巴楚—塔中寒武系层序地层及沉积特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究区位于塔里木盆地中央隆起中西端,以寒武系碳酸盐岩为目的层。根据论文研究任务和目的,结合国内外碳酸盐岩的研究现状,以Vail的经典层序地层学、沉积学、储层地质学等多学科的理论为指导,综合运用录井、测井、古生物及地震等资料,开展研究区寒武系碳酸盐岩层序地层和沉积相的研究,探讨沉积相的构成及空间分布,并建立了层序-沉积演化模式,探讨了控制层序发育的主要因素。在此研究基础上,结合区域构造特征及石油地质条件,进行了研究区寒武系碳酸盐岩储层分析。
     塔里木运动标志着塔里木盆地盆地前震旦系基底构造演化的结束和盆地基底的最终形成,并进入盆地发展演化阶段,受其影响巴楚地区在基底隆起的构造背景下,震旦系表现为一平缓的低隆起。发生在震旦系末的加里东早期运动第一幕,在巴楚-塔中形成震旦系、寒武系平行不整合,地震界面为T90。寒武系与下伏前寒武系之间存在明显的角度不整合关系,地震剖面上寒武系为一套连续强振幅反射波组。加里东早期运动第二幕发生在寒武纪末,形成寒武系、奥陶系平行不整合,即地震T80界面。
     依照9口寒武系钻井岩芯的宏观描述,在精细的沉积相、测井相分析基础上,结合5条主干连井剖面地震相和生物化石资料的分析,在研究区寒武系碳酸盐岩中共识别出蒸发台地、局限台地及开阔台地三个沉积相。寒武纪整个塔里木盆地呈现”西台东盆”的沉积格局,巴楚-塔中位于台地相区。受海平面升降影响,研究区早寒武世早期玉尔吐斯组发育潮坪沉积,早寒武世肖尔布拉克组发育局限台地沉积,早寒武世吾松格尔组发育蒸发台地沉积;中寒武世沙依里克组发育开阔台地-局限台地沉积,中寒武世阿瓦塔格组发育蒸发台地沉积,晚寒武世下丘里塔格群发育局限台地沉积。根据现有资料,在研究区进一步划分了沉积亚相和沉积微相,并系统开展了沉积相研究。
     依据Vail的经典层序地层学理论,对研究区寒武系进行了层序地层研究。结合沉积体系及构造地质背景分析,录井、测井、岩芯观察、古生物及地震等资料的综合分析表明,巴楚-塔中寒武系可划分为3个二级超层序,各个二级层序界面均为层序不整合面,其中T90、T82、T81界面存在短期暴露。论文以二级层序为等时单元编制了沉积相平面图,揭示了沉积相的展布规律,指出了研究区寒武系碳酸盐岩在各个时期呈继承性发展:下寒武统研究区呈现为向上变浅的碳酸盐岩台地生长序列,由早期半开放的局限台地演变为半封闭的局限台地-蒸发台地。经历短暂暴露剥蚀后,中寒武统遭受小规模海侵,研究区又经历了半开放的开阔台地-局限台地演变为半封闭的局限台地-蒸发台地。上寒武统海平面上升,研究区发育了大套的白云岩沉积的局限台地。
     在层序地层及沉积相的研究基础上,结合区域构造特征及石油地质条件,研究认为在塔中隆起的西南部,与巴楚隆起的连接区,北西向的断裂构造十分发育,为裂缝性白云岩储层的形成提供了良好的条件。
The study area of this paper locates in the mid-west of Middle Uplift in Tarim Basin, and the target layer is Cambrian carbonate. According to the tasks and aims of this paper, combined the present study situation of carbonate in and aboard, directed by the theories of Vail’s classic sequence stratigraphy, sedimentology, reservoir geology and other subjects, integrated these data of drilling, logging, palaeontology and seismic, the sequence stratigraphy and sedimentary facies researches of Cambrian carbonate in study area are developed, the sedimentary facies constitution and interspace distribution is probed, and the sequence-deposition evolution model is built to discuss the main factors which control the sequence development. On the base of researches, combined the area tectonic features and petroleum geology conditions, the reservoir analysis of Cambrian carbonate in study area is proceeded.
     Tarim event is the mark of the end of base tectonic evolution of Anti-Cambrian in Tarim basin, and also the mark of the final formation of basin base. It signed the basin entered evolution stage. Affected by that event, on the tectonic background of base uplift in Bachu area, it presented a slow low-uplift. The first act of Caledonian event happened in the end of Sinian and formed a parallel unconformity between Sinian and Cambrian in Bachu-Mid Tarim area, and the seismic boundary is T90. It is an obvious angle unconformity relationship between Cambrian and Anti-Cambrian. The Cambrian on the seismic section is a set of continuous black deflection reflection wave group. The second act of Caledonian event happened in the end of Cambrian, and formed a parallel unconformity between Cambrian and Ordovician. The seismic boundary is T80.
