全程自养脱氮及厌氧氨氧化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水环境中氮元素的大量积累导致了水环境质量的严重恶化,采用有效的防治措施化解这一危害,是目前亟待解决的问题。用传统硝化-反硝化工艺处理高浓度氨氮废水时,由于该工艺硝化时需要氧气,反硝化时需要有机碳源,不满足废水处理可持续发展的要求。近几年发现一种新型生物脱氮工艺-全程自养脱氮,它通过亚硝化菌将废水中部分氨氮(50%)氧化为亚硝酸氮,然后再在厌氧氨氧化菌的作用下,利用剩余的氨氮为电子供体,生成的亚硝酸氮为电子受体,转化为氮气,达到脱氮的目的。该工艺至少节省氧气64%的氧气和100%的有机碳源,是一种很有应用前景的脱氮工艺。
     本课题立足于国内外生物脱氮研究的最新研究成果,在SBR反应器中接种普通厌氧颗粒污泥,培养全程自养脱氮微生物颗粒化。实验结果表明,当控制pH值在7.7~8.3之间,温度在(35±1)oC,DO控制在0.5~0.8mg/L,并且持续从反应器底部曝入氮气,可以成功的培养出全程自养脱氮颗粒污泥。
     在厌氧序批式反应器中接种已培养出的全程自养脱氮颗粒污泥,进行厌氧氨氧化污泥的快速培养。实验中采用含氮模拟废水,进水pH值在7.7~8.3之间,温度控制在(35±1)oC,DO应控制在0.5mg/L以下的条件下运行97天,成功培养出厌氧氨氧化污泥,实验结果表明:在水利停留时间为3d、总氮容积负荷(以N计)为0.1702 kg/(m3·d)时,总氮去除率最高达到82.7%,氨氮和亚硝酸盐氮的去除率最高达到了86.2%和86%,反应器中主要发生厌氧氨氧化反应,说明采用厌氧序批式反应器接种全程自养脱氮污泥是快速培养厌氧氨氧化污泥的一条途径。
Accumulation of ammonia in water environment has induced serious deterioration to the quality of water environment. It is a problem that should be solved by using proper measure to prevent the deterioration without delay. Wastewater with high nitrogen concentrations and low C/N ratio are rather cost-intensive when treated with conventional concepts, as both the oxygen demand for nitrification and the demand for organic substrates for denitrification depend on the respective nitrogen concentration in the wastewater. It goes against the sustainable development of wastewater treatment. Recently a new process named as deammonification, which describes the oxidation of nearly 50% of the NH4+ to NO2- and subsequent conversion of NH4+ and NO2- to molecular nitrogen (N2 gas). The main advantages of these process is lower oxygen demand (up to 25% energy savings during aeration) and reduced 40% organic substrate requirements for heterotrophic denitrification, so it become the highlight in the biological de-nitrogen study.
     Based on the latest research findings on biological nitrogen removal in both domestic and abroad, the influence of inorganic carbon concentration, pH value and dissolved oxygen (DO) in deammonification was studied in a SBR reactor using anaerobic granulation sludge as the inoculation. In order to investigate the possibility of the granulation of deammonification bacteria .The experiment results showed that the pH value in the reaction system keep from 7.7 to 8.3 ,the temperature keep (35±1)oC and DO concentration be controlled at 0.5mg/L would plant the granulation of deammonification bacteria.
     In order to seed deammonification granulation sludge in an anaerobic sequencing batch reactor,the anaerobic ammonium-oxidized (ANAMMOX) was successful enrich at (35±1)oC after a 97-day cultivation, with the influent pH value ranging from 7.7 to 8.3. Experimental result indicate that with a hydraulic settling time of 3d and a volumetric loading rate ( calculated with the content of N ) of 0.1702 kg/(m3·d), the maximum removal of the total nitrogen respectively achieve 82.7%, while the maxi- -mum removals of NH4+-N and NO2--N respectively achieve 86.2% and 86%.The anaerobic ammonium oxidation is found to be the main reaction in an anaerobic sequencing batch reactor, which means that an anaerobic sequencing batch reactor is one of the useful tools to expediousness enrich the anaerobic ammonium-oxidized sludge.
