加氢空冷器系统氯化铵流动沉积的预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在炼油装置大型化、原料油劣质化的发展过程中,NH4Cl盐结晶沉积引发的加氢空冷器(REAC)系统频繁的流动腐蚀失效,严重影响企业的“安、稳、长、优”运行。鉴于原料油Cl-含量波动范围大,且NH_4Cl流动沉积涉及多物理场耦合作用,失效机理复杂,缺乏科学的流动沉积预测手段。本文拟针对加氢REAC系统NH_4Cl流动沉积开展数值计算和实验研究,建立NH_4Cl沉积预测方法,从而为REAC系统优化设计和运行提供理论支撑。
     本文以YZ石化公司加氢REAC系统管束失效为研究对象,开展多物理场耦合作用下NH4Cl流动沉积数值模拟预测和实验研究。首先,结合加氢REAC系统工艺流程,运用石化工艺软件HYSIS获得了加氢REAC系统入口多相流组成及物性参数,建立NH_4Cl结晶温度求解模型,确定液态水的露点温度;然后,结合物性仿真结果,采用HTRI换热计算软件分析了加氢REAC系统管束内温度分布趋势,建立流动场、温度场及浓度场耦合作用下的NH_4Cl流动沉积数理模型,并运用多物理场耦合分析软件获得了管束内多场耦合作用下NH_4Cl流动沉积分布规律,提出以NH_4Cl浓度分布表征其流动沉积危险区域,预测获得距离空冷器管束入口0.65m处管束顶部易发生NH4Cl流动沉积失效;最后,结合加氢REAC系统工艺关联过程,确定NH4Cl流动沉积测试方案,设计搭建了现场加氢REAC系统NH4Cl流动沉积测试平台,运用光学测试系统测试获得NH_4Cl流动沉积形貌,实验结果表明:NH4Cl沉积位置位于实验测试位置入口约0.60m位置处,实验结果与数值模拟结果基本一致,验证了NH_4Cl流动沉积数值预测方法的正确性与可靠性,并为后续的实验研究提供参考依据。
     本论文的创新工作在于:结合实际REAC系统中的反应、流动、传热、腐蚀等复杂过程,实现流动场、温度场和浓度场等多物理场耦合作用下的NH_4Cl盐流动沉积数值模拟;设计搭建现场加氢REAC系统NH_4Cl流动沉积测试系统,运用高压视镜和光学测试系统开展流动沉积实验研究,验证仿真方法的可靠性,建立了数值预测和流动沉积实验相结合的NH_4Cl流动沉积预测研究方法。
Frequent occurrence of flow corrosion failure caused by ammonium chloride deposition inhydrogen air condenser (REAC) system in the development process of petroleum refining asequipment scale become more large and raw oil become inferior serious effect factorysecure,stably, long-term and excellent operation. The fluctuating range of Cl-canteen in raw oilis great. Ammonium chloride flow deposition effect by multi-physical coupling effect. Thefailure mechanism is complex, and there isn’t scientific prediction method for flow deposition. Inview of the above reasons, this article plans to carry out numerical calculation and experiment ofammonium chloride flow in sedimentary in REAC to establish ammonium chloride sedimentaryforecast method, thus it can provide theory support for optimize design and operation of REACsystem.
     This paper develop numerical simulation and forecast experiments of ammonium chlorideflow sedimentary deposition under multi-physical coupling efface, taking the failure REAC tubebundle of YZ as research object.
     First of all, composition of multiphase flow and physical parameters of REAC entrancewas acquired by using petrochemical process software HYSIS. Then the model to calculateammonium chloride crystallizes temperature and determine the dew point of liquid water wasfounded.
     Then, ammonium chloride flow of sedimentary mathematical model were founded underthe coupled action of flow field, temperature field and concentration field combining with resultsof the simulation for the physical properties by using HTRI calculation software analyzes theheat hydrogenation REAC system over temperature distribution in the trend. And the physicalfield coupling analysis software won over more inside field under the coupled action ofammonium chloride flow deposits distribution law, puts forward to ammonium chlorideconcentration distribution characterization of the flow deposits danger area, predict get distanceair condenser over the entrance0.65m place over the top easy happening ammonium chloride flow sedimentary failure.