     According to the macroscopic description of 10 wells Cambrian cores, on the basis of the sedimentary and logging facies fine analysis, combined the analysis of 5 main well-tie section seismic facies and the fossil organism data, three facies, evaporation platform, restricted platform and open platform are confirmed in the study area. The whole Tarim basin appeared the sedimentary frame of west platform-east basin, and Bachu-Mid Tarim lies in the platform area. Affected by the fluctuation of sea level, Yuertusi formation tidal-plat, Xiaoerbulake formation restricted platform and Wusonggeer formation evaporation platform developed respectively in the study area during the early Cambrian; Shayilike formation open-restricted platform and Awatage formation evaporation platform developed respectively during the mid-Cambrian; the Xiaqiulitage formation restricted platform developed during the late Cambrian. According to the available information, sedimentary subfacies and microfacies are further confirmed, and the facies researches are developed systemly.
     Directed by Vail’s classic sequence stratigraphy theory, the Cambrian sequence stratigraphy researches are proceeded in the study area. Combined the analysis of deposition system and tectonic geologic background, the multidisciplinary analysis of mud-logging, well-logging, core-observation, palaeontology and seismic data shows that the Cambrian can be divided into 3 second order super-sequence in Bachu-Mid Tarim area, and each second order sequence boundary is sequence unconformity. And short exposition happened on T90, T82, T81 boundaries. Sedimentary facies planforms are compiled based on second order sequence; sedimentary facies distribution laws are revealed. The paper indicates that the Cambrian carbonate developed successively during each period in study area: the study area showed a shallow upwards carbonate growth succession in lower Cambrian, and evolved a semi-closed restricted-evaporation platform from the early semi-open restricted platform. After short exposition, a small transgression happened in Mid-Cambrian, and the study area evolved a semi-closed restricted-evaporation platform from the early semi-open restricted platform again. During the upper Cambrian, the sea level rose, and a huge set of dolomites deposition restricted platform developed in the study area.
     On the basis of sequence stratigraphy and sedimentary facies researches, combined the area tectonic features and petroleum geology conditions, it is suggested that in the southwest of Mid Tarim which adhered with Bachu area, north-west rift structure developed exceedingly, providing good conditions for the formation of fracture reservoirs.
引文
[1] O. Catuneanu, V. Abreu,J.P. Bhattacharya, et al. Towards the standardization of sequence stratigraphy. Earth-Science Reviews 92 (2009) 1–33.
    [2] C. H. Moore. Carbonate Reservoir: Porosity Evolution and Diagensis in a Sequence Stratigraphic Framework. [M]. Elsebier BV, 2002.
    [3] Allen A.P., Allen J.R. Basin analysis: Principles and Applications [M]. Oxford, Blackwell SciPubl, 1990
    [4] 36.Kendall A C. Evaporites. In: Facies models: Response to sea level change [M]. Geol Ass Can,Waterloo Omtario,1992
    [5] Reading H G. Sedimentary environments: processes, facies and stratigraphy 3rd [M]. Oxford, Blackwell Sci Publ, 1996
    [6] Wilson J G. Carbonate facies in geologic history [M]. New York, Springer-Verlag, 1975
    [7] International Stratigraphic Chart 2009
    [8] Christian Ravenne. Sequence stratigrahpy evolution since 1970[J].history of sciences.2002
    [9] Van.Wagoner,J.C.,Mitchum,R.M.,Campion,K.M.and Rahmanian,V.D.,eta1 . Siliclastic sequence stratigraphy inwelllogs , cores , and outcrop concepts for high-resolution correlation of time andfacies:AAPG Methods in ExplorationSeries7[J].1990:55
    [10] Mitchum , R. M. Vail , P. R. , and Thompson , S.Ⅲ, et al. Seismic stratigraphy and global changes of sea level , part 2;the depositional sequence as a basinunit for stratigraphic analysis , in Payton C. E. , ed ,Seismic stratigraphy application to hydrocarbon ex2ploration : AAPG Memoir 26[J].1977,3~62
    [11] Vail P R.Seismic stratigraphy interpretation using se quence stratigraphy.Partl:Seismic stratigraphy interpretation procedure IA.In;Bally A W ,ed. Atlas of seismic stratigraphy.American Association of Petroleum Geologists,Studies in Geology[J].1987,27:l~l0
    [12] Van Wagoner, J.C., and R.M.Mitchum.High-frequency sequences and their stacking patterns, abstract: 28th International Geological Society of Canada, Geoscience Canada, Reprint Series1, 1989, p.1-9.
