浦东新区河道调研及沸石在河道治理中应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过对浦东新区部分城镇河道的调研发现,新区在经济快速发展的同时,河道水质严重恶化,突出表现在氨氮浓度超标。为达到国家环保模范城市考核指标中“城市水功能区水质达标率>90%,且市内无劣V类水体”的要求,降低水体中氨氮浓度是浦东新区河道整治的关键。
     借助自然条件下河水水位变化或河道受风浪影响、河岸在水中浸没程度的变化,利用自制的、以颗粒沸石为主体的沸石复合填料进行了实验室研究。实验原理是:复合填料置于河道两岸后,利用沸石的吸附性能及离子交换性能,吸附水体中氨氮;一段时间后,沸石本身富集了高浓度铵离子,同时随着水位的波动,复合填料不断处于浸没于河水.暴露于空气的交替状态,沸石表面将生长生物膜,吸附的铵离子被氧化分解,从而实现沸石的生物再生,达到不断降解水体中氨氮的目的。
     通过模拟新区实施调水引起的水位变化实验表明,由于浸没.落干频率太低,实验室条件下,不能达到降低出水氨氮的目标。改进实验条件,对系统曝气或提高浸没-落干频率均能够改善出水水质,出水氨氮能够达到地表水Ⅰ类水质标准。由于曝气对现实沸石复合填料应用于河道治理有一定局限性,因此,选择沸石在水体中高频率浸没.落干状态的改变,达到强化去除水体中氨氮的目标。沸石复合填料适合应用于河道水位变化频率较高或受风浪影响的河流,包括黄浦江、苏州河等,浦东新区骨干河道、中小河道在适当条件下可应用。参数优化实验表明,适宜运行参数为在底部进水条件下控制浸没.落干次数为180次/天,浸没-落干比例为1/2。模拟河宽方向实验表明,沸石复合填料在河道中由一侧放置改为两侧放置后,各项污染物指标均有所变化,水质变好。沸石复合填料系统和空白系统对比实验研究结果表明,静态条件下,沸石填料的存在可使水体中氨氮浓度下降速率较快;优化参数条件下,沸石的存在可强化水体中污染物质的去除;高浓度进水条件下,沸石的存在更能够抵抗冲击负荷;当长期高浓度氨氮进水转为低浓度进水时,对系统内的沸石具有再生作用。
Based on study of rivers in some of the towns in Pudong New Area, it was discovered, along with the fast development of economy, water quality was severely deteriorated, especially the ammonia concentration exceeded criterion. In order to achieve the target of "The ratio of water quality reaching standard in water function cities zones should be above 90%, and water quality worse than grade- V should not exist", which was demanded for the national environmental protection model city, reducing the ammonia concentration in rivers is the most important thing for Pudong New Area at present.
     With the aid of river water level changing or river bank affected by waves and winds in physical conditions, application of self-made zeolite materials to polluted river water treatment was studied in laboratory. The theory is: Zeolite materials which will adsorb ammonium are put at the river banks, several days later, they will be rich in ammonium in high concentration, with the water level changing, zeolite materials are in the alternating conditions of immersion in river or exposure in air, then zeolite will be covered with biofilm, so ammonium are oxidized to nitrate and transfer to river body, in this way, zeolite materials will be regenerated.
     By simulating river water level changing arose by transporting water in Pudong New Area, in laboratory scale, the aim of reducing the ammonia concentration could not be achieved, as immersion-descent frequency was low. Based on improvement of experimental situations, both aeration to the system and increase immersion-descent frequency could improve effluent water quality, ammonia concentration could reach the standard of I type water. Since the method of aeration to rivers was limted, so increase immersion-descent frequency was the way at last we chose. Zeolite materials were suitable for rivers with high changing frequency of water level and rivers affected by waves and winds, such as Huangpu River, Suzhou River, etc; plus main rivers, medium and small rivers in proper conditions. The experimental results showed that proper operational conditions with influent water fed below the reactor were achieved under immersion-descent frequency 180 times per day and immersion-descent ration 1/2. Water quality was improved when zeolite materials were put at two sides of the river bank. The treatment characteristics of the system with and without zeolite materials were investigated. Under static state, decreasing velocity of ammonia was fast in system with zeolite materials. Under operational conditions, system with zeolite materials had a higher removal efficiency of pollutants, and a strong resistant against shock; when high conceration influent transformed into low conceration influent, biological zeolite will be regeneted.