     Finally, the test scheme of ammonium chloride flow deposition was determined, the testplatform of ammonium chloride flow sedimentary was designed in REAC combined with REACtechnology related process, and ammonium chloride flow sedimentary morphology was obtainedby optical test system.
     The results of experiment show that the sedimentary position is located in about0.625m inthe entrance location which is consistent with numerical simulation results. So, the correctnessand reliability of the ammonium chloride flow sedimentary numerical prediction method andprovide reference for subsequent experiment.
     The innovations of this paper are as follows: Realize the numerical simulation ofammonium chloride salt flow deposits under multi-physical coupling of flow field temperaturefield and concentration field combining with actual REAC system complex process of flow, heattransfer and corrosion. Design and set up the construction site hydrogenation REAC systemammonium chloride flow deposits test system. Carry out flow deposits experiment research byusing high pressure as a mirror and optical test system and verify the reliability of the simulationmethod. Establish the research method of prediction for ammonium chloride flow depositioncombination numerical prediction with flow sedimentary experiment.
引文
[1] Palmas. P.25Years of Development [J]. Hydrocarbon Engineering,2009,14(6):53-59.
    [2] Russell D. Kane, Michael S. Cayard. Assessment of Corrosivity in Refinery Sour Water Systems [J].Corrosion,2009,16(8):301-311.
    [3] J. Liu, W. Yang, H.M. Fan, et al. Corrosion and Scale Inhibitors Study and Application on SurfaceEvaporation Air Coolers in Heavy Oil Catalysis Unit[J]. Petrochemical Equipment,2009,38(5):73-76.
    [4]加氢装置高压空冷器系统调研报告[M],中国石油化工集团公司,2006
    [5]中国石油炼化企业腐蚀与防护调研报告[M],中国石油天然气集团公司,2010
    [6] API Pub.581. Risk—Based Inspection: Base Resource Document[S], First Edition,2000,05.
    [7] API Publication932-A. A Study of Corrosion in Hydro processing Reactor Effluent Air Cooler System[S].2002,09.
    [8] API Publication932-B. Design, Materials, Fabrication, Operation, and Inspection Guideline for CorrosionControl in Hydroprocessing Reactor Effluent Air Cooler (REAC) System[S]. First Edition.2004,07.
    [9] Piehl R.L. Corrosion by Sulfide-Containning Condensate in Hydrocracker Effluent Coolers [J]. Paperform processing division of refining,1968,48:196~207
    [10] Piehl R.L. Survey of Corrosion in Hydrocracker Effluent Air Coolers[C]. Material performance,1976,15(1):15~20
    [11] Shargay, C.A, Bagdasarian A.J., Coombs J.W. Corrosion in Hydroprocessing Units in the Oil RefiningIndustry[C]. Short Course presented by NACE International, Houston, Texas,1999:10-18
    [12] Cayard, M.S., W.G.Giesbrecht, R.J., Horvath, R.D.Kane and V.V. Lagad. Prediction of AmmoniumBisulfide Corrosion and Validation with Refinery Plant Experience [J]. Paper No.06577, Corrosion/2006,NACE International, Houston, Texas, March2006
    [13] R. D. Kane, R. J. Horvath, and M. S. Cayard. Major Improvements in Reactor Effluent Air CoolerReliability [J]. Hydrocarbon Processing,2006,99~111
    [14]于国文,王德会等.加氢裂化装置改造的原则及措施[J].炼油技术与工程,2004,34(5):1~6
    [15]顾望平,刘小辉.加工进口高硫原油生产装置腐蚀防护技术[J].石油化工腐蚀与防护,2001,18(4):1~5
    [16]韩建宇,苏国柱.加氢裂化高压空冷器管束穿孔失效分析[J].石油化工设备技术,2004,25(2):50~52
    [17]张国信.加氢高压空冷器系统腐蚀原因分析与对策[J].炼油技术与工程,2007,37(5):18-22.
