新疆沙瓦布齐地区构造与砂岩型铀矿成矿关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对沙瓦布齐地区铀矿地质研究程度较低和铀成矿受构造活动影响较大等特点,从塔北中新生代构造背景、天山隆升期次、铀成矿基本特征及成矿时代等方面入手,以构造演化为主线,对本区构造特征及其与铀矿化关系进行探讨,最后提出沙瓦布齐地区构造—铀成矿模式。
     塔里木盆地北缘现今地表由西向东分为柯坪冲断带、乌什冲断带和库车冲断带,各带具不同的展布方向和构造特征。而这三个构造带的形成和演化与塔北的断裂分布密切相关。整个断裂体系可分为两组,一组为具逆冲性质的东西—近北东东向断裂系统;另一组为北西向断裂系统,具走滑性质。前者控制构造的南北分带性,在塔北地区形成隆凹相间的构造格局:后者控制塔北东西向构造格局,使塔北东西部构造变形程度产生明显的变化。而这些断裂系统均为塔北南北向挤压构造应力场作用下的产物。研究表明喜山期构造应力场最强,对塔北的影响最大。
     通过对塔里克、沙瓦布齐和巴什布拉克地区磷灰石裂变径迹年龄的测试与隆升热历史的模拟,并结合前人的数据,得出天山中新生代经历了四个阶段的隆升,即:第一阶段隆升:135~145Ma(侏罗纪末);第二阶段隆升:75~40Ma(白垩纪末—始新世末);第三阶段隆升:25~10Ma(中新世);第四阶段隆升:4.0Ma~现今(上新世末—现今)。计算出三个地区不同阶段的隆升速率,其中沙瓦布齐地区山体隆升速率最大,为889.7~991.4m/Ma。
     本区于上新世末进入新构造运动强烈变形阶段。由于存在基底卷入式断裂,将水平挤压构造应变量转换为垂直隆升量,本区铀矿体遭受抬升、剥失,并接受地表水的改造;另一方面,矿床南部山体的隆升,使铀矿体免遭进一步剥失,具有保矿作用。
     侏罗纪,塔北地区进入应力松驰的断陷盆地演化阶段,在沙瓦布齐地区沉积了一套近山前的含煤粗碎屑岩有利建造。根据沉积旋回和沉积相特征,将含矿目的层中下侏罗统铁米尔苏组分为两个岩性段,四个岩性亚段。铀矿体主要产于该组上段辫状河三角洲相砂体中。
     铀矿体产状陡立,呈板状、层状和透镜体状。铀主要以铀矿物、吸附态铀及类质同像(含量甚微)三种方式存在。
     赋矿砂体中有机质和S的含量均较高,且两者具正相关性。从Fe元素的变化特征可知铀矿体在后期遭受了地表水的淋滤。本区铀成矿伴随Cd、Mo和Re元素的富集,具有典型层间氧化带砂岩型铀矿化微量元素富集的一般规律。
     经稀土元素配分曲线的对比和花岗岩体隆升热历史的模拟,发现本区西北部早二叠世火山岩系既是侏罗系的物源,也与下寒武统碳硅泥岩系一同为铀成矿提供铀源。
     利用微粒铀矿石U—Pb定年技术,测出本区主要一期铀矿化发生于39.0Ma,即始新世。此时,本区侏罗系有利建造在山前断裂的影响下发生掀斜:古气候条件已从温湿转变为干热;天山地区早二叠世火山岩和下寒武统碳硅泥岩系于古新世开始较大幅度的隆升,并为铀成矿提供外部铀源。在诸多有利因素的控制下形成了砂岩型铀矿化。
     最后,在综合分析本区及天山构造演化与铀成矿特点的基础上,建立了沙瓦布齐地区构造—铀成矿模式。
Due to characteristics of low degree of uranium geological research and sandstone type uranium mineralization, which controlled by tectonic in Shawabuqi area, this dissertation discuss structural characteristics and the relationship between tectonic and uranium mineralization, finally propose tectonic-metallogenetic model of sandstone type uranium deposit in Shawabuqi area, mainly by study on tectonic evolution, Mesozoic and Cenozoic regional tectonic background of northern Trim Basin, uplifting epochs of Tianshan, basic characteristics of uranium ore-formation and the age of uranium ore-formation.