引文
[1]钱嫦萍,陈振楼,王东启.城市河流黑臭的原因分析及生态危害.城市环境,2002,Vol.16(3):21~23
    [2]高秋霞.苏州河沿岸泵站雨天排江水质研究:[硕士学位论文].上海:同济大学环境科学与工程学院,2004
    [3]上海市环境科学研究院.浦东新区截污治污规划,2001
    [4]李贺.上海城区径流水质特性研究:[博士学位论文].上海:同济大学环境科学与工程学院,2006
    [5]刘贵云,姜佩华.河道底泥资源化的意义及其途径研究.东华大学学报(自然科学版),2002,Vol.28(1):33~36
    [6]李剑超,胡仁志,王波,等.船舶螺旋桨射流扰动下的污染底泥起悬研究.环境科学与技术,2005,Vol.28(2):6~8
    [7]胡雪峰,许世远.上海市郊中小河流氮磷污染特征.环境科学,2001,Vol.22(6):68~71
    [8]韩沙沙,温琰茂.富营养化水体沉积物中磷的释放及其影响因素.生态学杂志,2004,Vol.23(2):98~101
    [9]陈振楼,许世远,徐启新,等.长江三角洲地表水污染规律及调控对策.长江流域资源与环境,2001,Vol.10(4):353~359
    [10]陈德超,刘丽芝,陈中原.浦东开发以来的水质演化分析.苏州科技学院学报(自然科学版),2006,Vol.23(4):47~51
    [11]上海市浦东新区环境保护和市容卫生管理局.浦东新区节水型社会建设规划(2006—2020)征求意见稿,2006
    [12]长内武逸.砾间接触氧化法にょゐ河川水の直接净化.用水と废水,1990,Vol.32(8)16~25
    [13]稻森悠平,林纪男,须藤隆一.水路にょゐ污染河川水の直接净化.用水と废水,1990,Vol.32(8):32~37
    [14]中村荣一.排水路净化设施の处理机能.用水と废水,1990,Vol.32(8):44~49
    [15]本桥敬之助,山内隆,南彰则.不织布接触ゐ材を用ぃに排水路の水质净化.水处理技术,1996,Vol.37(3):36~40
    [15]芳仓太郎,西尾孝之,北野雅昭.生物活性炭附着细菌にょゐ河川水中の有机物分解.用水と废水,1997,Vol.9(2):19~26
    [16]KONDRATYEV S.A system for ecological and economic assessment of the use,preservation and restoration of urban water bodies:St Petersburg as a case study.IAHS-AISH Publication,2003,Vol.281:327~333
    [17]WHALEN P J,TOTH L A,KOEBEL J W,et al.Kissimmee river restoration:a case study[J].Water Science and Technology,2002,Vol.45(11):55~62
    [18]MAGDALENOA,PUIG A,CABO L,et al.Water pollution in an urban Argentine River.Environmental Contamination and Toxicology,2001,Vol.67:408~415
    [19]DAVIS N M,WEAVER V,PARKS K,et al.An assessment of water quality,physical habitat,and biological integrity of an urban stream in Wichita,Kansas,prior to restoration improvements(Phase I).Environmental Contamination and Toxicology,2003,Vol.44:351~359
    [20]TUCKER L.Scott.urban river renewed-Denver’s South Platte River.USA ASCE:American Society of Civil Engineers Task Committee,1999