    [18]俞国庆,沈春夜.加氢裂化装置工艺设备的腐蚀分析和防护措施[J].石油化工设备技术,2004,25(1):53~56
    [19] Guofu Ou, Jie Qiu, Zuchao Zhu, Yanping Wang, Genfu Xu. Fluid-structure interactional numericalsimulation of erosion-corrosion failure of reducer in multiphase flow. Lixue Xuebao/Chinese Journal ofTheoretical and Applied Mechanics,2010,42:197-204
    [20] A.K. Praturi, R. S. Brodkey. A Stereoscopic Visual Study of Coherent Structures in Turbulent Shear Flow,J. Fluid. Mech [J].1987,89(2):251-272
    [21] Postlethwaite J, Nesic S, Adamopoulos G. Predictive Mmodels for Eerosion-corrosion under DisturbedFlow Conditions [J]. Corrosion Science,1993,35(4):627~633
    [22]张安峰,邢建东,周心艳.碳钢与不锈钢在腐蚀浆料中冲刷腐蚀交互作用的定量研究[J].铸造,2003,52(4):260-263
    [23] Horvath Richard J., Cayard Michael S., Kane Russell D. Prediction and assessment of ammoniumbisulfide corrosion under refinery sour water service conditions[C], Orlando, FL, United states,2006
    [24] Damin G, McCoy J. Prevention of Corrosion in Hydrodesulfurizer Air Coolers and Condensers [J].Material Performance,1978,17(12):23~26
    [25] C. Scherrer, M. Durrieu, G. Jarno. Distillate and Reside Hydroprocessing: Coping with HighConcentrations of Ammonium Bisulfate in the Process Water [J]. Materials Performance,1980,19(11):25~31
    [26] API RP-14E. Recommended Practice for Design and Installation of Offshore Production Platform PipingSystems[S],2000
    [27] Mclaury B, Shirazi S. Generalization of API RP14E for Erosive Service in Multiphase Production[C].JTP,2000
    [28]李智利.冲蚀与腐蚀运行环境下多相流管道设计准则[J].油气储运,2006,15(4):48~50
    [29] R.D. Kane, R.J. Horvath, M.S Cayard. Major improvements in reactor effluent air cooler reliability [J].Corrosion,2006,10(3):99~111
    [30] Srdjan Nesic, Jiyong Cai, Kunlin John Lee. A Multiphase Flow and Internal Corrosion Prediction Modelfor Mild Steel Pipelines[C], CORROSION,2005.
    [31] Hongbin Wang. Application of Electrochemical Noise Technique in Multiphase Flow[C], CORROSION,2005
    [32] Wei Sun, Srdjan Nesic. A Mechanistic Model of H2S Corrosion of Mild Steel[C]. CORROSION,2007.
    [33]偶国富,朱祖超,杨健,等.加氢反应流出物空冷器系统的腐蚀机理[J].中国腐蚀与防护学报,2005,25(1):61-64.
    [34]偶国富,曹海彬等.加氢含硫污水管道冲蚀临界特性的电化学测试[J].化工学报,2009,60(3):691-695
    [35]偶国富,金浩哲,王立凯,等.旋转式单相流冲蚀实验装置[P].中国专利:ZL200710067546.9
    [36]吴欣强,敬和民,郑玉贵,等.碳钢在高温环烷酸介质中冲刷腐蚀行为[J].中国腐蚀与防护学报,2002,22(5):257-263
    [37]梁平,李晓刚,杜翠薇,等. Cl-对X80管线钢在NaHCO3溶液中腐蚀性能的影响[J].北京科技大学学报,2008,30(7):735-739
    [38] Ping Tang, Jian Yang, Jinyang Zheng, et al. Failure Analysis and Prediction of Pipes Due to theInteraction between Multiphase Flow and Structure[J]. Engineering Failure Analysis,2009,16:1749-1756
    [39]刘伟,宣征南,韩建宇,等.加氢裂化空冷器管束失效的多相流数值分析[J].腐蚀与防护,2008,29(12):759-762,779.
