辽河盆地海南—仙鹤地区古近系层序地层与岩性圈闭预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对海南-仙鹤地区构造圈闭勘探程度较高、岩性油气藏勘探有待深入的问题,本次研究综合利用地质、地震、测井、钻井、试油试采等资料,将石油地质学理论与高分辨率层序地层学、地球物理技术紧密结合,对研究区内层序及岩性圈闭进行了系统研究。将海南-仙鹤地区古近系沙河街组与东营组划分为六个三级层序,并建立了研究区古近系层序地层格架。通过地震资料极性判别及层序界面精细构造解释,建立了研究区古近系等时构造格架,重新落实了研究区构造;指出沙三期近南北向展布的调节断层为南侧物源区携砂水流向凹陷内的汇入提供了物源通道;提出断裂的走滑活动对局部构造具在重要控制作用,造成研究区断坡带隆-洼相间的古构造格架;走滑断裂带的释拉张部位为古地貌低势区,其对应的沟谷地貌是众流汇聚的集中部位,携砂水流主要沿此向湖盆内汇入。这一认识对有利储集体分布的预测具有重要指导作用。
    地层是一切地质研究工作的基础。高分辨率层序地层学等时对比发现,沙三期以及东三期,研究区古地貌整体上呈南高北低、西高东低的态势,这一古地貌背景对沉积物体积分配与相分异起着重要的控制作用;在层序地层学沉积物体积分配与相分异原理指导下,通过岩心、测井及地震资料的成因地层分析认为:从沙三期到东三期,本区发育物源来自海南—月东潜山带之上的扇三角洲沉积体系,携砂水流主要沿古地貌低势区向断陷内推进,沿断坡带之上发育水下分支流河道砂体,断坡带之下发育河口坝砂体,细粒的粉砂质泥和泥质粉砂等水下分流河道间沉积物主要沿古水流破坏作用较小的古地貌高势区沉积,有利的储集砂体为水下分支流河道和河口坝砂体。
    在等时层序地层格架及等时构造格架内,利用地震属性分析、相干处理、地震相、三维可视化、三维地震反演等技术成功地对水下分流河道砂体进行了预测。指出了研究区岩性圈闭有利目标区,为岩性油气藏的勘探指明了方向。
Aiming at the questions that the structural traps have been difficult to find andthe research on the litho-traps was asked to be furthered in Hainan-Xianhe area,According to the theory of petroleum geology, high resolution sequence stratigraphyand the technology of geophysics, combined with the core data, the seismic data, thelogging data and the test data, the sequence stratigraphy and the litho-trap have beenstudied in this paper. Six third-order sequences has been recognized in the paleogeneformation of Shahejie and Dongying. The framework of paleogene sequencestratigraphy has been established in this paper. The structure has been re-interpretedwith 3D data. It was the S-N transfer fault that provided the channel for thepaleo-current entered into the faulting lake during Shahejie three period. The structurehigh and the structure low were controlled by the strike-slip fault, the structure lowwas developed in the releasing bend of the strike-slip fault, the distribution ofchannels was controlled by the structure low and therefore the channels entered thelake were along the releasing bend. This rules are very important for the favorablereservoirs prediction.
    Strata division and srata correlation are the basics of geological study. Throughthe high resolution sequence statigraphy study, the geomorphology was higher in thesouthern area than that in the northern area during the period of Shahejie three andDongying formation . The sedimentation volume partition and the facies differentiationwere controlled by geomorphology. Based on the theory of sequence stratigraphy, fandelta sedimentary system of Shahejie and Dongying formation which was fromHainan-Yuedong buried hill has been recognized through core data, logging data andseismic data analysis. The paleo-currents and the sub-channel branches developed alongthe paleo-geomorphology low of the faulting slope break, and the mouth bar wasdeveloped below the faulting slope break. However, the paleo-geomorpholgy high wasoccupied by the sandy mud and the mud. Therefore, the favorable reservoirs aresub-channel branches sand bodies and mouth bar sand bodies.
    The sub-channel branch sand bodies have been successfully predicted through
    the techniques of seismic attributes analysis, seismic coherence process, seismicfacies analysis, 3D visualization and 3D seismic inversion in the framework ofsequence stratigraphy. The promising exploration target and the distribution oflitho-traps have been pointed out and clear.