    [21]胡雪峰,高效江,王少平,等.上海市郊中小河流夏季水污染特征研究.长江流域资源与环境,2001,Vol.10(5):448~454
    [22]钦佩,安树青,颜京松.生态工程学.南京:南京大学出版社,2002,Vol.8:77~84
    [23]王学江,夏四清,张全兴,等.悬浮填料移动床处理苏州河支流河水试验研究.环境污染治理技术与设备,2002,Vol.3(1):27~30
    [24]刘晓海,高云涛,陈建国,等.人工曝气技术在河道污染治理中的应用.云南环境科学,2006,Vol.25(1):44~46
    [25]熊万永.福州内河引水冲污工程的实践与认识.中国给水排水,2000,Vol.16(7):26~28
    [26]董哲仁,曾向辉.受污染水体的生物—生态修复技术.水利水电技术,2002,Vol.33(2):1~4
    [27]朱宛华.水环境污染的修复技术.地学前缘,2001,Vol.8(1):143~150
    [28]解庆林,王教球,李金城.环境生物技术的发展现状.桂林工学院学报,2001,Vol.21(2):191~194
    [29]丁吉震.CBS水体修复技术.洁净煤技术,2000,Vol.6(4):36~38
    [30]徐亚同,史家樑,袁磊.上澳塘水体生物修复试验.上海环境科学,2000,Vol.19(10):480~484
    [31]汪松年.上海水生态修复调查与研究.上海科学技术出版社,2005
    [32]何旭升,鲁一晖,章青,等.河流人工强化净水工程技术与净水护岸方案.水利水电技术,2005,Vol.36(11):26~29
    [33]严子春,王萍,胡斐文,等.沸石-活性炭组合工艺处理微污染原水的研究.给水排水,2002,Vol.28(1):36~38
    [34]李德生,张金萍.沸石滤料对黄河原水的处理效果.中国给水排水,2002,Vol.18(12):37~38
    [35]刘金香,娄金生,陈春宁.沸石曝气生物滤池预处理微污染源水.中国给水排水,2005,Vol.21(6):38~40
    [36]汪胜,张玉先,张伟勤,等.生物沸石滤池处理污染水源水的中试研究.工业用水与废水,2006,Vol.37(2):20~24
    [37]林岩清,何苗,胡洪营,等.处理污染河水的渗流式生物床填料性能研究.中国给水排水,2006,Vol.22(7):13~16
    [38]周炜,黄民生,谢爱军,等.人工湿地净化富营养化河水试验研究(二)——基质层及
    ??流态对氮素污染物净化效果的影响.净水技术,2006,Vol.25(4):40~44
    [39]李丽,陆兆华,王吴,等.新型混合填料人工快渗系统处理污染河水的实验研究.中国给水排水,2007,Vol.23(11):86~89
    [40]潘涌璋,郭大卫.天然沸石床处理受污染景观水体的试验.城市环境与城市生态,2006,Vol.19(1):36~38
    [41]方升华.不同生态河道基质材料对氮磷的吸附对比研究.北京水务,2006(4):27~30
    [42]国家环境保护总局.水和废水监测分析方法(第四版).北京:中国环境科学出版社,2002
    [43]蒋绍阶,刘宗源.UV_(254)作为水处理中有机物控制指标的意义.重庆建筑大学学报,2002,Vol.24(2):61~65
    [44]单俊生,张建.浦东新区水面积和水面率的研究和思考.上海水务,2004,Vol.20(3):29~32
    [45]国家环保总局.2003年中国环境状况公报.北京:国家环境保护总局,2003
    [46]岳舜琳.给水中的氨氮问题.净水技术,2001,Vol.20(2):12~14
    [47]左铁镛,聂柞仁.环境材料基础.北京:科学出版社,2003
    [48]孙胜龙.环境材料.北京:化学工业出版社,2003
    [49]李鱼,董德明,等.自然水体生物膜及其在水环境中的作用.环境科学动态,2004,Vol.4:16~19
    [50]董云霄,胡洪营,等.大型水生植物在水污染治理中的应用研究进展.环境污染治理技术与设备,2003(2):15~19