    [40]徐鸣泉,王乐勤,杨健,等.石化管道冲蚀破坏的流动仿真及其结构优化[J].流体机械,2005,33(7):24-26,23
    [41] M.D. Price, C.A. Shargay, G.E. Jacobs. Ammonium Salt Corrosion in Hydrotreating Unit StripperColumn Overhead Systems [C]. CORROSION,1999.
    [42] J. Liu, W. Yang, H.M. Fan, et al. Corrosion and Scale Inhibitors Study and Application on SurfaceEvaporation Air Coolers in Heavy Oil Catalysis Unit [J]. Petrochemical Equipment,2009,38(5):73-76.
    [43]偶国富,曹晶,谢浩平.加氢裂化空冷管束流动传热的耦合数值模拟[J].炼油技术与工程,2010,40(11):42~45
    [44] Y.M.Wu. Calculations Estimate Process Stream Depositions [J]. Oil Gas,1994;38-41
    [45] C.A. Shargay, J. Turner, B. Messer, et al. Design Considerations to Minimize Ammonium ChlorideCorrosion in Hydrotreater Reactors[C]. CORROSION,2001
    [46] Cathleen Shargay, Stephen Marcinice. Analyzing Water Washing Requirements for Low SeverityHydroprocessing Units[C]. CORROSION,2004
    [47] K. Toba, T. Uegaki, T. Asotani, et al. A New Approach to Prevent Corrosion of the Reactor EffluentSystem in HDS Units[C]. CORROSION,2003
    [48] P.P. Alvisi, V. F. Cunha Lins. Acid salt Corrosion in a Hydrotreatment Plant of a Petroleum Refinery [J].Engineering Failure Analysis,2008,15:1035-1041
    [49] H.A. Shammeri, P.K. Mukhopadhyay, R. Radhakrishnan. Preventing Ammonium Salt Corrosion in HighPressure Flash Gas Lines[C]. CORROSION,2010
    [50]许丹宇,张代钧等.氧化沟反应器流体力学特性的数值模拟与实验研究[J].环境工程学报,2007,12:62-70.
    [51]杨瑞昌,周涛等.温度场内可吸入颗粒物运动特性的实验研究[J].中国工程热物理学报,2007,28(2):76-82.
    [52]刘瑞璨,田晓亮,王兆俊等.颗粒物在矩形管道内流动的PIV实验研究[J].青岛大学学报,2008,23(2):76-80.
    [53]刘扬,司明林等.低温集输管道沉积速率及热洗周期的确定与分析[J].科学技术与工程,2010,10(10):2456-2458.
    [54]黄启玉等.蜡沉积层冲刷实验[J].油气储运,2011,30(4):314-315.
    [55] Guofu Ou, et al. A hydrocracking air coolers real-time diagnosis system development based on failureanalysis of flow induced corrosion [J]. ICEMI,2009.3:986-990
    [56] Felippa C A, Park K C, Farhat C. Partitioned Analysis of Coup led Mechanical Systems [J]. ComputerMethods in App laid Mechanics and Engineering.2001,190:3247-3270
    [57] O.C. Hemandez, H. Hensley, J.P. Brill, et al. Improvements in Single-Phase Paraffin DepositionModeling [J]. SPE84502,2004:236-239.
    [58]余燕,刘建仪,张迥,等.蜡沉积动态模型研究综述[J].特种油气藏.2010,17(3):10-13,18.
