长江供沙锐减背景下河口及其邻近海域悬沙浓度变化和三角洲敏感区部淤响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河口和邻近海域悬沙浓度的变化和底床冲淤对该区域的环境质量和生态系统具有重要影响,从而在很大程度上涉及到社会经济的发展。而悬沙浓度变化和底床冲淤之间有着内在的联系。长江是我国第一大河,入海水沙分别居世界的第五和第四位。长江三角洲是我国乃至世界上的重要经济区。由于流域高强度人类活动的影响,近期长江入河口泥沙通量呈明显的下降趋势,特别是2003年三峡大坝建成以来,长江平均入河口泥沙通量(2003-2009年)仅为1950s-1980s的30%。在此背景下,河口及邻近海域悬沙浓度的变化和三角洲地貌的冲淤响应是值得深入研究的重要科学命题,它不仅是区域河口海岸管理的重要依据,而且对丰富世界陆海相互作用的理论认识具有重要意义。
     本文根据长江口和邻近海域10个固定采样点2-12年的每日表层悬沙浓度,结合该区域的动力资料和长江入河口水沙资料,研究悬沙浓度的空间分布格局和时间变化的周期性和趋势性,并探讨其主要影响因子;利用近50年(1958-2007年)不同时段长江口水下三角洲典型区域的地形资料,研究底床冲淤速率的时间变化及其与长江来沙锐减的关系;分析长江口-邻近海域悬沙浓度和海底冲淤对长江来沙减少响应过程中的相互制约关系。主要结果和结论如下:
     1)河口及其邻近海域悬沙浓度的空间分布格局及其机制。2009年平均表层悬沙浓度从长江口上游节点(徐六泾站)的0.058g/l逐渐向河口口门(九段沙站)增大到0.60g/l(增大一个数量级),继而又向海降低至冲淡水边缘(绿华山站)的0.057g/lo悬沙浓度的这种沿长江口延伸方向变化的空间格局进一步证实了地形和潮动力共同控制下河口最大浑浊带的发育。在沿岸线方向上,悬沙浓度从长江口外海滨(佘山站:0.43g/I)向杭州湾中部(滩浒站:1.28g/1)呈显著增加趋势,其主要原因是潮动力的沿程增大和较低悬沙浓度的长江入河口水体影响的沿程减弱。
     2)河口及其邻近海域悬沙浓度变化的周期性及其影响因素。长江口及其邻近海域悬沙浓度存在明显的周期性变化。日均悬沙浓度表现出14.9±0.2天(p <0.001)(反映大小潮变化)以及365±6天(P<0.01)(反映季节性变化)的显著周期。代表性站点(大戢山)日均悬沙浓度与日均潮差、波高、长江径流量和输沙率(大通站)的多元回归分析结果是:潮汐、波浪、长江径流量和输沙率对日均悬沙浓度变化的贡献率分别为30%、7%、23%和4%,反映这四个因子对日均悬沙浓度的影响以潮差最大、径流量次之。波浪的影响远低于潮差是因为取样点的水深通常大于5m,在这样的水深条件下,一般的波浪难以扰动底床沉积物从而引起泥沙再悬浮。大通日均输沙率对河口及其邻近海域悬沙浓度变化的贡献远低于大通日均径流量的贡献在理论机制上可能是一种假象,造成这一假象的原因可能是大通径流量和输沙率之间的高度正相关关系(R=0.90)。上述四个因子对日均悬沙浓度的总贡献率为64%,说明它们是主要的影响因子;同时反映日均悬沙浓度的变化机制较为复杂,其它因子的影响也不宜忽视。代表性站点(大戢山)月均悬沙浓度与月均潮差、波高、长江径流量和输沙率(大通站)的多元回归分析结果为:潮汐、波浪、长江径流量和输沙率对月均悬沙浓度变化的贡献率分别是21%,1%,62%和8%。这说明,长江径流量的季节性变化是长江口及其邻近海域悬沙浓度季节性变化的最重要的控制因子,其次是潮差的季节性变化。上述四个影响因子对悬沙浓度季节性变化的总贡献率达到92%,说明其它因素的影响很小。
     3)河口及其邻近海域悬沙浓度变化的长期趋势及其主要原因。悬沙浓度本文可供长期对比各个测站的年均悬沙浓度在过去的10-20年中均呈现不同程度的下降趋势。这种下降趋势主要归因于长江入海悬沙通量的下降,理由是没有证据表明同期海洋动力条件的变化是主要原因。导致研究区悬沙浓度呈现长期减少趋势的主要因素为长江输沙量的减小。其中,徐六泾站点的悬沙浓度降低幅度最大达56%,与大通站的下降幅度吻合,反映河口上游悬沙浓度对流域来水来沙条件变化的响应最为敏感。而目前遭受侵蚀的长江口门外水下三角洲前缘(佘山站)悬沙浓度下降幅度最小仅5%。长江口及其邻近海域各站悬沙浓度的下降幅度平均值为20%左右。这一方面反映河口及其邻近海域悬沙浓度对流域入海悬沙通量的长期变化趋势有较敏感的响应,另一方面又反映这种响应存在明显的滞后现象。具有连续12年监测资料的代表性站点(小洋山)年均悬沙浓度资料系列与大通站年悬沙通量资料系列的相关统计分析表明,前者的变化相对于后者的变化存在3-4年时间滞后。这些滞后现象归因于长江入海泥沙锐减所诱发的水下三角洲(特别是口门外水下三角洲前缘)的强烈侵蚀和细颗粒泥沙再悬浮。
     4)三角洲对流域来沙锐减响应的敏感性及其空间差异。近50年来长江口门外水下三角洲(以一个1825km2的典型区域为例)的冲淤演变经历了4个阶段:1958-1977年为快速淤积期[时段-区域平均淤积速率(下同)6.8cm/a],1977-2000年为淤积减慢期(3.2crn/a),2000-2004年为淤-蚀转变期(-3.8cm/a),2004-2007年为侵蚀加强期(-4.5cm/a),侵蚀速率较2000-2004年大。上述四个阶段的水下三角洲冲淤速率与同期的长江入海泥沙通量(大通站)之间存在显著的正相关关系,根据该关系内插得出的水下三角洲冲淤转换临界入河口泥沙通量为270×106t/a,略小于三峡工程运行前的2001-2002年的大通输沙率(275-276x106t/a)。这说明,该淤-蚀转变很可能发生在三峡工程运行后(2003年以来的大通输沙率变化于85×106t/a和216×106t/a之间)。鉴于没有证据表明近几十年海洋动力条件和长江口门外的边界条件发生了明显变化,上述水下三角洲的淤-蚀转变从根本上归因于流域人类活动特别是三峡工程蓄水引起的入海泥沙通量下降。换言之,三峡工程蓄水对长江口门外水下三角洲地形演变产生了重要影响。另一+方面,三角洲的冲淤及其对长江来沙通量变化的响应存在明显的空间差异。口门外5—10m水深区域对长江来沙减少的响应最为强烈(即近年来侵蚀最为明显),10-20m区域次之,5m以上区域则相对比较稳定。也就是说,长江三角洲对流域来沙减少的响应敏感是限于口门外三角洲前缘的敏感带。
     5)河口及其邻近海域悬沙浓度和海底冲淤对流域来沙锐减响应的耦合机制。在流域来沙减少的背景下,河口及其邻近海域悬沙浓度的响应和水下三角洲底床的冲淤响应是互为耦合的,即悬沙浓度的变化影响底床冲淤,而底床冲淤又反过来影响悬沙浓度。近10年徐六泾站悬沙浓度的下降幅度(56%)与大通站悬沙浓度的下降幅度(55%)基本一致,反映大通至徐六泾河段底床冲淤不明显。而长江口外水下三角洲前缘的佘山站悬沙浓度的下降幅度(5%)远低于大通站,是因为底床冲淤再悬浮的泥沙补充了悬沙浓度。如果河口及其邻近海域底床是由基岩或砂砾组成,不能补充悬沙,则河口及其邻近海域的悬沙浓度将继承流域入海水体悬沙浓度的下降特征。假定是这种情况,那么从长江口向浙江沿岸和外海输送的泥沙将像流域入海泥沙那样急剧减少。相反,若河口及其邻近海域底床侵蚀再悬浮的泥沙完全补充了流域入海水体悬沙的减少,则河口及其邻近海域悬沙浓度不会下降,从长江口向浙江沿岸和外海输送的泥沙也不会减少。实际情况介于上述两种极端假定情景之间:长江口及其邻近海域悬沙浓度的平均下降幅度(21%)仅为流域入河口水体悬沙浓度下降幅度的38.2%。这说明,流域来沙锐减背景下水下三角洲的侵蚀抵消了约一半以上的悬沙浓度下降。同时也反映,从长江口向浙江沿岸和外海输送的泥沙呈减少趋势,但减少幅度小于流域来沙的减小幅度。
     6)未来几十年河口及其邻近海域悬沙浓度变化和三角洲冲淤趋势的展望。
     未来几十年,由于流域新建大坝(特别是金沙江流域梯级水库)、水土保持和南水北调等人类活动的影响可能超过已建水库因历年淤积而减少库容(从而减小入库泥沙的淤积比)的影响。另一方面,在经历了三峡工程运行以来近10年的坝下游侵蚀之后,长江中下游干流河床可供侵蚀的泥沙可能将逐渐减少。因此,未来几十年长江入河口的泥沙可能将进一步减少。在此背景下,长江水下三角洲的侵蚀将可能继续进行。但是,因前期侵蚀导致的地形调整、表层沉积物粗化以及较密实的老淤泥层暴露,总体上侵蚀速率将可能逐渐减小(尽管流域来沙通量将进一步降低)。因此,未来几十年长江口及其邻近海域悬沙浓度很可能进一步降低,从长江口向浙江沿岸和外海输送的泥沙也将进一步减少。
Variations in estuarine and coastal suspended sediment concentration (SSC) and accretion/erosion of sea bed have important influences to the environmental quality and ecosystem in estuarine and coastal waters, thus, effect the the developmemt of social economy to a great extent. There is an internal connection between variations in SSC and sed bed accretion/erosion. As one of the largest rivers in the world, the Yangtze River is the fourth in sediment load (until recently>400Mt/yr), and the fifth in water discharge. The Yangtze Delta is an important economic region to our contury and even in the world. In recent years, the suspended sediment supply from Yangtze has drastically decreased as a result of human activities, especially the operation of Three Gorges Dam in2003. Yangtze sediment discharge during2003to2009was only30%that in1950s-1980s. Under this context, variations in estuarine and coastal SSC and accretion/erosion in the Yangtze subaqueous delta are important scientific topics worth researching, which are not only important basis to estuary management but also have important significance to enrich the land-ocean interaction theory.