引文
[1]肖锦.城市污水处理及回用技术,北京:化学工业出版社,2002, 1-5
    [2]孙锦宜.含氮废水处理技术与应用,北京:化学工业出版社,2003, 27-44
    [3]蔡祖聪.氮形态转化途径研究的新进展厌氧铵氧化及其应用前景.应用生态学报,2001,12(5):795-798
    [4]章非娟.生物脱氮技术,北京:中国环境科学出版社,1992,2-4
    [5] Jetten M S M, Logemann S, Muyzer G et al. Novel principles in the microbial conversion of nitrogen compounds. Antonie van Leeuwonheok, 1997, 71(1-2):75–93
    [6] Hagopian D S, Riley J G. A closer look at the bacteriology of nitrification. Aquacult Eng, 1998,18:223–244
    [7]耿朝安,张洪林.废水生物处理发展与实践.第一版.沈阳:东北大学出版社,1997, 4-8
    [8] van Loosdrecht M C M, and Jetten M S M. Microbiological conversions in nitrogen removal. Water Sci Technol, 1998,38:1-7
    [9] Helder W, Vries R. Estuarine nitrite maxima and nitrifying bacteria(Ems-dollard estuary) . Neth J sea Res. 1983, 17(1):1-18
    [10] Jetten M S M, Strous M,van de Pas-Schoonen KT, et al. The anaerobic oxidation of ammonium. FEMS Microbiol Rev,1999, 22:421-437
    [11] Hagopian D. S. and J. G. Riley. A closer look at the bacteriology of nitrification. Aquacult Eng, 1998, 18:223-244
    [12] Helmer C, Kunst S. Nitrogen loss in a nitrifying biofilm system. Was Sci Tech., 1999, 39(7):13-21
    [13]冯叶成,王建龙,钱易.生物脱氮新工艺研究进展.微生物学通报,2001,28(4):88-91
    [14] Kuenen J.G., Robertson L.A. Combined nitrifiction-denitrification process. EMS Microbiol Rev,1994,15(2):109-117
    [15] Mulder A, van de Graaf, Robertson L A, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol, 1995,16(3): 177-183
    [16] Van de Graaf, Mulder A, de Bruijin P. Autotrophic growth of anaerobic ammonium oxidation microorganism in a fluidized bed reactor. Microbiology, 1996, 142(8):2187-2196
    [17] Anke Hippen, Karl-Heinz Rosenwinkel, Carl F.Seyfried. Aerobic deammonification: a new experience in the treatment of wastewater. Wat Sci Tech,1997,35(10):111-120
    [18]赵宗升,刘鸿亮,李炳伟,袁光钰.高浓度氨氮废水的高效生物脱氮途径.中国给水排水,2001,17(5):24-28
    [19] Li Xiaoming, Zeng Guasngming, Karl-Heinz Rosenwinkel, et al. Start up of deammonification in one single SBR system. Wat Sci Tech, 2004,50(11-12): 1251-1258
    [20]胡宝兰,郑平,冯孝善.新型生物脱氮技术的工艺研究.应用与环境生物学报, 1999, 5(suppl):68-73
    [21] Than Khin, Ajit Annachhatre. Novel microbial nitrogen removal process. Biotechnology Advances, 2004, 22:519-532
    [22] G.Baumgarten, C.F.Seyfried. Experiences and new developments in biological pretreatment and physical post-treatment of landfill leachate. Wat Sci Tech, 1996, 34(7-8): 445-453
    [23]郑俊,吴浩汀.曝气生物滤池工艺的理论与工程应用,北京:化学工业出版社, 2005: 97-126.
    [24]刘国文.有色金属冶炼氨氮废水处理方法研究.湖南有色金属, 2004,16(3): 37-40.