    [59]宋少云.多场耦合问题的分类及其应用研究[J].武汉工业学院学报,2008,27(3):46-49
    [60]莫则克.多物理场并行数值模拟中的两层紧耦合联接算法[J].计算机学报,2004,27(10):1311-1320
    [61]陈军,莫则克.多物理场模拟中一种有效的并行耦合方法[J].计算机学报,2007,30(9):1559-1566
    [62] Robert M. Kirby, Zohar Yosibash, George Em Karniadakis. Towards Stable Coupling Methods forHigh-order Discrimination of Fluid-Structure Interacting: Algorithms and Observations [J]. Journal ofComputational Physics,2007,223(2):489-518
    [63] Z. Kolondzovski, A. Belahcen, A. Arkkio. Multiphase’s Thermal Design of a High-speedPermanent-magnet Machine [J]. Applied Thermal Engineering,2009,29(13):2693-2700
    [64] S.E. Minkoff, C.M. Stone, S. Bryant, et al. Coupled Fluid Flow and Geotechnical Deformation Modeling[J]. Journal of Petroleum Science and Engineering,2003,38(1):37-56
    [65] Michael Raulli, Kurt Maute. Optimization of Fully Coupled Electrostatic-Fluid-Structure InteractionProblems [J]. Computers and Structure,2005,83(2):221-233
    [66]陈宝明,王补宣,方肇洪.多孔介质自然对流中温度梯度与浓度梯度的相互耦合[J].工程热物理学报,1995,16(2):210-214
    [67]张鹏,吴志超,敖华军.污泥的粘度与浓度、温度三者关系式的实验推导[J].环境污染治理技术与设备,2006,7(3):72-74.
    [68]万古军,魏耀东,薛晓虎,等.温度对旋风分离器内颗粒浓度分布影响的模拟[J].燃烧科学与技术,2008,14(6):562-568
    [69] Y.B. Huang, J.M. Zhou. Coupled Heat/Mass-Balance Model for Analyzing Correlation between ExcessAlF3Concentration and Aluminum Electrolyte Temperature [J]. Transaction of Nonferrous Metals Societyof China,2009,19:724-729
    [70] M.J. She, S.T. Hwang. Effects of Concentration, Temperature, and Coupling on Evaporation of DiluteFlavor Organics [J]. Journal of Membrane Science,2006,271(1):16-28
    [71] V.R. Voller, A. Mouchmov, M. Cross. An Explicit Scheme for Coupling Temperature and ConcentrationFields in Solidification Models [J]. Applied Mathematical Modeling,2004,28(1):79-94
    [72]王克鲁,鲁世强,李鑫,等.变形温度对TC11合金流动应力及组织的影响[J].特种铸造及有色合金,2008,28(3):165-167
    [73]方军,王克鲁,鲁世强,等.变形温度对炉冷态TA15合金α+β两相区流动应力和组织的影响[J].材料热处理技术,2008,37(12):19-22
    [74]刘艳,周成,谢建新.双带式金属带材快速成形过程的流动场与温度场三维耦合模拟[J].塑性工程学报,2008,15(3):174-179
    [75] X.M. Zhang, Z.Y. Jiang, L.M. Yang, et al. Modeling of Coupling Flow and Temperature Fields in MoltenPool during Twin-roll Strip Casting Process [J]. Journal of Materials Processing Technology,2007,12:339-343
    [76] Y.S. Cheng, K.Y. Deng, T. Li. The Coupling Influence of Airflow and Temperature on the Wall-WettedFuel Film Distribution [J]. Experimental Thermal and Fluid Science,2010,34(2):227-233
    [77]陈良勇,段钰锋,刘猛,等.水煤浆真实流变特性的研究[J].动力工程,2008,28(5):753-758
    [78]汪顺才,张春雷,朱伟,等.尾砂浓度对固化尾砂初始流动性和强度的影响[J].金属矿山,2008,2:136-138,145
    [79]李艳强,吴超,易斌,等.受限空间内粉尘流动的浓度分布模型及其数值模拟[J].中国安全科学学报,2007,17(10):50-55
    [80] D.V. Khakhar, A.V. Orpe, J.M. Ottino. Continuum Model of Mixing and Size Segregation in a RotatingCylinder: Concentration-Flow Coupling and Streak Formation [J]. Powder Technology,2001,116(2):232-245.
    [81] S. Fokeer, S. Kingman, I. Lowndes, A. Reynolds. Characterization of the Cross Sectional ParticleConcentration Distribution in Horizontal Dilute Flow Conveying Review [J]. Chemical Engineering andProcessing,2004,43(6):677-691
    [82] A. Sun, D. Fan. Prediction, Monitoring, and Control of Ammonium Chloride Corrosion in RefiningProcesses[C]. CORROSION,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700