     From the west to east, the northern peripheral earth's surface of Tarim Basin contain Keping thrust belt, Wushi thrust belt, and Kuqa thrust belt, each has its own orientation and structural characteristics. But the formation and evolution of these thrust belts are related with distribution of faults. All faults are divided into two group, one group has thrust characteristic and its orientation is east-west or nearly north-east, it controls south-north distribution of folds, as a result, alternate appearances of uplift and depression in northern periphery of Tarim Basin, the other has strike-slip characteristic and its orientation is north-west, it controls east-west structural pattern, as a result, western structural deformation characteristics are different form eastern. The two group faults systems were formed in the condition of south-east compressed tectonic stress, result of research indicates that Himalayan epoch tectonic stress field made great influence on northern periphery of Tarim Basin.
     Apatite fission tracks of the samples from Talike, Shawabuqi and Bashibulake in southern Tianshan area, were measured and analyzed. Using the measurement data of whole Tianshan area, four uplifting epochs, which are 135~145Ma(latest Jurassic); 75~40Ma(latest Cretaceous-latest Eocene); 25~10Ma(Miocene); 4.0Ma~0(latest Pliocene-now), were founded in southern Tianshan aera, and thermal uplifting history were simulated in these three areas, we calculate uplifting speed of each epoch from the simulated map, find that Shawabuqi area has highest uplifting speed of 889.7~991.4m/Ma.
     Shawabuqi area entered into the evolution stage of Neotectonic activity in late Pliocene. Vertical uplift is main structural pattern in this area, because of existence of basement thrust fault. Therefore, the uranium deposit suffered from being uplifted, eroded and Epigenetic reworked by shallow water; on the other hand, the southern uplifting mountain of uranium deposit, which make the uranium bodies free of further erosion, is benefit for conservation of uranium bodies.
     Northern periphery of Tarim Basin enter into evolution stage of rift basin in Jurassic, coal-bearing coarse clastic rocks formation, which is benefit for interlayer oxidation zone sandstone type uranium mineralization, were deposited in Shawabuqi area. Based on analysis of cycles and facies of sedimentation, the Tiemiersu formation are divided into two lithology sects, and four lithology sub-sects. Uranium mineralization formed in sand bodies of braid delta facies in upper sect of this formation.
     Steep shapes of ore bodies show plank type, layer type and lentoid type. The most part of uranium element are absorbed, and the coffinite is primary uranium mineral, there are little isomorphism uranium.
     High content of Toc and S were measured in bearing ore sand bodies, they have positive correlation. The contents variety of Fe element in the different stone show that the uranium bodies undergone eluviation, variety of Cd, Mo and Re elements on drill show the distribution characteristic of rare elements in model interlayer oxidation zone sandstone type uranium mineralization.
     Using the REE distribution patterns of the rocks and thermal history simulation of granite uplift in Shawabuqi area, we find that the early Permian lava clastic rocks not only provide sediment, but also provide uranium element for Jurassic series with lower Cambrian.bedded chert.
     Main uranium ore-formation age of 39.0Ma is measured by "U-Pb" Dating Method. We find that, Jurassic benefit series were tilted by the great fault of Tianshan frontier, Paleo-climate turned to be dry and hot from warm and wet, early Permian lava clastic rocks and lower Cambrian.bedded chert, which have high uranium content, had uplifted already, uranium ore-formation occurred in Eocene, by the influence of all above factors.
     At last, according to analysis of tectonic evolution of Tianshan and uranium ore-formation, the author propose the tectonic-uranium ore-formation model of Shawabuqi area.
引文
[1]秦明宽.新疆伊犁盆地南缘可地浸层间氧化带砂岩型铀矿床成因及定位模式.博士论文,核工业北京地质研究院,1997.