    [25]赵庆良.化学沉淀法去除垃圾渗滤液中的氨氮.环境科学, 1999, 20(5): 90-92.
    [26]郑俊,吴浩汀.曝气生物滤池工艺的理论与工程应用,北京:化学工业出版社, 2005, 97-126
    [27]张庆冬,赵朝成,赵东风.石化废水脱氮技术现状分析.油气田环境保护, 2002, 12(3): 11-15.
    [28]曹国民,赵庆祥,张彤.单级生物脱氮技术的进展.中国给水排水, 2000, 16(2): 20-24.
    [29]俞辉群,等译.水和废水技术研究,北京:中国建筑工业出版社, 1992: 457-485.
    [30]钱易,米祥友.现代废水处理新技术,北京:中国科学技术出版社,1993,33-44
    [31]王建龙.生物脱氮新工艺及其技术原理.中国给水排水, 2000, 16(2): 25-28.
    [32]周少奇,周吉林.生物脱氮新技术研究进展.环境污染治理技术与设备, 2000, 1(6): 11-18.
    [33]袁江林,彭党聪,王志盈.短程硝化-反硝化生物脱氮.中国给水排水, 2000, 16(2): 29-31.
    [34]张鹏,周琪,屈计宁,等.同时硝化反硝化研究进展.重庆环境科学, 2001, 23(6): 20-24.
    [35] Voets J P, Wanstaen H, Verstraete W. Removal of nitrogen from highly nitrogenous wastewater. JWPCF, 1975, 47: 394-398.
    [36]潘杨,李勇,黄勇.单级生物膜法脱氮机理及影响因素.苏州城建环保学院学报, 2000, 13(4): 89-93.
    [37]张小玲,彭党聪,王志盈,等.低DO紊动床内有机物对硝化过程的影响.中国给水排水, 2002, 18(5): 10-13
    [38]赵宗升,刘鸿亮,李炳伟,等.高浓度氨氮废水的高效生物脱氮途径.中国给水排水, 2001, 17(5): 24-28
    [39] H Yoo, KH Ahn, HJ Lee, et al. Nitrogen removal form synthetic wastewater by simultaneous nitrification and de-nitrification(SND) via nitrite in an intermittently-aerated reactor. Wat Res, 1999, 33(1): 145-154.
    [40] Munch E V, Lant P, Keller J, et al. Simultaneous nitrification and denitrification bench-scale sequencing batch reactors. Wat Res, 1996, 30(2): 277-284.
    [41] Anthonisen A C, Loehr R C, Prakasam T B S. Inhibition of nitrification by ammonia and nitrous acid. Journal Water Pollution Control Federation, 1976, 48(5): 835-852.
    [42] Strous M, Fuerst JA, Kramer EHM, et al. Missing lithotroph identified as new lanetomycete. Nature,1999,400:446-449.
    [43] Purkhold U, Pommerening-R?ser A, Juretschko S, et al. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: Implications for molecular diversity surveys. Appl Environ Microbiol, 2000, 66(12): 5368-5382.
    [44] Third KA, Slieker AO, Kuenen JG. The CANON system (Completely Autotrophic Nitrogen removal Over Nitrite) under Ammonium Limitation: Interaction and Competition between Three Groups of Bacteria. Systematic and Applied Microbiology, 2001, 24(4): 588-596.
    [45]胡宝兰,郑平,冯孝善.污泥生物硝化性状的研究.浙江农业大学学报, 1998, 24(4): 355-358.
    [46] Hellinga C, AAJC Schellen, JW Mulder, et al. The SHARON process: an innovative method for nitrogen removal from ammonium-rich waste water. Water Sci Technol, 1998, 37(9) : 135-142.
    [47] Schmidt I, Sliekers O, Schmid M,et al. New concepts of microbial treatment processes for the nitrogen removal in wastewater. FEMS Microbiology Reviews,2003, 27(4): 481-492.