     Researches about spatial variations, periodicity and temporal trend in SSC, and exploring factors controlling SSC variations in the Yangtze (Changjiang) Estuary and nearby coastal waters, based on data of daily SSC in the surface waters, wind, wave tide and the Yangtze water and sediment load to the sea at10fixed stations in the study area ranging from2to12years. Based on the bathymetric maps of the Yangtze subaqueous delta in recent50years (1958-2007), the relationships between variations of the subaqueous delta accretion/erosion rates and the sharp decline of the sediment supply from the Yangtze River to the sea were preliminarily discussed. In addition, we analysed the interaction relationship between response of SSC in Yangtze estuary and adjacent coastal waters and accretion/erosion in the subaqueous delta to the the sharp decline of the sediment supply from the Yangtze River to the sea. The main fruits are as following:
     1) Spatial pattern of surface SSC and mechanism in estuary and adjacent coastal waters. Quasi-synoptic measurements in2009showed an increase in surface SSC from0.058g/1at the upstream limit of the Yangtze estuary (Xuliujing) to-0.6 g/l at the Yangtze River turbidity maximum at the estuary mouth (Jiuduansha), seaward of which SSC decreased to0.057g/l (Lvhuashan). This cross-shore variation revealed the developemnt of an estuarine turbidity maximum, attributed to combined influence of stronger hydrodynamic forces and shallower water depths at the mouth-bar area. The SSC of longshore transect showed a different pattern:increasing towards the Hangzhou Bay, from0.43g/l in offshore area (Sheshan) to1.28g/l in the middle of Hangzhou bay (Tanhu), which attributed to higher tidal hydrodynamic forces and the reduced influence of discharge from the Yangtze River.
     2) Temporal variations and factors controlling Periodicity of SSC in estuary and adjacent coastal waters.The SSC in the Yangtze estuary and Hangzhou bay waters have marked periodic variations. SSC showed statistically significant bi-weekly (14.9±0.2days, P<0.001)(i.e., spring-neap tides) and annual periodicities (365±6days, P<0.001) linked the seasonal variations in the discharge from Yangtze River. Based on a multiple regression analysis between daily SSC and influencing factors at Dajishan, tidal range, wave height, riverine discharge, and suspended sediment flux contributed around30%,7%,23%, and4%, respectively, to daily variations in SSCs. The analysis results suggest that tidal range and water discharge from Yangtze were the most and second important factor among the four factors to the daily SSC. The contribution of tidal range to variability in daily SSC was significantly higher than the contribution of wave height was attributed to the water depth less than5m normally. So in the study area, normal waves do not feel the bottom that results in strong sediment resuspension. The contribution of daily suspended sediment flux at Datong to variability in daily SSC was much lower than the contribution of daily water flux at Datong. The result is likely a feint which is related to the strong positive correlation between discharge and suspended sediment load at Datong (R0.90).Tides, waves, riverine discharge, and suspended sediment flux together contributed around64%to daily variations in SSC, which indicate that the four factors are dominated influencing factors to daily variations in SSC. At the same time, the results indicate that the mechanism of daily variations in SSC was very sophisticated, and the other influencing factors can not be ignored. Based on a multiple regression analysis between monthly SSC and influencing factors at Dajishan, tidal range, wave height, riverine discharge, and suspended sediment flux, the contribution of them are around21%,1%,62%, and8%to the monthly variation in SSC, respectively. The results of multiple regression for monthly SSC and major influencing factors suggest that the seasonal changes of water discharge of Yangtze was the most important controlling factors to the variations in estuarine and adjacent coastal waters, and the seasonal variation of tidal range was the second important controlling factors. The four influencing factors above-mentioned together contributed around92%to the monthly variations in SSC, which suggest the contribution of other influencing factors were minor.
     3) Long-term variation trend of SSC in the Yangtze estuary and adjacent coastal waters and the major causes. Over the past10-20years, annual SSC at all gauging stations has shown decreasing trend in different degrees. The major cause of the dcreasing trend is mainly the drastic decline in suspended sediment load from the Yangtze, because no evidence can be found that changes of ocean hydrodynamics was main reason for the changes in SSC. The decrease of SSC at Xuliujing was maximum, the amount of decrease even reached56%. Over this period, at Xuliujing has decreased almost by the same amountas at Datong (55%). The similarity between Datong and Xuliujing suggests that SSC in upper estuary was more sensitive to variation of water and sediment discharge from the basin. While at subaqueous delta front (Sheshan station), the smallest and statistically insignificant decrease (5%) in SSC occurred, where severe erosion was observed. SSC in the Yangtze estuary and adjacent coastal waters over this period decreased was20%on average and was less than that at Datong. The differences reflect that SSC in the Yangtze estuary and adjacent coastal waters was more sensitive to long-term vaiation of sediment discharge from the basin, and on the other hand the responses between them had a significant time lag. At Xiaoyangshan, where observations of SSC have been conducted since1998, a linear regression between the annual average of SSC at Xiaoyangshan and the annual SSD at Datong revealed that there was a3-4year time lag between the decrease in coastal SSC and the recent decrease in SSD at Datong. This de-coupling is attributed mainly to severe erosion of the subaqueous delta, compensating for the decrease in the supply of riverine suspended sediment.
     4) Sensitive and spatial difference of response of the subaqueous delta to drastical sediment decrease from the basin. In recent50years, the changes of the Yangtze subaqueous delta (area:1825km2) experienced four periods. Between1958and1977, the subaqueous delta accumulated rapidly with the average shoaling rate of6.8cm/yr. Between1977and2000, most of the Yangtze subaqueous delta continued to prograde, but the net shoaling reduced to3.2cm/yr. Between2000and2004, conversion from accretion to erosion, with the average vertical erosion rate of3.8cm/yr. During2004to2007, the erosion rate speed up in comparison with in2000-2004, with the net erosion of4.5cm/yr. During the four study periods bathymetric changes within the study area have shown a strikingly linear correlation with the Yangtze's sediment load (at Datong). The fitting result suggested that the Yangtze delta will continue to erode as long as the river annually discharges less than-270Mt/yr of sediment, which was less than275-276Mt/yr as measured at Datong before the impoundment of TGD from2001to2002. The results indicated the conversion of the delta front from accretion to erosion occurred after the impoundment of TGD propably. Because of no evidences were found that ocean hydrodynamics changed obviously in recent decades in the study area. The mainly reason of the Yangtze subaqueous delta reverted from mainly accretion to erosion was decrease in suspended sediment discharge to the estuary (east sea) due to catchment human activities, especially the impoundment of TGD. That is to say, the impoundment of TGD has brought forth incisive impact to the evolution of the Yangtze subaqueous delta. On the other hand, the accretion/erosion of the subaqueous delta response to the changes of the sediment supply from the Yangtze has significant special difference. In the study,5-10m water depth area was the most sensitive to the change (decrease) of the sediment supply from the Yangtze,10-20m water depth area was more sensitive, while shallower (<5m) areas remained relatively stable. In other words, the response of Yangtze delta to the decline of sediment supply from the basin was only limited the sensitive zone of delta front.
     5) Interconnection mechanism between response of the SSC in estuary and adjacent coastal waters and accretion/erosion of sea bed to the drastic decline of sediment supply from the catchment. Under the background of decrease of sediment supply from the catchment, the response of the SSC in estuary and adjacent coastal waters and accretion/erosion of sea bed are interconnection, that is to say:the changes of SSC influence the accretion/erosion of sea bed, and conversely, the accretion/erosion of sea bed influence the changes of SSC. In recent10years, the similarity decrease rates in SSC between Datong (55%) and Xuliujing (56%) suggests that no significant erosion or deposition has occurred along the reaches between these two sites. While the SSC at Sheshan in the delta front decreased far lower than at Datong (only5%), because re-suspension of sediment eroded from the subaqueous delta has partly offset the decline in suspended sediment from the Yangtze River. If the sea bed was made up of rock or gravel in estuary and adjacent coastal waters, the sea bed can not compensate the suspended sediment, thus the SSC in estuary and adjacent coastal waters would follow the declining character of SSC of water from the catchment to the sea. It is assumed that the sediment discharge transfer from Yangtze estuary to Zhejiang coast and outer sea would drastic decline following the drastic decline of sediment from the catchment to the sea. The other way round, if the re-suspension of sediment eroded from the subaqueous delta had offset the decline in suspended sediment from the Yangtze entirely, the SSC in the estuary and adjacent coastal waters would not decrease and the sediment discharge transfer from Yangtze estuary to Zhejiang coast and outer sea would not decline. The reality condition is in between two assumed extremes mentioned above:the decrease amount of SSC in Yangtze estuary and adjacent coastal waters was21%on average, only38.2%that decreased in SSC of water from the catchment to the sea. This illustrated that the severe erosion of the subaqueous delta had compensated more than half of the decrease in SSC. Moreover, this reflected the sediment discharge transfer from Yangtze estuary to Zhejiang coast and outer sea had shown decreasing trend, but the decrease amount was less than that decreased in sediment form the catchment.
     6) Expectation of variations in estuary and adjacent coastal waters SSC and accretion/erosion of sea bed for the coming decades. In the future decades, the influences of new dams are in construction or will be constructed in the Yangtze basin (especially cascaded in the Jinshajiang basin), the Water and Soil Conservation Project and the South to North Water Diversion Project et al.(catchment human activities) would propably exceed loss of capacity of reservoir of the built dams (decrease the settlement rates of SSC) because of sediment deposition. On the other side, the river sediment supply for erosion in the middle and lower reaches of the Yangtze would decrease gradually, when experienced10years of erosion in the lower reaches after the operation of TGD. Therefore, the Yangtze sediment flux to the sea is expected to continue to decline in approaching decades. It is no doubt that the subaqueous delta would probably suffer further erosion in future. But the topography adjustment, coarsening of bottom sediments and the exposure of older and firmed silt stratification resulting from bed erosion in earlier stage would slow the erosion rate gradually. So, SSC in the estuarine and adjacent coastal waters would experience further decrease, and the sediment discharge transfer from Yangtze estuary to Zhejiang coast and outer sea would decline for the coming decades.