    [2]秦明宽,赵瑞全.可地浸砂岩型铀矿盲矿识别模式[J].铀矿地质,1999,15(3):129-136.
    [3]秦明宽.内蒙古东乌旗地区地浸砂岩铀矿资源评价[R].核工业北京地质研究研报告,2002.
    [4]董文明,李子颖,郭庆银等.内蒙古西胡里吐盆地构造-水文地质演化与砂岩型铀成矿作用[J].铀矿地质,2005,21(5):283-286.
    [5]董文明,林锦荣,夏毓亮等.松辽盆地西南部上白垩统层序地层特征与砂岩型铀成矿作用[J].世界核地质科学,2007,24(3):125-135.
    [6]董文明.吐鲁番-哈密盆地南缘侏罗系层序地层特征及成铀规律[J].铀矿地质,1998,14(3):129-132
    [7]李子颖,方锡珩,陈安平,欧光习等.鄂尔多斯盆地北部砂岩型铀矿目标层灰绿色砂岩成因[J].中国科学:D辑,2007,37(1):139-146.
    [8]陈祖伊,郭庆银,刘红旭.主砂体及其构造改造样式的盆地产铀远景评价判据[J].铀矿地质,2005.
    [9]陈祖伊,李子颖等.全国新一轮可地浸砂岩铀矿勘探战略选区[C].核工业北京地质研究院年报,2002.
    [10]黄净白,黄世杰.中国铀资源区域成矿特征[J].铀矿地质,2005,21(3):129-138.
    [11]黄净白,黄世杰,张金带等.中国铀成矿带概论[M].2005,内部资料.
    [12]陈戴生,李胜祥,蔡煜琦.我国中新生代盆地砂岩型铀矿研究现状及发展方向的探讨.沉积学报[J],2003,21(1):113-118.
    [13]王正邦.国外地浸砂岩型铀矿地质发展现状与展望[J].铀矿地质,2002,18(1):9-12.
    [14]王正邦、秦明宽、董文明等,新疆及邻区可地浸砂岩铀矿1/200万成矿预测,核工业北京地质研究院科研报告.2002.
    [15]王正邦、谢佑新、刘武生等,内蒙-东北地区可地浸砂岩铀矿1/250万成矿预测,核工业北京地质研究院科研报告.2003.
    [16]贾进华,周东延等.塔里木盆地乌什凹陷石油地质特征[J].石油学报,2004,25(6):12-17.
    [17]贾进华,刘焕杰等.利用砂岩碎屑成分判断含煤盆地的板块构造背景[J].中国煤田地质,1994,6(3):16-20.
    [18]李胜祥.松辽盆地地质演化史与砂岩型铀矿找矿方向研究.博士学位论文.核工业北京地质研究院.2002.
    [19]肖新建.东胜地区砂岩铀矿低温流体成矿作用地球化学研究.博士论文,核工业北京地质研究院,2004
    [20]黄以.塔里木盆地中新生代红层的次生还原作用与铀矿化[J].新疆地质,1997,15(1):84-89.
    [21]王彦钧等.新疆温宿县苛岗盆地煤矿普查地质报告[R].新疆维吾尔自治区煤田地质局综合地质勘查队,2005.
    [22]管海晏,王学佑等.塔里木盆地遥感地质[M].北京:地质出版社,1996.
    [23]张光亚,陈发景,汪新文.塔北地区构造变形样式及其分布规律[J].地球科学-中国地质大学学报,1994,19(6):755-768.
    [24]刘和甫.前陆盆地类型及摺皱冲断层样式[J].地学前缘,1995,2(3-4):59-68.
    [25]何登发,吕修祥,林永汉,董大忠.前陆盆地分析.北京:石油工业出版社,1996b.
    [26]张原庆,钱祥麟.盆山耦合概念及机制[J].中国地质,2001,28(3).
    [27]符超峰,孙敏,宋友桂等.盆山沉积耦合原理在定量恢复造山带隆升剥蚀过程中的应用[J].海洋地质与第四纪地质,2005,25(1):105-112.