    [48] Konrad Egli, Christian Langer, Hans-Ruedi Siegrist, et al. Community Analysis of Ammonia and Nitrite Oxidizers during Start-Up of Nitritation Reactors.Appl Envir Microbiol, 2003, 69(6): 3213-3222.
    [49] Ford D L, Churchwell R L, Kachtick J W. Comprehensive analysis of nitrification of chemical processing wastewaters.Water Pollut Contr Fed, 1980, 52(11): 2726-2746.
    [50] Alleman J E. Elevated nitrite occurence in biological wastewater treatment system. Water Sci Tech, 1985, 17(2-3): 409-419.
    [51] Villaverde S, Garcia-Encina P.A, Fdz-Polanco F. Influence of pH over nitrifying biofilm activity in submerged biofilters. Water Res, 1997, 31(5): 1180-1186.
    [52] Surmacz G J,Cichon A, Minksch K. Nitrogen removal from wastewater with high ammonia nitrogen concentration via shorter nitrification and denitrification. Water Sci Technol, 1997, 36(10): 73-78.
    [53] Sutherson S, Ganczarczyk J J. Inhibition of nitrite oxidation during nitrification. some observations.Water Pollut Res J Can, 1986, 21(2): 257-266.
    [54] Turk O, Mavinic D C. Maintaining nitrite build-up in a system acclimated to free ammonia. Water Res, 1989, 23(11): 1383-1388.
    [55] Hellinga C, Van Loosdrecht MCM, Heijnen J J. Model based design of a novel process for nitrogen removal from concentrated flows. Math Comp Model Dyn, 1999, 5(4): 351-371.
    [56]邹联沛,张立秋,王宝贞,等. MBR中DO对同步硝化反硝化的影响.中国给水排水, 2001, 17(6): 10-14.
    [57] Garrido J M, van Benthum W A J, van Loosdrecht M C M, et al. Influence of dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor. Biotechnol Bioeng, 1997, 53(2): 168-178.
    [58]李晔,胡海.生物脱氮工艺技术的研究进展.工业安全与环保, 2003, 29(1): 17-19.
    [59] M Strous, E Van Gerven, P Zheng, et al. Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (ANAMMOX) process indifferent configurations. Wat Res, 1997, 31(8): 1955-1962.
    [60]徐冬梅,聂梅生,金承基.亚硝酸型硝化试验研究.给水排水,1999,25(7):37-39
    [61] Mulder A,Van de Graaf A.A. et a1. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiology Ecology, 1995, 16:177~184
    [62] Suzuki, Dular U and Kwok SC. Ammonia or ammoniumion as substrate for oxidation by Nitrosomononas eupropaea cells and extracts. J Bacteriol, 1994,120:556~558
    [63] Bernat K, Wojnowska-Baryla I, Dobrzynska A. Nitrogen oxidation and reduction in aerated single-stage activated sludge process. Pol J Environ Stud, 2003, 12(4):387~394
    [64] Broda E. Two kinds of lithotrophs missing in nature. Z Allg Microbiol, 1997, 17(6): 491-493.
    [65] Kuenen J G, Robertson L A. Combined nitrification-denitrification process. EMS Microbiol Rev, 1994, 15(2-3): 109-117.
    [66] Van de graaf L A, Mulder A A, et al. Anaerobic Oxidation of ammonium is a biologically mediated process. Appl Envir Microbiol, 1995, 64 (4): 1246-1251.
    [67]王建龙.氨的厌氧氧化.生命的化学, 1997, 31(12): 1955-1962.
    [68] Strous M. Microbiology of anaerobic ammonium oxidation . Ph D thesis, 2000, 1362:1-5
    [69]王建龙,生物脱氮新工艺及其技术原理.中国给水排水,2000,17:29-32
    [70] Tay J H, Show K Y and Jeyaseelan S.Effects of media characteristics on performance of upflow anaerobic packed-bed reactors. J Environ Eng, 1996, 122(6): 469-476.