引文
Achite, M., Ouillon, S.,2007. Suspended sediment transport in a semiarid watershed, Wadi Abd, Algeria (1973-1995). Journal of Hydrology 343,187-202.
    Amos, C.L., Alfoldi, T.T.,1979. The determination of suspended sediment concentration in a macrotidal system using landsat data. Journal of Sedimentary Petrology 49(1),159-174.
    An, Q., Wu, Y., Taylor, S., Zhao, B.,2009. Influence of the Three Gorges Project on saltwater intrusion in the Yangtze River estuary. Environmental Geology 56,1679-1686, doi: 10.1007/s00254-008-1266-4.
    Belkin, I. M.,2009. Rapid warming of large marine ecosystems. Progress in Oceanography 81, 207-213, doi:10.1016/j.pocean.2009.04.011.
    Bhattacharya, J.P., Giosan, L.,2003. Wave-influenced deltas:geomorphological implications for facies reconstruction. Sedimentology 50,187-210.
    Bird, E.C.F.,1996. Beach Management. Johowiley & Sons, New York.
    Black, K.S.,1998. Suspended Sediment Dynamics and Bed Erosion in the High Shore Mud at Region of the Humber Estuary, UK. Marine Pollution Bulletin 37(3-7),122-133.
    Blake, A.C., Kineke, G.C., Milligan, T.G., Alexander, C.R.,2001. Sediment Trapping and Transport in the ACE Basin, South Carolina. Estuaries 24(5),721-733.
    Blott, S.J., Pye, K., van der Wal, D., Neal, A.,2006. Long-term morphological change and its causes in the Mersey Estuary, NW England. Geomorphology 81,185-206.
    Bob, B., Jeff, S., Andy, M. D., et al.,2000. Geo-database Object Model, ESRI press,17-249.
    Bobrovitskaya, N.N., Kokorev. A. V., Lemeshko, N. A.,2003. Regional patterns in recent trends in sediment yields of Eurasian and Siberian rivers. Global and Planetary Change 39,127-146.
    Brown, C. L., Luoma, S. N.,1995. Use of the euryhaline bivalve Potamocorbula amurensis as a biosentinal species to assess trace metal contamination in San Francisco Bay. Marine Ecology Progress Series 124,129-142.
    Burchard, H., Bolding, K., Villarreal, M.R.,2004. Three-dimensional modelling of estuarine turbidity maxima in a tidal estuary. Ocean Dynamics 54,250-265.
    Burrough, P.A., McDonnell, R.A.,1998. Principles of Geographical Information Systems. Oxford University Press, Oxford.
    Cadies, N., Dronkers, J., Help, C, et al.,1994. Ecosystems Research Report 11. ELOSIN (European Land-Ocean Interaction Studies) Science Plan. Netherlands,1-52.
    Cancino, L., Neves, R.,1994.3D-numerical modelling of cohesive suspended sediment in the Western Scheldt Estuary (the Netherlands). Aquatic Ecology 28(3-4),337-345.
    Carriquiry, J.D., Sanchez, A., Camacho-Ibar, V.F.,2001. Sedimentation in the northern Gulf of California after cessation of the Colorado River discharge. Sedimentary Geology 144(1-2), 37-62.
    Chellali, F., Khellaf, A., Belouchrani, A.,2010. Wavelet spectral analysis of the temperature and wind speed data at Adrar, Algeria. Renewable Energy 35,1214-1219.
    Chen, J. Y., Zhu, H. F., Dong, Y. F., Sun, J. M.,1985. Development of the Changjiang estuary and its submerged delta. Continental Shelf Research 4(1-2),47-56.
    Chen, S.L., Zhang, G.A., Yang, S.L., Shi, J.Z.,2006. Temporal variations of fine suspended sediment concentration in the Changjiang River estuary and adjacent coastal waters, China. Journal of Hydrology 331,137-145.
    Chen, X.Q., Zhang, E.F., Mu. H.Q., Zong, Y.,2005. A preliminary analysis of human impacts on sediment discharges from the Yangtze, China, into the Sea. Journal of Coastal Research 21(3), 515-521.
    Chen, X.Q., Yan, Y, Fu, R.S., Dou, X., Zhang, E.F.,2008. Sediment transport from the Yangtze River, China, into the sea over the Post-Three Gorge Dam Period:A discussion. Quaternary International 186,55-64.
    Chen, X.,1998. Changjiang(Yangtze) River Delta, China. Journal of Coastal Research 14(3), 838-858.
    Chen, X., Zong, Y.,1998. Coastal erosion along the Changjiang deltaic shoreline, China: history and prospective. Estuarine, Coastal and Shelf Science 46,733-742.
    Chevalier, C., Froidefond, J.M., Devenon, J.L.,2008. Numerical analysis of the combined action of littoral current, tide and waves on the suspended mud transport and on turbid plumes around French Guiana mud banks. Continental Shelf Research 28,545-560.
    Chu Z.X, Sun, X.G., Zhai, S.K., Xu, K.H.,2006. Changing pattern of accretion/erosion of the modem Yellow River (Huanghe) subaerial delta, China: Based on remote sensing images. Marine Geology 227 (1-2),13-30.
    Cloern, J. E., Nichols, F. H.,1985. Time scales and mechanisms of estuarine variability, a synthesis from studies of San Francisco Bay. In Temporal Dynamics of an Estuary-San Francisco Bay (Cloern, J. E.& Nichols, F. H., eds). Dr. W. Junk Publishers, Boston, MA, U.S.A., pp.229-237.
    Coleman, J.M., Roberts, H.H., Stone, G. W.,1998. Mississippi River delta: an overview. Journal of Coastal Research 14(3),698-716.
    Cooper, A., Pilkey, O.H.,2004. Sea-level rise and shoreline retreat: time to abandon the Bruun Rule. Global and Planetary Change 43,157-171.
    Daessle, L. W., Carriquiry, J. D., Camacho-Ibar, V. and Ramos, S. E.,2001. On how the erosion of the Col orado River delta affects the sediment geochemistry of the northern gulf of Califoria. Earth System Processes - Global Meeting. Ediburgh International Conference centre:Poster area.4:30-6:00 PM, June 26,2001.
    Dai, S.B., Lu, X.X., Yang, S.L., Cai, A.M.,2008. A preliminary estimate of human and natural contribution to the sediment decline from the Yangtze River to the East China Sea. Quaternary International 186,43-54.
    Dai, S. B., Yang, S. L., Li, M.,2009. Sharp decrease in suspended sediment supply from China's rivers to the sea:Anthropogenic and natural causes. Hydrological Sciences-Journal-des Sciences Hydrologiques 54(1),135-146.
    Dai, Z. J., Du, J., Li, J., Li, W., Chen, J. Y.,2008. Runoff characteristics of the Changjiang River during 2006:effect of extreme drought and the impounding of the Three Gorges Dam. Geophysical Research Letters 35, L07406. doi:10.1029/2008GL03345.
    Day, J. W., Boesch, D.F., Clairain, E.J., Kemp, G.P., Laska, S.B., et al.,2007. Restoration of the Mississippi Delta: Lessons from hurricanes Katrina and Rita. Science 315,1679-1684.
    DeMaster, D.J., McKee, B.A., Nittrouer, C.A., Qian, J.C., Cheng, G.D.,1985. Rates of sediment accumulation and particle reworking based on radiochemical measurements from continental shelf deposits in the East China Sea. Continental Shelf Research 4,143-158.
    Domagalski, J. L., Kuivila, K. M.,1993. Distributions of pesticides and organic contaminants between water and suspended sediment, San Francisco Bay, California. Estuaries 16,3A, 416-426.
    Draut, A.E., Kineke, G.C., Huh, O.K., Grymes, J.M., Westphale, K.A., Moeller, C.C.,2005. Coastal mudflat accretion under energetic conditions, Louisiana chenier-plain coast, USA. Marine Geology 214,27-47.
    Du, J.L, Gao, A., Yang, S.L., Zhang, W.X., Zhao, H.Y., Li, R,2005. A Preliminary Study on the Calculating Method for the Evolution of Siltation and Erosion of Tidal Flat Based on GIS. Marine Science Bulletin 7(1),45-53.
    Dyer, K.R.,1986. Coastal and Estuarine Sediment Dynamics. John Wiley and Son, Chichester. 313 pp.
    Dyer, K.R., Christie, M.C., Manning, A.J.,2004. The effects of suspended sediment on turbulence within an estuarine turbidity maximum. Estuarine, Coastal and Shelf Science 59,237-248.
    Eisma, D.,1998. Intertidal Deposits:River mouths, tidal flats and coastal lagoons. CRC Press, Boca Raton, Fla.
    El-Asmar, H.M., White, K.,2002. Change in coastal sediment transport processes due to construction of New Damietta Harbour, Nile Delta, Egypt. Coastal Engineering 46,127-138.
    Fan, D.J., Qi, H.Y., Sun, X.X., Liu, Y, Yang, Z.S.,2011. Annual lamination and its sedimentary implications in the Yangtze River delta inferred from High-resolution biogenic silica and sensitive grain-size records. Continental Shelf Research 31,129-137.
    Fanos, A.M.,1995. The impact of human activities on the erosion and accretion of the Nile delta coast. Journal of Coastal Research 11(3),821-833.
    Ferre, B., Durrieu de Madron, X., Estournel, C, Ulses, C., Le Corr, G.,2008. Impact of natural (waves and currents) and anthropogenic (trawl) resuspension on the export of particulate matter to the open ocean Application to the Gulf of Lion (NW Mediterranean). Continental Shelf Research 28,2071-2091.
    Festa, J.F., Hansen, D.V.,1976. Turbidity maxima in partially mixed estuaries:A two dimensional model. Estuarine Coastal and Marine Science 4,309-323.