    [13]杨孝,龚明权,陈永生等.层序地层学的形成与发展[J].大同职业技术学院学报.2006,20(1):77~91
    [14] Alastair H.Ruffell. Seismic stratigraphic of non-marine Lower Cretaceous strata in the Wessex and North Celtic Sea Basins [J]. Cretaceous Researth.1995: 603~607
    [15] S.H.Yoon,S.K.Chough,S.J.Park.Squence model and its application to a Miocenceshelf-slope system in the tectonically actice Ulleung Basin margin,East Sea[J].Marine and Petroleum Geology.2003 :1089~1103
    [16] F. Jerry Lucia. Carbonate Reservoir Characterization—an Integrated Approach [M]. New York, Springer-Verlag Berlin Heidelberg, 1999, 2007
    [17] J.R.Allan, W.D.Wiggins, Dolomite Reservoirs-Geochemical Techniques for Evaluating Origin and Distribution, the American association of petroleum geologists, 1993
    [18] Weyl, P.K. Porosity through dolomitization: conservation of mass requirements [J] Sediment Petrol, 1960
    [19] Warren. Dolomite occurrence, evolution and economically important associations. [J] Earth-Science Review, 2000,52:1-81.
    [20]吴因业,顾家裕.油气层序地层学[M].北京:石油工业出版社.2002:15
    [21]池秋鄂,龚福华.层序地层学基础与应用[M].石油工业出版社.2001
    [22]聂逢君.层序地层学的起源及其发展[J].铀矿地质.2001,17(4):193~203
    [23]徐怀大,赵政璋,樊太亮等.从地震地层学到层序地层学.石油工业出版社,1997
    [24]唐勇.塔里木盆地西南地区古生界沉积特征及沉积相展布规律.见王宜林主编:”第五届全国沉积学及岩相古地理学学术会议论文集”.新疆科技卫生出版社(K),1997
    [25]许效松.层序地层学研究进展.岩相古地理,1994(1)
    [26]刘宝珺主编.沉积岩石学[M].北京:地质出版社,1980
    [27]顾家裕主编.塔里木盆地沉积层序特征及其演化.石油工业出版社,1996
    [28]彭苏萍等.塔里木盆地巴楚—阿瓦提地区碳酸盐岩储层研究.地质出版社, 2001
    [29]贾承造等.中国塔里木盆地构造特征与油气.石油工业出版社,1997
    [30]周志毅,塔里木各纪地层,2001,北京:科学出版社
    [31]丁道桂、汤良杰等,塔里木盆地形成与演化,1996,南京:河海大学出版社
    [32]李曰俊等,塔参1井花岗岩年龄,地学前缘,2004
    [33]黄海平.南海东北部深水区碳酸盐岩层序地层及沉积特征与研究[D].成都:成都理工大学,2009
    [34]姜绍珍.塔里木盆地托浦台地区志留系柯坪塔格组-石炭系巴楚组沉积相及层序地层研究[D] .成都:成都理工大学,2009
    [35]金宝强.巴楚地区中下寒武统层序地层与沉积相特征研究[D] .成都:成都理工大学,2007
    [36]黄传波,塔里木盆地寒武—奥陶系碳酸盐岩油气藏形成条件,新疆石油地质,2000,V21(3):188~192
    [37]何登发、李德生,塔里木盆地构造演化与油气聚集,1996,北京:地质出版社
    [38]贾承造,中国塔里木盆地构造特征与油气,1997,北京:石油工业出版社
    [39]邵龙义等,塔里木盆地巴楚隆起寒武系及奥陶系白云岩类型及形成机理,古地理学报,2002
    [40]汤良杰,略论塔里木古生代盆地演化,现代地质,1997
    [41]张振生等,塔中低凸起的形成和演化,石油勘探与开发,2002
    [42]徐国强,李国蓉,刘树根,等.塔中、塔北古隆起形成演化及油气地质条件对比[J].石油天然气地质,2005,26(1):114-119.
    [43]许效松,汪正江,万方,等.塔里木盆地早古生代构造古地理演化与烃源岩[J].地学前缘. 2005,12(3):49-57.
    [44]赵宗举,周新源,范国章.塔里木盆地塔中地区主要构造圈闭形成期分布及成藏意义[J].海相油气地质. 2006,11(20):1-8.
    [45]左龙凭,李铁,曹杨.塔里木盆地巴楚凸起构造特征及含油气远景[J].新疆石油地质,2001,22(5):411-413.