    [71]胡宝兰,郑平,冯孝善.污泥生物硝化性状的研究.浙江农业大学学报, 1998, 24(4): 355-358
    [72] Christian F,Boehler M,Philipp H,et al. Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant.Journal of Biotechnology,2002, 99(3):295-306
    [73] Helmer C, Kunst S ,Juretschko S.et al. Nitrogen loss in a nitrifying biofilm system .Water Science and Technology,1999,39(7):13-21
    [74] Peng D C, Nicolas B, J ean-Philippe D, et al. Aerobic granular sludge-A case report. Wat Res, 1999, 33(3): 890-893
    [75]杨麒,李小明,曾光明,等.SBR系统中同步硝化反硝化好氧颗粒污泥的培养.环境科学,2003,24(4):94-98
    [76]谢珊,李小明,曾光明,等.好氧颗粒污泥的性质及其在脱氮除磷中的应用.环境污染治理技术与设备,2003,4(7):70-73
    [77] Veiga M C, Jain M K, Wu W M, et al. Composition and role of extracellular polymers in methanogenic granules. Appl. Environ Microbiol,1997,63(2):403-407
    [78] Sam-Soon P A L N S,Loewenthal R E,Dold P L,et al. Hypothesis for pelletisation in the upflow anaerobic sludge bed reactor. Water SA,1987,13(2):69-80
    [79] Tay J H, Xu H L. Molecular mechanism of granulation I: H+ translocation-dehydration theory. Journal of Environment Engineering, 2000, 126(5): 403 -410
    [80] Beun J J, Van Loosdrecht M C M, Heijnen J J. Aerobic granulation. Wat Sci Tech, 2000, 41(4): 41-48
    [81] Etterer T, Wilderer P A. Generation and properties of aerobic granular sludge. Wat. Sci Tech, 2001,43(7): 19-26
    [82]卢然超,张晓健,张悦,等. SBR工艺运行条件对好氧污泥颗粒化和除磷效果的影响.环境科学,2001,22(2): 87-90
    [83] Lin K C, Yang Z X. Technical review on the UASB process. Intern Environ Studies, 1991, 39(3): 203-222
    [84] Lettinga G. Anaerobic digestion and wastewater treatment systems. Antonie van Leeuwenhoek, 1995, 67 (1):3 -28
    [85] Schmidt J E, Ahring BK. Extracellular polymers in granular sludge from different upflow anaerobic sludge blanket (UASB) reactors. Appl. Microbiol Biotech, 1994, (2-3):457-462
    [86] Thaveesri J, Liessens B, Verstraete W. Granular sludge growth under different reactor liquid surface tensions in lab scale upflow anaerobic sludge blanket reactors treating wastewater . Appl Microbiol Biotech, 1995, 43(6):1122-1127
    [87] Grootaerd H, Liessens B, Verstraete W. Effects of directly soluble and fibrous rapidly acidifying chemical oxygen demand and reactor liquid surface tension on granulation and sludge-bed stability in upflow anaerobic sludge-blanket reactors. Appl. Microbiol Biotech, 1997, 48(3):304-310
    [88] Tay J H, Yan Y G. Influence of substrate concentration on microbial selection and granulation during start-up of upflow anaerobic sludge blanket reactors. Wat Environ Res,1996,68(7):1140-1150
    [89] Kosaric N, Blaszczyk R, Orphan L, et al. The characteristics of granules from upflow anaerobic sludge blanket reactors.Wat Res, 1990, 24(12):1473-1477.