    Fettweis, M., Sas, M., Monbaliu, J.,1998. Seasonal, neap-spring and tidal variation of cohesive sediment concentration in the Scheldt Estuary, Belgium. Estuarine Coastal and Shelf Science 47,21-36.
    Frihy,O.E., Debes, E.A., Sayed, W.R.E.,2003, Processes reshaping the Nile delta promontories of Egypt: pre and post-protection. Geomophology 53,263-279.
    Friedrichs, C.T., Perry, J.E.,2001. Tidal salt marsh morphodynamics. Journal of Coastal Research 27,6-36.
    Fu, K.D., He, D.M., Lu, X.X.,2007. Sedimentation in the Manwan reservoir in the Upper Mekong and its downstream impacts. Quaternary International, doi:10.1016/j.quaint.2007.09.041.
    Galloway, W.E.,1975. Process framework for describing the morphologic and stratigraphic evolution of deltaic depositional systems:In:Broussard, M.L. (Ed.), Deltas, Models for Exploration. Houston Geological Society,87-98.
    Gao, P., Pasternack, G.B., Bali, K.M., Wallender, W.W.,2007. Suspended sediment transport in an intensively cultivated watershed in southeastern California. Catena 69,239-52.
    Gao, S.,2010. Sediment retention at the Changjiang subaqueous delta in response to catchment changes. The NSFC-CSIR Workshop on "Estuaries and Coastal of China and India".
    Gardner, L.R., Thombs, L., Edwards, D., Nelson, D.,1989. Time series analyses of suspended sediment concentrations at North Inlet South Carolina. Estuaries 12,211-221.
    Gelfenbaum, G.,1983. Suspended-sediment response to semidiurnal and fortnightly tidal variations in a mesotidal estuary: Columbia River, U. S. A. Marine Geology 52,39-57.
    Geological Survey of Japan/AIST,2003. About ASIAN DELTA PROJECT.mht.
    Geyer, W.R.,1993. The importance of suppression of turbulence by stratification on the estuarine turbidity maximum. Estuaries 16 (1),113-125.
    Glangeaud, L.,1938. Transport et sedimentation clans l'estuairc et a l'embouchure de La Gironde. Bulletin of Geological Society of France 8,599-630.
    Gong, G.C., Chang, J., Chiang, P. K., Hsiung, T. M., Hung, C. C., Duan, S. W., Codispoti, L. A.,2006. Reduction of primary production and changing of nutrient ratio in the East China Sea:Effect of the Three Gorges Dam?. Geophysical Research Letters 33, L07610, doi:10.1029/2006GL025800.
    Goodbred, S. L., Hines, A. C.,1995. Coastal storm deposition:Salt-marsh response to a severe extratropical storm, March 1993, west-central Florida. Geology 23,679-682.
    Goodbred, S. L. Jr., Kuehl, S. A.,1999. Holocene and modern sediment budgets for the Ganges-Brahmaputra river system:Evidence for highstand dispersal to flood-plain, shelf, and deep-sea depocenters. Geology 27(6),559-562.
    Goodwin. P., Mehta, A. J., Zedler, J. B.,2001. Coastal wetland restoration:an introduction. Journal of Coastal Research 27,1-6.
    Grabemabi,1., Krause, G.,1989. Transport processes of suspended matter derived from time series in a tidal estuary. Journal of Geophysical Research 94,14373-14379.
    Hallermeier, R.,1980. Sand motion initiation by waves:two asymptotes. Journal of the Waterway Port Coastal and Ocean Division 106(3),299-318.
    Hammond, D. E., Fuller, C., Harmon, D., Hartman, B., Korosec, M., Miller, L. G, Rea, R., Warren, S., Berelson, W., Hager, S. W.,1985. Benthic fluxes in San Francisco Bay. Hydrobiologia 129,69-90.
    Harris, C.K., Sherwood, C.R., Signell, R.P., Bever, A.J. and Warner, J.C.,2008. Sediment dispersal in the northwestern Adriatic Sea. Journal of Geophysical Research,113(C11S03), doi:10.1029/2006JC003868.
    Hirsch, R.M., Helsel, D. R., Cohn, T.A., Gilroy, E.J.,1992. Statistical analysis of hydrologic data. In:Maidment, D.R. Handbook of Hydrology. McGraw-Hill, USA.17.21-17.23
    Hoitink, A.J.F., Hoekstra, P.,2005. Observations of suspended sediment from ADCP and OBS measurements in a mud-dominated environment. Coastal Engineering 52,103-118.
    Holligan, P.M., Boois, H.D.,1993. Global Change Report, No.25:Land-Ocean Interactions in the Coastal Zone (LOICZ) Science Plan. Stockholm,1-150.
    Hu, B.Q., Yang, Z.S., Wang, H.J., Sun, X.X., Bi, N.S., Li, G.G.,2009. Sedimentation in the Three Gorges Dam and the future trend of Changjiang (Yangtze River) sediment flux to the sea. Hydrology and Earth System Sciences 13,2253-2264.
    Hu, K.L., Ding, P.X., Wang, Z.B., Yang, S.L.,2009. A 2D/3D hydrodynamic and sediment transport model for the Yangtze Estuary, China. Journal of Marine Systems 77,114-136.
    Humborg, C, Ittekkot, V., Cociasu, A., Bodungen, B.,1997. Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure. Nature 386,385-388.
    Inam, A., Alikhan,T.M., Amjad, S., Danish, M.,Tabrez, A. R.,2004.5th International Conference on Asian Marine Geology, AGCP-475 DeltaMAP and APN Mega-Delta, January 13-18, 2004, Bangkok. Poster area: 8:30 AM January 15-6:00PM January 16.
    Jay, D.A., Smith, J.D.,1990. Residual circulation in shallow estuaries:1. Highly stratified, narrow estuaries. Journal of Geophysical Research 95(C1),711-731.
    Jay, D. A., Simenstad, C. A.,1996. Downstream effects of water withdrawal in a small, high-gradient basin:erosion and deposition on the Skokomish River delta. Estuaries 19(3), 501-517.
    Karaushev, A.V.,1977. Theory and Methods for River Sediments Computation. Gidrometeoizdat, Leningrad.272 pp., in Russian.
    Kennish, M.J.,2001. Coastal salt marsh systems in the U. S.:a review of anthropogenic impacts. Journal of Coastal Research 17,731-748.
    Kuwabara, J. S., Chang, C. C. Y., Cloern, J. E., Fries, T. L., Davis, J. A., Luoma, S. N.,1989. Trace metal associations in the water column of South San Francisco Bay, California. Estuarine, Coastal and Shelf Science 28,307-325.
    Labat, D.,2010. Cross wavelet analyses of annual continental freshwater discharge and selected climate indices. Journal of Hydrology 385,269-278.
    Labat, D., Godderis, Y., Probst, J. L.,2004. Evidence for global runoff increase related to climate warming. Advances in Water Resources 27(6),631-642.
    Lakhan V. C.,2003. Advances in Coastal Modeling. Amsterdam:Elsevier Science,595.
    Li, M.T., Xu, K.Q., Watanabe, M., Chen, Z.,2007. Long-term variations in dissolved silicate, nitrogen, and phosphorus flux from the Yangtze River into the East China Sea and impacts on estuarine ecosystem. Estuarine, Coastal and Shelf Science 71 (1-2),3-12.
    Li, S.D., Hu. H.,1987. A study on the current field of the Hangzhou bay. Oceanologia Et Limnologia Sinica 18(1),28-38.
    Liang, B.C., Li, H.J., Lee, D.Y.,2007. Numerical study of three-dimensional suspended sediment transport in waves and currents. Ocean Engineering 34,1569-1583.
    Lindsay, P., Balls, P.W., West. J.R.,1996. Influence of tidal range and river discharge on suspended particulate matter fluxes in the Forth Estuary (Scotland). Estuarine, Coastal and Shelf Science 42,63-82.
    Liu, J.P., A.C. Li, K.H. Xu, D.M. Velozzi, Z.S. Yang, J.D. Milliman, and D.J. DeMaster.,2006. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea. Continental Shelf Research 26,2141-2156.
    Liu, J.P., Xu, K.H., Li, A.C, Milliman, J.D., Velozzi, D.M., Xiao, S.B., Yang, Z.S.,2007. Flux and fate of Yangtze River sediment delivered to the East China Sea. Geomorphology 85, 208-224.
    Liu, M., Fan, D.,2011. Geochemical records in the subaqueous Yangtze River delta and their responding to human activities in the past 60 years. Chinese Science Bulletin 56,1-10, doi:10.1007/s 11434-010-0000-2.
    Lozovatsky, I., Liu, Z.Y., Wei, H., Fernando, H.J.S.,2008. Tides and mixing in the northwestern East China Sea Part I:Rotating and reversing tidal flows. Continental Shelf Research 28, 318-337.
    Luoma, S. N., Cain, D., Johansson, C.,1985. Temporal fluctuations of silver, copper, and zinc in the bivalve Macoma balthica at five stations in South San Francisco Bay. Hydrobiologia 129, 109-120.
    Luternauer, J. H., Atkins, R. J., Moody, A. I., Williams, H. F. L., Gibson, J. W.,1995. Saltmarshes. In Geomorphology and Sedi-mentology of Estuaries, eds. G. M. E. Perillo, pp. 307-333.Developments in Sedimentology 53, Elsevier.
    Ma, F.K., Jiang, C.B., Rauen, W.B., Lin, B.L.,2009. Modelling sediment transport processes in a macro-tidal estuary. Science in China Series E:Technological Sciences 52(11),3368-3375.
    Manning, A.J., Langston, W.J., Jonas, P.J.C.,2010. A review of sediment dynamics in the Severn Estuary:Influence of flocculation. Marine Pollution Bulletin 61,37-51.
    Margaret, C., Wartel, S., Temmerman, S.,2005. Seasonal variation of floc characteristics on tidal flats, the Scheldt estuary. Hydrobiologia 540 (1-3),181-195.
    Martin, J.M., Meybeck, M.,1979. Elemental mass-balance of material carried by major world rivers. Marine Chemistry 7 (3),173-206.
