 1977,123:10-17.
    [181]Schubert J.. Use of ion exchangers for the determination of physical-chemical properties of substances, particularly radiotracers [J]. Journal of Physical Chemistry,1948,52:340-350.
    [182]Merchx R., Ginkel J.H., Sinnaeve J., et al. Plant induced changes in the rhizophere of maize and wheat [J]. Plant and Soil,1986,96:95-107.
    [183]Schnitzer M., Hansen E.H.. Organo-metallic interactions in soil:an evaluation of methods for the determination of stability constants of metal-fulvic acid complexes [J]. Journal of Soil Science,1970,109:333-340.
    [184]Baham J., Sposito G. Proton and metal complextion by water-solube ligands extracted from anaerobically digested sewage sludge [J]. Journal of Environmental Quality,1986,15:239-244.
    [185]Han N.Z., Thompson M.L.. Copper-binding ability of dissolved organic matter derived from anaerobically digested biosolids [J]. Journal of Environmental Quality,1999,28:939.
    [186]蒋疆,王果,方玲.土壤水溶解态有机物质与重金属的络合作用[J].土壤与环境,2001,10:67-71.
    [187]耿安朝.腐殖酸与三价稀土元素的沉淀作用机制研究[J].浙江大学学报,2005,32:69-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700