    [90] Guiot SR, Pauss A, Bourque D,et al. (1988) Effect of upflow liquid velocity on granule size distribution in an upflow anaerobic bedfilter (UBF) reactor. In: Tilche A, Rozzi A (eds), Fifth international symposium on anaerobic digestion, 1988
    [91] Arcand Y, Guiot SR, Desrochers M, et al. Impact of the reactor hydrodynamics and organic loading on the size and activity of anaerobic granules. Chem Eng J Biochem Eng J ,1994,56(1):B23-B35
    [92]卢然超,张晓健,张悦,等. SBR工艺污泥颗粒化对生物脱氮除磷特性的研究.环境科学学报, 2001, 21(5): 577-581
    [93] Strous M, Heijnen JJ, Kuenen JG, Jetten MSM. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium oxidizing microorganisms. Appl microbial Biotechnol, 1998, 50:589-596
    [94] Hao X, Joseph J, Mark CM. Model-based evaluation of temperature and inflow variations on a partial nitrification Anammox biofilm process. Water Research, 2002, 36: 4839~4849
    [95] Thamdrup B and Dalasgaard T. Production of N2 through anaerobic ammonia oxidation coupled to nitrate reduction in marine sediments. Applied and Environmental Microbiology, 2002,68(3):1312-1318
    [96] Hellinga C, Schellen AAJC, Mulder JW. The Sharon- process: an innovative method for nitrogen removal from ammonium rich wastewater. Water Science and Technology, 1998, 37(9):135-142
    [97] Laanbroek HJ and Gerards S. Competition for limiting amounts of oxygen between Nitrosomonas europea and Nitrobacter winogradskyi grown in mixed continuous cultures. Archives of Microbiology, 1993,159:453-459
    [98] Van de Graaf, A.A, de Bruijn. Autotrophic growth of anaerobic ammonium-oxidizing microorganisms in a fluidized bed reactor. Environ. Microbiol, 1992, 142:2187–2196.
    [99] Strous M., van Gerven E., Kuenen. Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (Anammox) process in different reactor configurations. Water Res, 1997, 31:1955–1962.
    [100] Kuai L, Verstraete W. Ammonium removal by the oxygenlimited autotrophic nitrification–denitrification system. Environ Microbiol, 1998, 64:4500–4506.
    [101] Dapena-Mora A., Campos, J.L., M.S.M, et al. Stability of the Anammox process in a gas-lift reactor and a SBR. Bio technol, 2004,110:159–170.
    [102]国家环保局编委会.水和废水监测分析方法,北京:中国环境科学出版社,1997, 96-120
    [103]赵志宏,廖德祥,李小明,等.厌氧氨氧化颗粒污泥的培养.环境科学, 2007, 28(4):800-805
    [104] Trigo C., Campos J.L., Garrido J.M.,et a1.Start-up of the Anammox process ina membrane bioreactor. Journal of Biotechnology, 2006,126: 475-487 [105 ]St rous M , Heijnen J J , Kuenen J G, et al. The sequencing batch reacto r as a pow erful too l to study very slow ly grow ing m icroo rganism s. App lied and EnvironmentalM icrobio logy, 1998, 50 (5) : 589- 596.
    [106]陈绍铭,郑福寿.水生微生物学实验法,北京:海洋出版社, 1985: 227- 238.
    [107]钱存柔,黄仪秀.微生物学实验,北京:北京大学出版社, 1999: 251- 267.
    [108]张小玲.短程硝化-反硝化技术经济特性分析.西安建筑科技大学学报(自然科学版), 2002, 3:34-37
    [109] McCarty PL,Beck L and Amant PS. Biological denitrification of wastewaters by organic materials. Proceedings of the24th Purdue Ind.Waste Conf,Purdue University, 1969
    [110]孙锦宜.含氮废水处理技术与应用,北京:化学工业出版社, 2003
    [111]郑平.厌氧氨氧化技术的研究,浙江:浙江大学,1999
    [112]胡宝兰.两种Anammox反应器性能的对比研究.环境科学学报, 2005, 25(4):545~551
    [113] Marc Strous,Eric Van Gcrven,PingZheng,ct al. Ammonium Removal from Concentrated Waste stream with the Anaerobic Ammonium Oxidation(ANAMMOX)process in Different Reactor Configuration. Water Res, 1997, 31(8):1955-1962
    [114] H.Siegrist,S.Reithaar,G.Koch,ct al. Nitrogen loss in a nitrifying rotating contactor treating ammonium rich wastewater without organic carbon. Water Science and Technology, 1998, 38(8-9): 241-248

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700