    Massel, S.R.,2001. Wavelet analysis for processing of ocean surface wave records. Ocean Engineering 28,957-987.
    Myrhaug, D., Slaattelid, O.H., Soulsby, R.L., et al.,1995. Measurements and analysis of flow velocity and sediment concentration at the sea bed. In Sediment transport Mechanisms in Coastal Environments and Rivers. Edited by RD Rajaona. Applied Mechanics Reviews 48 (9),570-588.
    McManus, J.,2005. Salinity and suspended matter variations in the Tay estuary. Continental Shelf Research 25,729-747.
    Meade, R. H., Moody, J. A.,2010. Causes for the decline of suspended-sediment discharge in the Mississippi River system,1940-2007. Hydrological Processes 24,35-49. DOI: 10.1002/hyp.7477.
    Mertes, L.A.K., Smith, M.O., Adams, J.B.,1993. Estimating suspended sediment concentrations in surface waters of the Amazon River wetlands from Landsat images. Remote Sensing of Environment 43(3),281-301.
    Meybeck, M., Laroche, L., Du, H.H., Syvitski, J.P.M.,2003. Global variability of daily total suspended solids and their fluxes in rivers. Global and Planetary Change 39,65-93.
    Milliman, J.D., Hsueh, Y., Hu, D.X., Paskinski, D.J., Shen, H.T., Yang, Z.S., Hacker, P.,1984. Tidal phase control of sediment discharge from the Yangtze River. Estuarine, Coastal and Shelf Science 19,119-128.
    Milliman, J. D., Meade, R. H.,1983. World-Wide Delivery of River Sediment to the Oceans. Journal of Geology 91,1-21.
    Milliman, J.D., Shen, H.T., Yang, Z.S., Meade, R.H.,1985. Transport and deposition of river sediment in the Changjiang Estuary and adjacent continental shelf. Continental Shelf Research 4,37-45.
    Milliman, J. D., Syvitski, J. P. M.,1992. Geomorphic/tectonic control of sediment transport to the ocean:the importance of small mountainous rivers. Journal of Geology 100,525-544.
    Milliman, J.D., Farnsworth, K.L.,2011. River Discharge To The Coastal Ocean:A Global Synthesis. Cambridge University Press, Cambridge,384p.
    Mishra, A.K.,2004. Retrieval of suspended sediment concentration in the estuarine waters using IRS-ICWIFS data. International Journal of Applied Earth Observation and Geo-information, 6,83-95.
    Mitsch, W.J., Gosselink, J.G.,1993. Wetlands,2nd ed. Van Nostrand Reinhold, New York. 722pp.
    Nakken, M.,1999. Wavelet analysis of rainfall-runoff variability isolating climatic from anthropogenic patterns. Environmental Modeling & Software 14(4),283-295.
    Newcombe, C.P., Macdonald, D.D.,1991. Effects of Suspended Sediments on Aquatic Ecosystems. North American Journal of Fisheries Management 11,72-82.
    Nilsson, C, Reidy, C. A., Dynesius, M., Revenga, C.,2005. Fragmentation and flow regulation of the world's large river systems. Science 308,405-408.
    Ojala, E., Louekari, S.,2002. The merging of human activity and natural change:temporal and spatial scales of ecological change in the Kokemaenjoki River delta, SW Finland. Landscape and Urban Planning 61 (2-4):83-98.
    Orton, P.M., Kineke, G.C.,2001. Comparing calculated and observed vertical suspended-sediment distribution from a Hudson River Estuary Turbidity Maximum. Estuarine, Coastal and Shelf Science 52,401-410.
    Parker, G.,1976. On the cause and characteristic scales of meandering and braiding in rivers. Journal of Fluid Mechanics 76 (3),457-480.
    Pekarova, P., Miklanek, P., Pekar, J.,2003. Spatial and temporal runoff oscillation analysis of the main rivers of the world during the 19th-20th centuries. Journal of Hydrology 274,62-79.
    Qiao, S.Q., Shi, X.F., Zhu, A.M., Liu, Y.G., Bi, N.S., Fang, X.S., Yang, G.,2010. Distribution and transport of suspended sediments off the Yellow River (Huanghe) mouth and the nearby Bohai Sea. Estuarine, Coastal and Shelf Science 86,337-344.
    Ridderinkhof, H., van der Ham, R., van der Lee, W.,2000. Temporal variations in concentration and transport of suspended sediments in a channel at system in the Ems-Dollard estuary. Continental Shelf Research 20(12-13),1479-1493.
    Ruhl, C. A., Schoellhamer, D. H., Stumpf, R. P., Lindsay, C. L.,2001. Combined Use of Remote Sensing and Continuous Monitoring to Analyse the Variability of Suspended-Sediment Concentrations in San Francisco Bay, California. Estuarine, Coastal and Shelf Science 53, 801-812.
    Sanchez-Arcilla, A., Jimenez, J.A., Valdemoro, H.I.,1998. The Ebro Delta:Morphodynamics and-vulnerability. Journal of Coastal Research 14(3),754-772.
    Sanford, L.P.,1994. Wave-forced resuspension of upper Chesapeake Bay muds. Estuaries 17, 148-165.
    Schoellhamer, D. H.,1995. Sediment resuspension mechanisms in Old Tampa Bay, Florida. Estuarine Coastal and Shelf Science 40,603-620.
    Schoellhamer, D. H.,1996. Factors affecting suspended-solids concentrations in South San Francisco Bay, California. Journal of Geophysical Research 101(C5),12087-12095.
    Schoellhamer, D.H.,2002. Variability of suspended-sediment concentration at tidal to annual time scales in San Francisco Bay, USA. Continental Shelf Research 22,1857-1866.
    Schoellhamer, D.H., Mumley, T.E., Leatherbarrow, J.E.,2007. Suspended sediment and sediment-associated contaminants in San Francisco Bay. Environmental Research 105, 119-131.
    Schubel, J.R.,1968. Turbidity maximum of the northern Chesapeake Bay. Science 161, 1013-1015.
    Shamov, G.I.,1954. Rechnye nanosy. Rezhim, raschety i metody izmerenii (River sediment. Regime, computation, and the method of measurement) Gidrometeoizdat, Lenigrad.347 pp., in Russian.
    Shi, B. W., S. L. Yang, Y. P. Wang, and T. Bouma.2012. Sediment dynamic processes associated with combined current-wave action over an exposed tidal wetland, Yangtze Estuary. Geomorphology,138,380-389. doi:10.1016/j.geomorph.2011.10.004
    Shi, J.Z.,2010. Tidal resuspension and transport processes of fine sediment within the river plume in the partially-mixed Changjiang River estuary, China: A personal perspective. Geomorphology, doi:10.1016/j.geomorph.2010.04.021.
    Shi, Z., Ren, L.F., Lin, H.L.,1996. Vertical suspension profile in the Changjiang Estuary. Marine Geology 130,29-37.
    Shi, Z., Kirby, R.,2003. Observations of fine suspended sediment processes in the turbidity maximum at the North Passage of the Changjiang Estuary, China. Journal of Coastal Research 19(3),529-540.
    Shi, Z., Zhou, H.J.,2004. Controls on settling velocities of mud flocs in the Changjiang Estuary, China. Hydrological Processes 18 (15),2877-2892.
    Shi, Z.,2004. Behaviour of fine suspended sediment at the North Passage of the Changjiang Estuary, China. Journal of Hydrology 293 (1-4),180-190.
    Shi, J.Z., Gu, W. J., Wang, D. Z.,2008. Wind wave-forced fine sediment erosion during the slack water periods in Hangzhou Bay, China. Environmental Geology 55,629-638.
    Simpson, J.H.,1997. Physical processes in the ROFI regime. Journal of Marine System 12,3-15.
    Simpson, J.H., Williams, E., Brasseur, L.H et al.,2005. The impact of tidal straining on the cycle of turbulence in a partially stratified estuary. Continental Shelf Research 25,51-64.
    Singh, M., Singh, I.B., Muller, G.,2007. Sediment characteristics and transportation dynamics of the Ganga River. Geomorphology 86,144-175.
    Stacey, M.T., Fram, J.P., Chow, F.K.,2008. Role of tidally periodic density stratification in the creation of estuarine subtidal circulation. Journal of Geophysical Research 113, C08016. doi:10.1029/2007JC004581.
    Stanley, D. J., and Warne, A. G.,1993. Nile Delta:Recent Geological Evolution and Human Impact. Science 260 (5108),628-634. doi:10.1126/science.260.5108.628.
    Su, J. L., Wang, K. S.,1989. Changjiang river plume and suspended sediment transportin Bay. Continental Shelf Research 9,93-111.
    Syvitski, J.P., Morehead, M.D.,1999. Estimating river-sediment discharge to the ocean: application to the Eel margin, northern California. Marine Geology 154,13-28
    Syvitski, J. P.M., Kettner, A.J., Correggiari, A.M., Nelson, B.W.,2005. Distributary channels and their impact on sediment dispersal. Marine Geology 222-223,75-94.
    Syvitski, J.P.M., Vorosmarty, C.J., Kettner, A.J., Green, P.,2005. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308,376-380.
    Syvitski, J.P.M., Kettner, A.J., Overeem,1., Hutton, E.W.H., Hannon, M.T., Brakenridge, G.R., Vorosmarty, C.J., Saito, Y., Giosan, L., Nicholls, R.J.,2009. Sinking deltas due to human activities. Nature Geoscience 2,681-686.
    Syvitski, J. P. M., Saito, Y.,2007. Morphodynamics of deltas under the influence of humans. Global and Planetary Change 57,261-282, doi:10.1016/j.gloplacha.2006.12.001.
    Tattersall, G.R., Elliott, A.J., Lynn, N.M.,2003. Suspended sediment concentrations on the Tamar estuary. Estuarine, Coastal and Shelf Science 57,678-688.
    Throne, P.D., Hanes, D.M.,2002. A review of acoustic measurement of small-scale sediment Process. Continental Shelf Research 22,603-632.
    Torab, M., Azab, M.,2007. Modern shoreline changes along the Nile delta coast as an impact of construction of the Aswan High Dam. Geographica Technica 2,69-76.