引文
[1] L. L. Sloss. Sequence in the cratonic interior of North America[J]. GSA Bulletin, 1963,74:93~144
    [2] Vail P R, Mitchum R P Jr,Thompson S III. Seismic stratigraphy and global change of sea level,part four:global cycle of relative changes of sea level[J]. AAPG Me m,1977, 26:83~98
    [3]Vail P R. Seismic stratigraphy interpretation using sequence stratigraphy. Part1: seismic stratigraphy interpretaiion pro-cedure. In, Bally A W, ed. Ailas of seismic stratigrapby[J]. American Association of Petroleum Geologists, Studies in Geology, 1987, 27:l~10
    [4]Posamentier H&Vail P. Eustatic control of clsatic deposition,sequence and system tract models. In: Wilgus C etal eds. Sea Level Changes, an Integrated Approach[J]. SEPM spesial Publ , 1988, 42:109~124.
    [5]Van Wagoner J C, et al. An Overview of the Fundamentals of Sequence Stratigraphy and Key Definitions. In: Wilgus C K etal. eds. Sea-Level Changes:an Integrated Approach[J]. Society of Economic Paleontologists and Mineralogists Special Publication , 1988, 42:125~154
    [6]Van Wagoner J C, et al. Siliciclastic Sequence Stratigraphy in Well Logs, Cores, and Outcrops: Concepts for High-Resolution Correlation of Time and Facies[J]. AAPG, Methods in Exploration Series 7, 1990, 55
    [7]Haq,B. U., et al. Mesozoic and Cenozoic chronostratigraphy and cycles of sea level change;In :Sea7level Changes:An Integrated Approach[J],Soc . Econ. Paleontol. Mineral,Spec. Publ, 1988, 42:71~108
    [8] Galloway W E . Genetic stratigraphic sequences in basin analysis I:architecture and genesis of flooding-surface bounded depositional units[J] .AAPG Bulletin,1989a, 73 :125~142
    [9] Galloway W E. Genetic stratigraphic sequences in basin analysis II:application to northwest Gulf of Mexico Cenozoic basin[J].AAPG Bulletin,1989b, 73 :143~154
    [10]Johnson J G, Klapper G, Asndberg C A. Devonian eusiaiic fluciuations in Euramerica[J]. Bull. Geol. Soc. America, 1985, 99:567~587
    [11]Embry A F. Transgressive - regressive (T - R) sequence analysis of the Jurassic succession of the Sverdrup Basin, Canadian Arctic Archipelago, Can. J. Earth. Sci. 1993, 30:301~320
    [12]Cross T A. Conirols on coal distribution in transgressive-regressive cycles, Upper Cretaceous, Western interior,U.S.A.In: Wilgaus C K , et al. Sea - level ctanges: An integrated approach. SEPM Special Publicatioa, 1988, 42:371~380
    [13]Wheeler H E. Baselevel. lithosphere surface and time -stratigraphy. Bull. Geol. Soc. America. 1964, 75:599~610
    [14]T. A. Cross. Stratigraphic controls on reservoir attributes in continental strata[J], Earth Science Frontier,2000, 7 (4): 322~350