    [51]吴志超,陈彬.多功能沸石复合水处理材料.中国专利,200520039982.1.2006-06-28
    [52]熊小京,叶均磊,王新红,等.天然沸石处理低浓度含氨废水的实验研究.厦门大学学报:自然科学版,2006,Vol.45(6):828~831
    [53]徐丽华,周琪.天然沸石去除氨氮研究.上海环境科学,2002,Vol.21(8):506~508,513
    [54]温东辉.天然沸石吸咐:生物再生技术及其在滇池流域暴雨径流污染控制中的试验与机理研究[M].高等教育出版社,2003
    [55]陆勤.浦东新区河网引清调水试验研究.水资源研究,2004,Vol.25(2):30~31
    [56]陈沈良,张国安,谷国传.长江口南汇边滩的演变及其沉积动力机制.上海地质,2003,Vol.4:1~4
    [57]罗银淼,冯颖慧,齐尔鸣.苏州河河口水闸抗波浪振动控制方法.水利水电科技进展,2007,Vol.27(增刊)(1):97~100,105
    [58]张菊,陈振楼,刘杰.上海河流氮负荷的年际变化及其水体富营养化的原因探讨.环境污染与防治,2005,Vol.27(1):29~33
    [59]何小娟,李旭东.沸石潜流湿地去除氨氮的运行模式研究.化工环保,2004,Vol.24:70~72
    [60]刘雨,赵庆良,郑兴灿.生物膜法污水处理技术[M].北京:中国建筑工业出版社,2000
    [61]朱亮.供水水源保护与微污染水体净化.北京:化学工业出版社,2005
    [62]杨再高.太湖富营养化原水除污染研究[硕士学位论文].上海:同济大学环境科学与工程
    ??学院,1997
    [63]陈世和,陈建华,王士芬.微生物生理学原理.上海:同济大学出版社,1992
    [64]邢昌梅,吕锡武.跌水曝气生物接触氧化预处理太湖水的研究.江苏环境科技,2007,Vol.20(1):4~8
    [65]Huxuefcng,Xushiyuan.Character ofN and P pollution on middle and small crccksin suburban Shan ghai.Environmental Scien ce,2001,12(6):66~71
    [66]林静,谢冰,徐亚同.复合微生物制剂对芦苇人工湿地去除污染物的影响.水处理技术,2007,Vol.23(2):38~41
    [67]王春树,胡险峰.生态工程技术在城市河道治理中的应用研究——以上海市曹杨环浜河道水环境整治为例.水利发展研究,2005,Vol.7:21~29
    [68]Scott J A,Abumoghli I,Modeling Nitrification in the River Zarka of Jordan.Wat.Res.,1995,29(4):1121
    [69]Copper A B,Developing Management Guidelines for River Nitriogenous Oxygen Demand.J.Wat.Pollut.Contr.Fed.,1986,58(8):845
    [70]Murphy K L,Sutton P M,wilson R W,et al.Nitrogen control:design consideration for supported growth systems.J WPCF,1977,49(4):549~557
    [71]Arvin E and Harremoes P.Concepts and models for biofilm performance.Wat Sci Technol,1990,22(3):171~180
    [72]李娟英,赵庆祥.氨氮生物硝化分段动力学特性研究.安全与环境学报,2005,Vol.5(4):46~48
    [73]徐斌,夏四清,胡晨燕,等.微污染原水生物预处理中的硝化动力学.中国给水排水,2003,Vol.19(4):15~18
    [74]何小娟,李旭东.沸石潜流湿地去除氨氮的运行模式研究.化工环保,2004,Vol.24(增刊):70~72

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700