    Torrence, C., Compo, G. P.,1998. A practical guide to wavelet analysis. Bulletin of the American Meteorological Society 79,61-78.
    Tramblay,Y., Saint-Hilaire, A., Ouarda, T. B.M.J., Moatar, F., Hecht, B.,2010. Estimation of local extreme suspended sediment concentrations in California Rivers. Science of the Total Environment 408,4221-4229.
    Trenhaile, A. S.,1997. Coastal Dynamics and Landforms. Clarendon Press, Oxford.
    Uncles, R.J.,Barton, M.L., Stephens, J.A.,1994. Seasonal variability of fine-sediment concentrations in the turbidity maximum region of the Tamar Estuary. Estuarine, Coastal and Shelf Science 38,19-39.
    Uncle, R.J., Stephens, J.A.,1997. Dynamics of Turbidity in the Tweed Estuary. Estuarine, Coastal and Shelf Science 45,745-758.
    Uncles, R.J., Bloomer, N.J.,2000. Seasonal variability of salinity, temperature, turbidity and suspended chlorophyll in the Tweed Estuary. The Science of the Total Environment 251/252, 115-124.
    Uncle, R.J., Stephens, J.A., Simith, R.E.,2002. The dependence of estuarine turbidity on tidal intrusion length, tidal range and residence. Continental Shelf Research 22,1835-1856.
    Uncle, R.J., Stephens, J.A.,2010. Turbidity and sediment transport in a muddy sub-estuary. Estuarine, Coastal and Shelf Science 87,213-224.
    Uneles, R.J., StePhens, J.A., Wbodrow, T.Y.,1988. Seasonal cycling of estuarine sediment and contaminant transport. Estuaries and Coasts 11 (2),108-116.
    Van de Kreeke, J., Day, C.M., Mulder, H.P.J.,1997. Tidal variations in suspended sediment concentration in the Ems estuary:origin and resulting sediment flux. Journal of Sea Research 38,1-16.
    Van Leussen, W., Dronkers, J.,1988. Physical processes in estuaries:an introduction. In: Dronkers, J., van Leussen, W. (Eds.), Physical processes in estuaries. Springer-Verlag, Berlin Heidelberg. Germany, pp.1-20.
    Van Steeter, M.M., Pitlick, J.,1998. Geomorphology and endangered fish habitats of the upper Colorado River 1. Historic changes in streamflow, sediment load, and channel morphology. Water Resources Research 34(2),287-302.
    Vorosmarty, C.J., Meybeck, M., Feketeb, et al.,2003. Anthropogenic sediment retention:major global impact from registered river impoundments. Global and Planetary Change 39,169-190.
    Vorosmarty, C., Syvitski, J. P. M., Day, J., Paola, C., Serebin, A.,2009. Battling to save the world's river deltas. Bulletin of Atomic Science 65,31-43.
    Vos, R.J., Ten Brummelhuis, P.G.J.,2000. Integrated data-modelling approach for suspended sediment transport on a regional scale. Coastal Engineering 41,177-200.
    Voulgaris, G., Meyers, S. T.,2004. Net effect of rainfall activity on salt-marsh sediment distribution. Marine Geology 207,115-129.
    Walling, D. E., Fang, D.,2003. Recent trends in the suspended sediment loads of the world's rivers. Global and Planetary Change 39,111-126.
    Walling, D. E.,2006. Human impact on land-ocean sediment transfer by the world's rivers. Geomorphology 79(3-4),192-216.
    Wang, H., Yang, Z., Saito, Y., Liu, J. P., Sun, X., Wang, Y.,2007. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950-2005), Impacts of climate change and human activities. Global and Planetary Change 57,331-354, doi:10.1016/j.gloplacha.2007.01.003.
    Wang, H., Yang, Z., Wang,Y., Saito, Y., Liu, J. P.,2008. Reconstruction of sediment flux from the Changjiang (Yangtze River) to the sea since the 1860s. Journal of Hydrology 349,318-332.
    Wang, H.J., Yang, Z.S., Wang, Y., Saito, Y., Liu, J.P.,2008. Reconstruction of sediment flux from the Changjiang (Yangtze River) to the sea since the 1860s. Journal of Hydrology 349,318— 332.
    Wang, Y., Ren, M. E., Zhu, D. K.,1986. Sediment supply to the continental shelf by the major rivers of China. Journal of the Geological Society of London 143,935-944.
    Ward, L.G., Kemp, W.M., Boynton, W.R.,1984. Influence of waves and sea grass communities on suspended particulates in an estuarine embayment. Marine Geology 59,85-103.
    Warrick, J.A., Mertes, L.A.K., Washburn, L., Siegel, D.A.,2004. A conceptual model for river water and sediment dispersal in the Santa Barbara Channel, California. Continental Shelf Research 24(17),29-43.
    Webster, R., Oliver, M.A.,2001. Geostatistics for Environmental Scientists. John Wiley & Sons Ltd. UK.271 pp.
    Webster, T., Lemckert, C.,2002. Sediment resuspension within a microtidal estuary/embayment and the implication to channel management. Journal of Coastal Research 36,753-756.
    Wei, T., Chen, Z., Duan, L., Gu, J., Saito, Y., Zhang, W., Wang, Y., Kanai, Y.,2007. Sedimentation rates in relation to sedimentary processes of the Yangtze Estuary, China. Estuarine, Coastal and Shelf Science 71,37-46.
    Whitehouse, R., Soulsby, R., Roberts, W., Mitchener, H.,2000. Dynamics of estuarine muds. Thomas Telford Publishing, Thomas Telford Ltd.39-59.
    Wiegel, R. L.,1996. Nile delta erosion. Science,272,338-340.
    Willem, T.B., Lee, V.D.,2000. Temporal variability of hydrodynamics, sediment concentration and sediment settling velocity in a tidal creek. Continental Shelf Research 20 (12-13), 1659-1683.
    Wolanski, E., King, B., Galloway, D.,1995. Dynamics of the turbidity maximum in the Flay River estuary, Papua New Guinea. Estuarine, Coastal and Shelf Science 40,321-337.
    Woodroffe, C.D.,2003. Coasts:Form, Processes and Evolution. Cambridge University Press, Cambridge,618pp.
    Wu, H., Zhu, J., Chen, B., Chen, Y.,2006. Quantitative relationship of runoff and tide to saltwater spilling over from the North Branch in the Changjiang estuary:A numerical study. Estuarine, Coastal and Shelf Science 69,125-132, doi:10.1016/j.ecss.2006.04.009.
    Xu, J.X.,2008. Response of land accretion of the Yellow River delta to global climate change and human activity. Quaternary International 186,4-11.
    Xu, K.H., Milliman, J.D., Yang, Z.S. and Wang, H.J.,2006. Yangtze Sediment Decline Partly from Three Gorges Dam. EOS,87(19),185-190.
    Xu, K.H., Milliman, J.D., Yang, Z.S. and Xu, H.,2007. Climatic and Anthropogenic Impacts on the Water and Sediment Discharge from the Yangtze River (Changjiang),1950-2005. In: Avijit Gupta (Editor), Large Rivers:Geomorphology and Management: John Wiley & Sons, pp.609-626.
    Xu, K.H. and Milliman, J.D.,2009. Seasonal variations of sediment discharge from the Yangtze River before and after impoundment of the Three Gorges Dam, Geomorphology,104(3-4), 276-283.
    Xu, K., Milliman, J.D., Xu, H.,2010. Temporal Trend of Precipitation and Runoff in Major Chinese Rivers since 1951. Global and Planetary Change 73,219-232. doi: 10.1016/ j.gloplacha.2010.07.002.
    Yang, S.L., Ding, P.X., Zhu, J., Zhao, Q., Mao, Z.,2000. Tidal flat morphodynamic processes of the Yangtze estuary and their engineering implication. China Ocean Engineering 14,307 320.
    Yang, S.L, Ding, P.X., Chen, S.L.,2001. Temporal change in bed level of a river mouth channel, Yantzeg River mouth:with emphasis on response to river discharge and storm. Journal of Coastal Research 17(2),297-308.
    Yang, S.L., Zhao, Q.Y., Belkin, I.M.,2002. Temporal variation in the sediment load of the Yangtze River and the influences of the human activities. Journal of Hydrology 263,56-71.
    Yang, S.L., Belkin, I.M., Belkina, A.I., Zhao, Q.Y., Zhu, J., Ding, P.X.,2003. Delta Response to Decline in Sediment Supply from the Yangtze River:Evidence of the Recent Four Decades and Expectations for the Next Half-Century. Estuarine, Coastal and Shelf Science 57, 589-599.
    Yang, S. L.,Meng, Y., Zhang, J., Xue, Y.Z., Chen, H.T., Wei, H., Liu, Z., Wu, R.M., Wang, L.X., Yang. H., Wang. L., Zhang, W. X.,2004. Suspended Particulate Matter in the Jiaozhou Bay: Properties and Variations in Response to Hydrodynamics and Pollution. Chinese Science Bulletin 49(1),91-97.
    Yang, S.L., Zhang, J., Zhu, J.,2004a. Response of suspended sediment concentration to tidal dynamics at a site inside the mouth of an inlet: Jiaozhou Bay (China). Hydrology and Earth System Sciences 8(2),170-182.
    Yang, S.L., Li, M., Dai, S.B., Liu, Z., Zhang, J.,2006a. Drastic decrease in sediment supply from the Yangtze River and its challenge to coastal wetland management. Geophysical Research Letters 33, L06408, doi:10.1029/2005GL025507.
    Yang, S.L., Zhang, J., Xu, X.J.,2007. Influence of the Three Gorges Dam on downstream delivery of sediment and its environmental implications, Yangtze River. Geophysical Research Letters 34, L10401, doi:10.1029/2007gl029472.
    Yang, S. L., Liu, Z., Dai, S. B., Gao, Z.X., Zhang, J., Wang, H.J., Luo, X.X., Wu, C. S., Zhang, Z., 2010. Temporal variations in water resources in the Yangtze River (Changjiang) over the Industrial Period, based on reconstruction of missing monthly discharges. Water Resources Research 46, W10516, doi:10.1029/2009WR008589.
    Yang, S.L., Milliman, J.D., Li, P., Xu, K.H.,2011.50,000 dams later: Erosion of the Yangtze River and its delta. Global and Planetary Change 75,14-20.