    [28]李思田.盆地动力学研究--基本思路,内容与趋向[A].李思田,王华,路风香;盆地动力学--基本思路与研究方法[M].武汉:中国地质大学出版社,1999.
    [29]刘少峰,张国伟.盆地关系研究的基本思路、内容和方法[J].地学前缘,2005,12(3):101-110.
    [30]李继壳,肖文交,闫臻.盆山耦合和沉积作用[J].沉积学报,2003,21(1):51-60.
    [31]康玉柱.塔里木盆地形成演化及构造特征与油气关系[J].新疆地质,1993,11(2):95-107.
    [32]杨福忠,张恺.塔里木盆地北部构造演化及其含油气远景[J].石油试验地质,1991,13(2):143-150.
    [33]汤良杰.塔里木盆地多层次滑脱构造与油气远景探讨[J].地质学报,1992,1:1-13.
    [34]汤良杰.塔里木盆地构造演化与构造样式[J].地球科学,1994,19(6):742-754.
    [35]邬光辉,郑多明.塔里木北部地区北北西向构造变换带特征及对石油勘探的启示[J].地质科学,2004,39(4):551-560.
    [36]杨庚,钱祥麟.塔里木北缘库车盆地沉降与天山中新生代构造活动[J].新疆地质,1995,17(7):264-274.
    [37]苗继军,贾承造等.南天山前陆冲断带中段乌什-温宿地区构造分析与油气成藏[J].天然气地质学,2005,16(4):428-432.
    [38]张振红,吕修祥等.塔里木盆地乌什凹陷-温宿凸起油气运聚过程模拟试验研究[J].西安石油大学学报(自然科学版),2005,20(6):17-23.
    [39]刘玉魁等.塔里木盆地乌什凹陷石油地质特征[J].天然气工业,2007,27(1):24-26.
    [40]吕修祥,金之钧等.塔里木盆地乌什凹陷-温宿凸起油气勘探前景[J].中国石油大学学报(自然科学版),2006,30(1):17-23.
    [41]王鸿祯,刘本培,李思田.中国及邻区大地构造划分和构造发展阶段[M].武汉:中国地质出版社,1990.
    [42]王招民,夏维书,周黎霞,钟端等.塔里木盆地乌什凹陷及周边露头区油气地质[M].北京:石油工业出版社,2002.
    [43]王招明,钟端等.库车前陆盆地露头区油气地质[M].北京:石油工业出版社,2004.
    [44]郭庆银.塔里木盆地库车坳陷北缘白垩系沉积储层特征.中国地质大学硕士学位论文,1999,1-7.
    [45]周新源,罗金海,买光荣.塔里木盆地喀什凹陷及其周边地区构造特征与油气地质[M].北京:石油工业出版社,2005.
    [46]朱英.塔里木盆地东缘的若干大地构造问题[J].地球物理学报,1989,32(4).
    [47]赵仁夫等.西南天山地质矿产资源潜力综合评价成果报告[R].西安地质矿产研究所,2003.
    [48]邓东松等.反修牧场1/5万区域地质调查报告[R].新疆地矿局第8地质大队,1987.
    [49]姚超,焦贵浩,王同和,邢厚松等.中国含油气构造样式[M].北京:石油工业出版社,2004.
    [50]贾承造等.塔里木盆地石油地质与勘探丛书(卷一):塔里木盆地板块构造与大陆动力学[M1.北京:石油工业出版社,2004.
    [51]汤良杰等.新疆塔里木盆地东北地区断裂、局部构造及其控油作用的研究[R].地矿部西北地质局地质大队-第一物探大队.1989.
    [52]陈发景,汪新文,张光亚等.新疆塔里木盆地北部构造演化与油气关系[M].北京:地质出版社,1996.
    [53]李明等.新疆塔里木盆地东北地区区域构造及其控油气作用研究[R].地矿部石油地质综合大队,1989.
    [54]孙宝珊等.新疆塔里木盆地北部主要断裂应力场特征与油气关系研究[R].地矿部地质力学研究所,1994.