    [15]J. A. MacEachern, B. A. Pemberton. High-resolution Sequence Stratigraphy of early Transgressive deposits, Viking Formation, Joffre Field, Alberta, Canada[J]. AAPG, 1998, 82(5): 729~756
    [16]J. A, MacEachern, B. A. Zaitlin, S. G. Pemberton. High-resolution Sequence Stratigraphy of early Transgressive deposits,Viking Formation, Joffre Field, Alberta, Canada[J].AAPG, 1998, 82(5): 729~756
    [17]J.C.Ramon and T.A.Cross. Characterization and Prediction of Reservoir Architecture and Petrophysical Properties in Fluvial Channel Sandstones, Middle Magdalena Basin, Colombia[J]. CT&F. Ciencia, Tecnologiay Futuro, 1997, 1 (3)
    [18]T. A. Cross, M. R. Baker et.alApplication of High-Resolution Sequence Stratigraphy to Reservoir Analysis, Proceeding of the 7th Exploration and Production Research Conference: Paris, 1993, 11~33
    [19]R. M. Mitchum, J. C. Van Wagoner. High-frequency sequences and their stacking patterns: sequence stratigraphic evidence of high-frequency eustatic cycles[J]. Sediment Geology. 1991,70: 131~160
    [20]陆永潮等. 精确的定量和定年技术在高频层序地层研究中的重要性[J]. 地学前缘, 1999, 6(增刊):28
    [21]曾允孚, 覃建雄. 沉积学发展现状与展望[J]. 成都理工学院学报, 1999, 26(1): 1~7
    [22]R.J.Weimer. Developments in sequence stratigraphy:Foreland and cratonic basins[J]. AAPG Bulletin, 1992, 76(7): 965~982
    [23] K. W.Shanley, P. J.Mccabe. Perspectives on the sequence stratigraphy of continental Strata[J]. AAPG Bulletin, 1994, 78(4): 544~568
    [24]李思田, 林畅松, 解习农,等. 大型陆相盆地层序地层学研究[J]. 地学前缘, 1995, 2(3-4):133~136
    [25]纪友亮, 张世奇,等. 陆相断陷湖盆层序地层学[M]. 北京:石油工业出版社, 1996
    [26]胡受权, 郭文平, 杨风根,等.试论控制断陷湖盆陆相层序发育的影响因素[J]. 沉积学报. 2001, 19(2):256~262
    [27]李儒峰, 刘本培. 碳氧同位素演化与碳酸盐岩层序地层学关系研究[J]. 地球科学, 1996, 21(3):261~266
    [28]郑荣才, 刘文均, 李祥辉,等. 龙门山平骚组沉积体系及旋回层序研究[J]. 沉积学报, 1997, 15(3): 1~7
    [29]谢渊, 王剑, 罗建宁,等.羌塘盆地那底岗日地区中侏罗世层序地层与碳、氧、银同位素响应[J]. 沉积学报, 2002, 20(2): 340~349
    [30]Currie B S. Sequence stratigraphy of non marine Jurassic-Cretaceous rocks, central Cordilleran-basin system[J]. Geological Society of American Bulletin, 1997, 109(9):1206~1222
    [31]Lemons D R, Chan M A. Facies architecture and sequence stratigraphy of fine-grained lacustrine deltas along the eastern margin of Late Pleistocene Lake Bonnevillie,northern Utah and southern Idaho[J]. AAPG, 1999, 83(4):635~665
    [32] Wright V P, Marriott S B. The Sequence stratigraphy of fluvial depositional systems the role of floodplain sediment storage[J]. Seol Geol, 1993, 86:203~210
    [33] Xue Liangqing, Galloway W E. Genetic sequence stratigraphic framework,depositional style,and hydrocarbon occurrence of the Upper Cretaceous QYN Formations in the Songliao lacustrine basin,northeastern China[J]. AAPG Bulletin, 1993, 77:1792~1808
    [34]魏魁生, 徐怀大.华北典型箕状断陷盆地层序地层学模式及其与油气赋存关系[J],地球科学—中国地质大学学报, 1993,18(2)
    [35]邓宏文. 美国层序地层研究中的新学派——高分辨率层序地层学[J]. 石油与天然气地质,1995,16(2):89~97