    Yang, Z.S., Wang, H.J., Saito, Y. et al.,2004b. Phase change of the modern Huanghe delta evolution since its last end channel shift in 1976 (and its phase change). In:Thanawat Jarupongsakul and Yoshiki Saito (eds.) 5th International Conference on Asian Marine Geology, AGCP-475 DeltaMAP and APN Mega-Delta, January 13-18,2004, Bangkok, Thailand.256.
    Yang, Z.S., Wang, H., Saito, Y., Milliman, J.D., Xu, K., Qiao, S., Shi, G.,2006b. Dam impacts on the Changjiang (Yangtze) River sediment load to the sea: the past 55 years and after the Three Gorges Dam. Water Resources Research 42. doi:10.1029/2005WR003970 W04407.
    Yun, C. X., Wan, J. R.,1982. A study of diffusion of upper-layer suspended sediments in discharges from the Changjiang Estuary into the sea, based on satellite imagery. In: Kennedy, V.S. (Ed.), Estuarine Comparisons. Academic Press, Inc., pp.693-704.
    Zhang, J.,1996. Nutrient elements in large Chinese rivers. Continental Shelf Research 16: 1023-1045.
    Zhang, W.X., Yang, S.L., Zhu, J., Gong, S., Ding, P.,2007. Variability of suspended sediment concentration during the dry season in the South Passage of the Changjiang Estuary. International Journal of Sediment Research 22(3),199-207.
    Zheng, L.Y., Chen, C.S., Zhang, F.Y.,2004. Development of water quality model in the Satilla River Estuary, Georgia. Ecological Modelling 178,457-82.
    Zhu, J., Hu, D., Xiao, C.,2004a. Observed residual currents off the Changjiang (Yangtze) River mouth in wintertime of 1959 and 1982. Chinese Journal of Oceanology and Limnology 22 (3), 244-249.
    Zhu, J., Qi, D., Xiao, C.,2004b. Observed residual currents off the Changjiang (Yangtze) River mouth in summer time of 1959 and 1982. Chinese Journal of Oceanology and Limnology 22 (3),250-255.
    Zhu, J., Qi, D., Xiao, C.,2004c. Simulated circulations off the Changjiang (Yangtze) River Mouth in spring and autumn. Journal of Oceanology and Limnology 22 (3),286-291.
    曹沛奎,谷国传,董永发.杭州湾泥沙运移的基本特征.陈吉余,王宝灿,虞志英,等著.中国海岸发育过程和演变规律叫.上海:上海科学技术出版社,1989,108-119.
    曹文洪,张启舜.潮流和波浪作用下悬移质挟沙能力的研究.泥沙研究,2000,(5):16-21.
    中国河流泥沙公报(MWCC)中华人民共和国水利部编,中国水利水电出版社,2000-2009.
    陈斌.长江口附近海域三维悬浮泥沙的数值模拟研究.中国科学院海洋研究所博士毕业论文,2008,136 pp.
    陈才俊.江苏淤长型淤泥质潮滩的剖面发育.海洋与湖沼,1991,4:68-76.
    陈基伟,梅安新,袁江红.从海岸滩涂变迁看上海滩涂土地资源的利用.上海地质,2005,26(1):18-20.
    陈吉余,恽才兴,徐海根,董永发.两千年来长江河口的发育模式.海洋学报,1979,1(1):103-111.
    陈吉余,朱慧芳,董永法,孙介民.长江河口及其水下三角洲的发育.见:长江河口动力过程和地貌演变(陈吉余等著).1988,48-62.
    陈吉余,朱淑贞,吕全荣,贺松林.长江口拦门沙研究—长江口拦门沙形态特征与沉积结构.见:陈吉余,沈焕庭,恽才兴,等编著.长江河口动力过程和地貌演变.上海:上海科学技术出版社,1988,300-303.
    陈吉余.河口过程中第三驱动力的作用和响应—以长江河口为例.自然科学进展,2008,18(9):994-1000.
    陈吉余.探寻长江河口地区资源合理开发利用科学之道.上海地质,2010,31(3):1-8.
    陈沈良.崎岖列岛海区的水文泥沙及其峡道效应.海洋学报,2000,22(3):123-131.
    陈沈良,谷国传.杭州湾口悬沙浓度变化与模拟.泥沙研究,2000,5:45-50.
    陈沈良,张国安,谷国传.长江口南汇边滩的演变及其沉积动力机制.上海地质,2003,24(4):1-4.
    陈沈良,张国安,杨世伦,虞志英.长江口水域悬沙浓度时空变化与泥沙再悬浮.地理学报,2004,59(2):260-266.
    陈勇,韩震,杨丽君,徐俊杰,刘曦.长江口水体表层悬浮泥沙时空分布对环境演变的响应.海洋学报,2012,34(1):145-152.
    程江,何青,王元叶,车越,张经.长江口徐六泾洪季水沙特性观测研究.海洋通报,2003,22(5):86-91.
    程鹏,高抒ADCP测量悬沙浓度的可行性分析与现场标定.海洋与湖沼,2001,32(2):168-176
    戴仕宝.中国流域自然作用和人类活动对(河流)入海泥沙的影响及其环境意义.华东师范大学博士毕业论文,2006,p104.
    戴仕宝,杨世伦,李鹏,等.长江中下游河道采砂对入海泥沙的影响.上海地质,2007,28(1): 17-20.
    丁文荣,周跃,吕喜玺.河流输沙率变化规律研究:小波分析在红河支流盘龙河的应用.科学通报(增刊),2007,52:148-154.
    董永发,丁文望.长江口沉积物粒度特征与水动力的关系.上海地质,1982,3(2):11-12.
    窦国仁,董凤舞,窦希萍.波浪和潮流的挟沙能力.科学通报,1995,40(5):443-446.
    窦衍光.东海海底观测资料汇编,(2007),2011年3月.
    杜景龙.基于于GIS的大河口冲淤复杂性研究—以长江口为例.华东师范大学博士论文,2006.
    杜景龙,杨世伦北槽深水航道工程对周边滩涂冲淤影响研究.地理科学,2007,27:390-394,
    堵盘军.长江口及杭州湾泥沙输运研究.华东师范大学博十毕业论文,2007,162 pp.
    堵盘军,胡克林,孔亚珍,丁平兴ECOMSED模式在杭州湾海域流场模拟中的应用.海洋学报,2007,29(1):7-16.
    冯铭璋,沈日庚.长江口深水航道治理工程综述.上海地质,2001,22(3):10-15.
    郜昂.滦河三角洲土地利用/覆被变化的遥感研究:结合G1S与环境模型.中科院海洋研究所硕士毕业论文,2004.
    郜昂.基于GIS的长江口九段沙湿地地貌变迁及其机制探.华东师范大学博士毕业论文,2008,96pp.
    郜昂,赵华云,杨世伦,戴仕宝,陈沈良,李鹏.径流、潮流和风浪共同作用下近岸悬沙浓度变化的周期性探讨—以杭州湾和长江口交汇处的南汇嘴为例.海洋科学进展,2008,26(1):44-50.
    高建华,汪亚平,潘少明,王爱军,杨.长江口枯水期最大浑浊带形成机制.泥沙研究,2005,5:66-73.
    高抒.长江三角洲对流域输沙变化的响应:进展与问题.地球科学进展,2010,25(3):232-241.
    谷国传.长江口外水域悬沙分布特征.东海海洋,1996,4(1):12-20.
    谷国传,胡方西.我国沿海近岸带水域的悬沙分布特征.地理研究,1989,8(2):1-15.
    何超.近二十年长江口邻近海域悬沙分布比较研究.华东师范大学硕士毕业论文,2007,66pp
    何超,丁平兴,孔亚珍.长江口及其邻近海域洪季悬沙分布特征分析.华东师范大学学报(自然科学版),2008,2:15-21.
    贺松林,孙介民.长江河口最大浑浊带的悬沙输移特征闭.海洋与湖沼,1996,27(1):60-66.
    何文姗,陆健健.高浓度悬沙对长江河口水域初级生产力的影响.中国生态农业学报,2001,9(4):24-27.
    侯一筠,陈沫沫,尹宝树.波浪、潮流和风暴潮耦合模式及悬沙输移规律的研究.海洋科学集刊,2003年5月,45集:1-9.
    胡嘉敏,恽才兴.长江口悬沙扩散与污染元素分布的关系.上海地质,1987,8(4):55-59.
    胡辉.海洋水文.1988,见:陈吉余.上海市海岸带和海涂资源综合调查报告.上海:上海市科学技术出版社.15-40.
    黄广.长江口、杭州湾水沙交换与输移特征研究.华东师范大学硕士毕业论文,2007,89 pp.
    黄胜,卢启苗.河口动力学.1993,北京:水利电力出版社.
    惠遇甲.长江黄河垂线流速和含沙量分布规律.水利学报,1996,2:10-17.
    孔亚珍,丁平兴,贺松林,何超,肖文军.长江口外及其邻近海域含沙量时空变化特征分析.海洋科学进展,2006,24(4):446-454.
    黎兵.上海近岸海域近30年来的地形演变和机制探讨.上海地质,2010,31(3):29-34.
    李从先,杨守业,范代读,赵娟.三峡大坝建成后长江输沙量的减少及其对长江三角洲的影响.第四纪研究,2004,24(5):495-500.
    李九发,季中.长江来水来沙对河口南槽边滩冲淤变化的统计分析.泥沙研究,1988,(4):76-82.
    李茂田,陈中原,李刚.从长江口南汇东滩冲淤变化探讨合理选择促淤造陆边界.长江流域资源与环境,2004,13(5):365-369.
    李明,杨世伦,李鹏,刘哲,戴仕宝,郜昂,张经.长江来沙锐减与海岸滩涂资源的危机.地理学报,2006,61(3):282-288.
    李鹏.三峡工程蓄水前后长江口门区水下三角洲冲淤变化分析.华东师范大学硕士论文,2006,64 pp.
    李鹏,杨世伦,戴仕宝,张文祥.近10年来长江口水下三角洲的冲淤变化.地理学报,2007,62(7):707-716.