    [55]贾承造等.塔里木盆地石油地质与勘探丛书(卷二):塔里木盆地中新生代构造特征与油气[M].北京:石油工业出版社,2004.
    [56]刘志宏,卢华复,贾承造等.库车再生前陆逆冲带造山运动时间、断层滑移速率的厘定及其意义[J].石油勘探与开发,2000,27(1);12-18。
    [57]赵瑞斌,沈军,李军.2001、1902年新疆阿图什8 1/4级地震形变特征与发震模式初探[J].地震地质,23(4):493-500.
    [58]管树巍,李本亮,何登发等.晚新生代以来天山南、北麓冲断作用的定量分析[J].地质学报,2007,86(1):725-745.
    [59]李曰俊,孙龙德等.塔里木盆地西北缘三叠系硅岩砾石中的放射虫化石及其地质意义[J].地质科学,2004,39(2):153-158.
    [60]杨树锋,陈汉林,程小敢等.南天山新生代隆升和去顶作用过程[J].南京大学学报(自然科学),2003,39(1):1-9.
    [61]杨树锋,陈汉林等.塔里木盆地早-中二叠世岩浆作用过程及地球动力学意义[J].高校地质,2005,11(4):504-511.
    [62]罗志立,刘树根.评述“前陆盆地”名词在中国中西部油气盆地中的引用-反思中国石油构造学的发展[J].地质论评,2002,48(4):398-408.
    [63]康铁笙,王世成.地质热历史研究的裂变径迹法[M].北京:科学出版社,1991.
    [64]柳永清,王宗秀,金小赤等.天山东段晚中生代-新生代隆升沉积响应、年代学与演化研究[J].地质学报,2004,78(3):319-332.
    [65]王彦斌,王永,刘训等.天山、昆仑山中、新生代模式活动的磷灰石裂变径迹记录[J].中国区域地质.2001,20(1):94-100.
    [66]郭召杰,陈正乐,舒良树等.中国西部中亚型构造带中心生代陆内造山过程与砂岩型铀矿成矿作用[M].北京:地质出版社,2006.
    [67]郭召杰,吴朝东,张志诚等.乌鲁木齐后峡地区侏罗系沉积特征、剥露过程及中心生代盆山关系探讨[J].高校地质学报,2005,11(4):558-567.
    [68]郭召杰,张志诚,吴朝东等.中、新生代天山隆升过程及其与准噶尔、阿尔泰山比较研究[J].地质学报,2006,80(1):1-15.
    [69]杨庚,钱祥麟.中新生代天山板内造山带隆升证据:锆石、磷灰石裂变径迹年龄测定[J].北京大学学报,1995,31(4):473-479.
    [70]冯增昭.沉积岩石学(第二版)[M].石油工业出版社,1993.
    [71]刘家铎,林双幸.伊犁盆地南缘侏罗系沉积微相及铀矿控矿条件研究[J].矿物岩石,2003,23(1):30-36.
    [72]曹代勇,李小明,张守仁.构造应力对煤化作用的影响-应力降解机制与应力缩聚机制[J].中国科学D辑地球科学,2006,36(1):59-68.
    [73]王兆明,罗晓容,陈瑞银等.有机质热演化过程中地层压力的作用与影响[J].地球科学进展,2006,21(1):39-47.
    [74]中国科学院新疆地理研究所.天山山体演化[M].科学出版社,1986.
    [75]乔木,袁方策.新疆天山夷平面形态特征浅析[J].干旱区地理,1992,15(4):14-20.
    [76]王树基.天山夷平面上的晚新生代沉积及其环境变化[J].第四纪研究,1998,2.
    [77]曹伯勋.地貌学及第四纪地质学[M].中国地质大学出版社,1995.
    [78]Allen P.A.,Allen J.P,Basin Analysis,principles and application,Blackwell scientific publications,Oxford,London,1990.
    [79]Dickinson and Suzek.Plate tectomics and sandstone compositions,A.A.P.G.,1979,V.63,E2164-2182.