    [36]林畅松, 李思田, 任建业. 断陷湖盆层序地层研究和计算机模拟——以二连盆地乌里雅斯太断陷为例[J]. 地学前缘,1995, 2(3-4):124~132
    [37]胡受权, 郭文平, 杨凤根,等. 试论控制断陷盆地陆相层序发育的影响因素[J]. 沉积学报,2001,19(2):256~262
    [38]池英柳, 张万选, 张厚福,等. 陆相断陷盆地层序成因初探[J]. 石油学报, 1996, 17(3):19~26
    [39]冯有良, 李思田, 解习农. 陆相断陷盆地层序形成动力学及层序地层模式[J]. 地学前缘,2000,7(3):119~132
    [40]徐怀大, 魏魁生, 洪卫东译. 层序地层学原理——海平面变化综合分析[M]. 北京:石油工业出版社, 1993
    [41]魏魁生. 非海相层序地层学-以松辽盆地为例[M]. 北京:地质出版社, 1996
    [42]邓宏文, 王红亮,祝永军. 高分辨率层序地层学——原理及应用[M]. 北京:地质出版社2002
    [43]朱筱敏. 层序地层学原理及应用[M].北京:石油工业出版社,1998
    [44]蔡希源等,陆相盆地高精度层序地层学—隐蔽油气藏勘探基础、方法与实践[M].北京:石油工业出版社,2003
    [45]顾家裕等.层序地层学及其在油气勘探开发中的应用[M]. 北京:石油工业出版社,1997
    [46]Sheriff Robert E. Seismic stratigraphy[M]. International Human Resources Development Corporation, 1980
    [47]Thigpen Ben B, Dalby A E, Ralph Landrum. Special report of the Subcommittee on polarity standards[J]. Geophysics, 1975, 40(4):694~699
    [48]Valenta W T,Thigpen Ben B. Discussion on "Special report of the subcommittee on polarity standards[J]. Geophysics, 1976, 41(3):324
    [49]安斯蒂 NA. 牛毓荃译. 砂岩油气藏的地震勘探[M]. 北京:石油工业出版社, 1987
    [50]王克宁. 地震记录极性和层位标定研究[J]. 石油地球物理勘探,1992, 27(1): 130~139
    [51]潘仁芳, 赵玉华, 史松群. 苏里格庙气田盒 8 段砂岩 AVO 正演模型研究[J]. 天然气工业, 2002, 22(5):7~10
    [52]韩文功. 地展剖面的极性问题[J]. 石油地球物理勘探, 1994, 29(6): 769~772
    [53]孙建孟,王永刚. 地球物理资料综合应用[M]. 山东东营:石油大学出版社, 2001
    [54]唐建人, 李勤学. 高分辨率地震勘探理论与实践[M]. 北京:石油工业出版社, 2001
    [55]姚逢昌, 甘利灯. 地震反演的应用与限制[J]. 石油勘探与开发, 2000, 27(2):53~56
    [56]陈蓉, 张传宝, 杨卫东,等. 三维可视化技术在吉和油田开发中的应用[J]. 石油勘探与开发, 2001, 28(6):87~88
    [57]赵力民, 彭苏萍, 郎晓玲,等. 利用 Stratimagic 波形研究冀中探区大王庄地区岩性油藏[J]. 2002, 23(4):33~36
    [58]张永升. 波形分析方法在碳酸盐岩储层预测中的应用[J]. 石油物探, 2004, 43(2):135~138
    [59]孙义梅, 杨春峰, 陈程,等. 相干技术的参数选取及其效果分析[J]. 石油地球物理勘探, 2001, 36(5):640~645
    [60]朱庆荣, 张越迁, 于兴河,等. 分频解释技术在表征储层中的运用[J]. 矿物岩石, 2003, 23(3):104~108
    [61]金尚柱,孙洪斌,谢文彦,等.辽东湾北部滩海油气地质[M]. 北京:地质出版社, 2000. 2~3
    [62]陈全茂, 李忠飞. 辽河盆地东部凹陷构造及其含油气性分析[M]. 北京:地质出版社, 1998
    [63]朱筱敏, 王贵文, 孙洪斌,等. 辽河滩海地区下第三系层序地层学研究[M]. 北京:石油工业出版社, 2000
    [64]魏魁生, 叶淑芬, 郭占谦,等. 松辽盆地白垩系非海相沉积层序模式[J]. 沉积学报, 1996, 14(4):50~60
    [65]万天丰. 郯庐断裂带的形成与演化综述[J]. 现代地质, 1996, 10(2):159~167
    [66]漆家福, 陈发景.辽东湾—下辽河裂陷盆地的构造样式[J]. 石油与天然气地质, 1992, 13 (3):272~283.
    [67]冯建辉, 吕延仓, 谭试典,等. 中国石油构造样式[M]. 北京;石油工业出版社, 2000
    [68]邓宏文, 王洪亮, 等. 古地貌对陆相裂谷盆地充填特征的控制——以渤中凹陷西斜坡区下第三系为例[J]. 石油与天然气地质, 2001, 20(4):293~296.
    [69]樊太亮, 吕延仓, 丁明华. 层序地层体制中的陆相储层发育规律[J]. 地学前缘, 2000, 7(4):315~321
    [70]陆基孟. 地震勘探原理及资料解释[M]. 北京;石油工业出版社, 1991
    [71]Mike, Baborich. 孙跃华译.断层和地层特征的三维地震不连续性:相干数据体[J]. 国外油气勘探, 1996, 8(3):340~346
    [72]徐怀大. 地震地层学解释基础[M]. 武汉:中国地质大学出版社, 1991
    [73]李庆忠. 走向精确勘探的道路[M]. 北京:石油工业出版社, 1993
    [74]俞寿朋. 高分辨率地震勘探[M]. 北京:石油工业出版社, 1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700