    李鹏,杨世伦,龚文浩,徐小弟.上海小洋山建港后港域的夏季水文泥沙状况分析.海洋工程,2009,27(1):81-88.
    李婧,高抒,汪亚平.长江口水域悬沙含量时空变化卫星遥感定量研究方法探讨.海洋学报,2009,31(4):167-175.
    李玉中,陈沈良.洋山港海域与长江口相似性研究.地理学报,2002,57(6):662-670.
    李玉中,陈沈良,谷国传.崎岖列岛海区现代沉积环境.上海地质,2002,23(2):11-16.
    刘咪咪.东海悬沙浓度垂向分布规律研究.中国科学院海洋研究所硕士毕业论文,2008,69pp.
    刘会玉,林振山,张明阳.建国以来中国洪涝灾害成灾面积变化的小波分析.地理科学,2005,25(1):43-48.
    刘曙光,李从先,丁坚,李希宁,Ivanov V V.黄河三角洲整体冲淤平衡及其地质意义.海洋地质与第四纪地质,2001,21(4):13-17.
    刘英文,杨世伦,罗向欣.海平面上升的淹没效应和岸滩冲淤对潮间带湿地面积影响的分离估算.上海国土资源,2011,32(3):23-26.
    楼飞.长江口深水外航道海域沉积和冲淤环境研究.华东师范大学硕士论文,2005,48pp.
    罗向欣,杨世伦,张文祥,张经.近期长江口-杭州湾邻近海域沉积物粒径的时空变化及其影响因素.沉积学报,2012,30(1):137-147.
    吕全荣.江河口细颗粒泥砂的矿物组成.上海地质,1982,3(2):15.
    茅志昌,潘定安,沈焕庭.长江河口悬沙的运动方式与沉积形态特征分析.地理研究,2001,20(2):170-177.
    梅长林,周家良.实用统计方法.2002,北京:科学出版社,346pp.
    钱春林.引滦工程对滦河三角洲的影响.地理学报,1994,49(2):158-166.
    钱宁,万兆惠.泥沙运动力学.2003,北京:科学出版社.
    任美锷.人类活动对密西西比河三角洲最近演变的影响.地理学报,1989,44(2):221-229.
    上海市海岸带和海涂资源综合调查报告(GSCCI).上海:上海市科学技术出版社.1988,15-40.
    上海市海岛资源综合调查报告(GSICI),1996,上海市海岛资源综合调查报告编写组,上海,上海科学技术出版社.
    沈芳,周云轩,张杰,吴建平,杨世伦.九段沙湿地植被时空遥感监测与分析.海洋与湖沼,2006,37(6):498-504.
    沈焕庭,郭成涛,朱慧芳.长江河口最大浑浊带的变化规律及成因探讨.海岸河口区动力、地貌、沉积过程论文集,中国海洋湖沼学会河口海岸分会汇编.1984,北京:科学出版社,76-89.
    沈焕庭,李九发,朱慧芳.长江河口悬沙输移特性.泥沙研究,1986a,1-13.
    沈焕庭、潘定安.长江河口潮流特性及其对河槽演变的影响,华东师范大学学报(自然科学版),1979,1:131-144.
    沈焕庭,朱慧芳,茅志吕.长江河口环流及其对悬沙输移的影响.海洋与湖沼,1986b,17(1):26-35.
    沈焕庭.我国河口最大浑浊带研究的新认识.地球科学进展,1995,10(2):210-212.
    沈焕庭,潘定安.长江河口最大浑浊带.2001,北京:海洋出版社.
    沈焕庭,朱建荣,吴华林.长江河口陆海相互作用界面.2009,210pp,北京:海洋出版社.
    时伟荣.长江口浑浊带含沙量的潮流变化及其成因分析.地理学报,1993,48(5):412-420.
    苏纪兰.中国近海的环流动力机制研究.海洋学报,2001,23(3):1-16.
    苏纪兰.中国近海水文,2005,海洋出版社,北京,229-249.
    孙效功,方明,黄伟.黄东海陆架区悬浮体输运时空变化规律.海洋与湖沼,2000,31(6):581-587.
    万新宁,李九发,沈焕庭.长江口外海滨悬沙分布及扩散特征.地理研究,2006,25(2)294-302.
    王颖.海岸—通向海洋的虹桥,1998,广西教育出版社,149pp.
    吴加学,张叔英,任来法.长江口北槽抛泥流速和悬沙浓度时空分布观测.海洋学报,2003,25(4):91-103.
    吴明阳,冯玉林,阎新兴,刘国亭,许家帅.上海洋山港区定床模型泥沙试验研究.海洋学报,2003,25(2):67-74.
    邢飞,汪亚平,高建华,邹欣庆.江苏近岸海域悬沙浓度的时空分布特征.海洋与湖沼,2010,41(3):459-468.
    向卫华,李九发,徐海根,虞志英.上海市南汇南滩近期演变特征分析.华东师范大学学报(自然科学版),2003,3:49-55.
    许惠平,张艳伟,徐吕伟,李建如,刘丁,覃如府,罗胜卿,范代读.东海海底观测小衢山试验站.科学通报,2011,22.
    薛元忠,何青,李茂田,顾靖华.长江口新浏河沙冲淤变化监测及定量分析.泥沙研究,2004a, (5):56-60.
    薛元忠,何青,王元叶.OBS浊度计测量泥沙浓度的方法与实践研究.泥沙研究,2004b,(4:)56-60.
    薛元忠,许卫东.光学后向散射浊度仪简介及应用研究.海洋工程,2001,19(2):79-84.
    闫龙浩.长江口外海滨悬沙输运研究——以崇明东滩近岸水域为例.华东师范大学硕十论文,2010,45pp.
    杨世伦.长江口三角洲潮滩季节性冲淤循环的多因子分析.地理学报,1997,52(2):123-130.
    杨世伦,赵庆英,丁平兴,谢文辉.长江口拦门沙河槽季节性冲淤的主控因子探讨.长江流域资源与环境,2001a,10(3):258-265.
    杨世伦,赵庆英,朱骏.长江口岸滩近期演变及南水北调工程的可能影响.上海地质,2001b,22(2):7-11.
    原野,江文胜,高会旺,郭新宇.莱州湾口弱层结水体中沉积物再悬浮特征及其水平、沉降通量研究.海洋与湖沼,2011,42(1):1-8.
    恽才兴.长江河口近期演变基本规律,2004,北京,海洋出版社,290 pp.
    恽才兴.中国河口三角洲的危机.2010,北京,海洋出版社,256pp.
    恽才兴,蔡孟裔,王宝全.利用卫星照片分析长江入海泥沙扩散问题.海洋与湖沼,1981,12(5):391-401.
    曾怀恩,黄声享.基于Kriging方法的空间数据插值研究.测绘工程,2007,16(5):5-13.
    翟晓明.长江口水动力和悬沙分布特征初析.华东师范大学硕士毕业论文,2006,pp87.
    张志忠,徐志刚.长江口悬沙及其运移.海洋科学,1983,5,6-11.
    张军涛,李哲,郑度.温度与降水变化的小波分析及其环境效应解释.地理研究,2002,21(1):54-60.
    张瑞,汪亚平,高建华,潘少明,张志林.长江口泥质区垂向沉积结构及环境指示意义.海洋学报,2008,30(2):80-91.
    张瑞,潘少明,汪亚平,高建华.长江河口水下三角洲210Pb分布特征及其沉积速率.沉积学报,2009,27(4):704-713.
    张少文,何伟,王文圣.黄河天然年径流超长期变化特性研究.人民黄河,2004,26(8):10-12.
    张文祥,杨世伦,杜景龙,闫龙浩.长江口南槽最大浑浊带短周期悬沙浓度变化.海洋学研究,2008,26(3):25-33.
    张勇.基于GIS的长江口及邻近海域环境时空多维分析.中国海洋大学博士毕业论文,2008,114 pp.
    张珍.三峡工程对长江水位和水沙通量影响的定量估算.华东师范大学硕士毕业论文,2011,63 pp.
    张珍,杨世伦,李鹏.三峡水库一、二期蓄水对下游悬沙通量影响的计算.地理学报,2010,65(5):623-631.
    赵宝成.杭州湾北岸水下岸坡微地貌特征及其海床侵蚀指示意义.上海国土资源,2011,32(3):27-34.
    赵常青.长江口崇明东滩、北港下段和横沙东滩演变分析.华东师范大学硕士毕业论文,2006,66pp.
    赵纯厚,朱振宏,周端庄.世界江河与大坝.北京:中国水利水电出版社,2000,1059.
    赵庚星,张万清,李玉环,陈乐增.GIS支持下的黄河口近期淤、蚀动态研究.地理科学,1999,5:442-445.
    赵华云.三峡工程蓄水前后长江三角洲前缘悬沙浓度的监测分析—以芦潮港为例.华东师范大学硕士论文,2006,58 pp.
    赵庆英,杨世伦,王海波.长江口南槽季节性冲淤变化及其对河流入海水沙响应关系的初步研究.上海地质,2001,22(S1):3-6.
    郑晓琴,丁平兴,胡克林.长江口及邻近海域夏季温盐分布特征数值分析.华东师范大学学报(自然科学版),2008,6:14-23.
    仲德林,申宪思.潮间带地形测量的新途径.海岸工程,1998,17(1):64-66.
    周济福,李家春.河口混合与泥沙输运.力学!学报,2000,32(5):523-531.
    朱传芳,孔亚珍,丁平兴.二维均匀流悬沙垂向扩散系数的实验研究.华东师范大学学报(自然科学版),2008(1):112-116.
    朱慧芳,恽才兴,茅志吕,汪思明.长江河口的风浪特性和风浪经验关系.长江河口动力过程和地貌演变.上海:上海科学技术出版社,1988.
    褚忠信.三峡水库一期蓄水对长江泥沙的影响.中国海洋大学博士学位论文,2006,136 pp.
    庄克琳,毕世普,刘振夏,苏大鹏.长江水下三角洲的沉积分析.海洋地质与第四纪地质,2005,25(2):1-9.
    左书华,李蓓,杨华.长江口南汇嘴海域表层悬浮泥沙分布和运动遥感分析.水道港口,2010,31(5):384-389.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700