    [80]Lerche I,Basin Analysis:Quantitative methods 1,Academic press,Inc.1990.
    [81]Nishiizumi K,Kohl C P,Arnold J R,et al,Cosmic ray produced ~(10)Be and ~(26)Al in Antarctic rocks:exposure and erosion history[J].Earth and Planetary Science Letters.1991 104:440-454.
    [82]Bally A W,Snelson.S.Realms of subsidence.Canadian Society of Petroleum Geologist Memoir,1980.9-75.
    [83]Calassou,S.,Larroque C,and Malavieille,J.Transfer Zones of Deformation in Thrust wedges:an experimental study[J],Tectonophysics,1993,V.221:3-4.
    [84]Hendrix et al,Sedimentary record and climatic implications of recurrent deformation in the Tianshan:Evidence from Mesozoic strata of north Tarim,south Juggar,and Turpan basins,northwest China,G.S.A.B.1992,V.104:53-79.
    [85]Hendrix M S,Dumitru T A,Graham S A.Late Oligocene-early Miocene unroofing in the Chinese TianShan:An early effect of the India-Asia collision.Geology,1994,22:487-490.
    [86]Bullen M E,Burbank D W,Garver J L,er al Late Cenozoic tectonic evolution of the northwestern TianShan:New age estimates for the initiation of mountain building.Geological Society of America Bulletin,2001,113(12):1544-1559.
    [87]Yin A,Nie S,Craig P,et al.Late Cenozoic tectonic evolution of the southern Chinese Tian Shan.Tectonics,1998,17(1):1-27.
    [88]Parrish R R.Cenozoic thermal evolution and tectonics of the Coast Mountains of British Columbia,I.Fission-track dating,apparent uplift rates,and patterns of uplift.Tectonics.1983,2(2):601-632.
    [89]Graham S,Hendrix M,Wang Z,Carroll A.Collisional successor basins of western China:Impact of tectonic inheritance on sand composition,Geological Society of America Bulletin,1993,105:323-344.
    [90]Z.B.Wang.et al.The prospective evaluation of mineralization in middle minerals belt of Sulamian Mountain.Pakistan.BC-1 Project D.G.Khan,1996
    [91]E.N.Harshman,Distribution of elements in some roll-type uranium deposits,in Formation of Uranium Ore Deposits,International Atomic Energy Agency,1974,p.169-183.
    [92]J.W.King,S.R.Austin.Some characteristics of roll-type uranium deposits at Gas Hills,Wyoming.Mining Engineers,1966,18(5):85-93
    [93]H.H.Adler,and Sharp.B.J,Uranium ore roll-occurrence,genesis,and physical and chemical characteristics:Utah Geol,Survey,Guidebook to the Geology of Utah,no.21,1967,p.53-77
    [94]H.C.Granger,Localization and control of uranium deposits in the southern San Juan Basin mineral belt, New Mexico-an hypothesis:U.S.Geol.Survey prof.paper 600-B,1968, p.60-70
    [95] W.I.Finch,Geology of epigenetic uranium deposits in sandstone in the United States, United States Governent Printing Office, 1967
    [96] #12
    
    [97] F. J.Dahlkamp. Uranium Ore Deposit. Springer-Verlag.1993.
    [98] H.C. Granger, Localization and control of uranium deposits in the southern San Juan Basinmineral belt,New Mexico-an hypothesis:U.S.Geol.Survey prof.paper 600-B,p.B.-60.1968,
    [99] D.H. Eargle,et al., Factors in the formation of uranium deposits, coastal plsin:South Texas Geol.Soc.Bull.,v.9,no.3. 1968.
    [100] Bustin R M, Ross J V, Moffat I. Vitrinite anisotropy under differential stress and high confining pressure and temperature. Int J coal Geol, 1986, 6(4):343-351.
    [101] Suchy V, Fry M, Wolf M. Vitrinit reflectance and shear-induced graphitization in orogenic belts: A case study from Kanderstey area, Helvetic Alps, Switzerland. Int J of Coal Geol,1997,34: 1-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700