    [46]张军涛,胡文瑄,钱一雄,等.塔里木盆地白云岩储层类型划分、测井模型及其应用.地质学报,2008,82(3):380-386
    [47]刘生国,胡望水,刘泽锋等.塔里木盆地前震旦-石炭纪构造与地层组合特征[J].西安科技学院学报,2001,21(2):136~139
    [48]汤良杰.塔里木盆地演化和构造样式[J].地球科学-中国地质大学学报,1994,19(6):742~754
    [49]胡霭琴,章振根,刘萄英等.天山东段中天山隆起带前寒武纪变质岩系的时代及演化-据u-Pb年代学研究[J].地球化学,1986
    [50]何国琦,李茂松,韩宝福.中国西南天山及邻区大地构造研究[J].新疆地质,2001,19(1)
    [51]张小兵,赵锡奎.塔里木盆地塔中隆起构造演化与油气关系[J].沉积与特提斯地质,2004,24(2):70~75
    [52]刘高波,施泽进,佘晓宇.巴楚-麦盖提的区域构造演化与油气分布规律[J].成都理工大学学报:自然科学版,2004
    [53]杨克绳.塔里木盆地的构造演化[J].海洋地质动态,2005,21(2):25~29
    [54]蔡习尧,毛树华等.塔里木盆地巴楚隆起寒武系划分与对比[J].新疆石油地质,2009,30(1):38~42
    [55]张宗命,贾承造,塔里木克拉通盆地内古隆起及其找油气方向[J ],西安石油学院学报,1997,Vol.12 No.3:8~14
    [56]梁生正,孔丽萍,梁永梅,宋晓莹,塔里木盆地东部大型碳酸岩盐油气藏勘探方向[J],石油实验地质,2005,27(2):151~157
    [57]罗俐,沈昭国,塔里木盆地寒武-奥陶系石油地质特征[J ],西南石油学院学报,1995,Vol.17 No.2:49~54
    [58]叶留生,王根长,翟小先,塔里木盆地库车河及柯坪地质[J ],新疆地质,1997,Vol.15No.2:174~192
    [59]何镜宇,孟祥化,沉积岩和沉积相模式及建造,地质出版社,1987
    [60]陈洪德,刘文均,郑荣才等,层序地层学理论和研究方法,1995
    [61]于炳松,塔里木盆地北部高频前积层序的发现及其意义[J ],广西地质,1995,Vol.8 No.4:15~18
    [62]冯增昭,彭勇民,金振奎,鲍志东等,2002,中国早寒武世岩相古地理[J ],古地理学报,Vol. 4 No1:1~11
    [63]冯增昭,张家强,金振奎,鲍志东,王国力,2000,中国西北地区寒武纪岩相古地理[J ],地理学报,Vol. 2 No. 2:1~10
    [64]屈迅,.新疆寒武纪古地理[J ],新疆地质,2000,Vol.18 No.4:305~308
    [65]何宏,彭苏萍,邵龙义,高云峰,时宗波,巴楚隆起与阿瓦提凹陷寒武系及奥陶系沉积古地理分析[J],煤田地质与勘探,2002,30(6):1~4
    [66]于炳松,露头剖面层序中的海平面变化研究[J ],矿物学报,1996,Vol.16 No.2:141~146
    [67]高志前,王惠民,樊太亮,刘忠宝,塔里木盆地寒武、奥陶系沉积相沉积体系及其组合序列[J],新疆石油天然气,2005,Vol.1 No.1:30~36
    [68]高志前,樊太亮,塔里木盆地柯坪露头区寒武-奥陶纪层序构成样式[J],地学前缘,2005,Vol.12 No.4
    [69]庄锡进,肖立新,杨军,塔里木盆地西南沉积相展布特征及演化[J],新疆地质,Vol.20,增刊:78~82
    [70]徐文世,于兴河,刘妮娜,姜辉等,蒸发岩与沉积盆地的含油气性[J],新疆石油地质,2005,Vol.26 No.6:715~718
    [71]朱同兴编译,碳酸盐岩旋回沉积的形成机制[J],岩相古地理,1999,Vol.19 No.1:64~70,
    [72]张振生,刘社平,塔里木盆地下古生界层序地层学研究[J],石油地球物理勘探,1995,30(2):245~256
    [73]张云智,塔里木盆地顺托果勒-满加尔地区寒武系、奥陶系沉积特征[J],矿物岩石,Vol.20 No.2:63~68
    [74]邵龙义,何宏,彭苏萍等.塔里木盆地巴楚隆起寒武系及奥陶系白云岩类型及形成机理[J],古地理学报,2002,Vol.4 No.2:19~27
    [75]李洪辉,张光亚,刘建新,丛祝安,塔里木盆地巴楚断隆油气勘探模式[J],石油勘探与发,1998,Vol.25 No.5:11~13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700