新疆准噶尔盆地乌尔禾油田低渗难采油藏精细描述方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前CNPC已探明的未动用低渗难采储量高达37亿吨,其中新疆准噶尔盆地就达6亿多吨,尤以乌尔禾油田克拉玛依组(T_2k,油层平均渗透率9.6×10~(-3)μm~2)、百口泉组(T_1b,油层平均渗透率7.7×10~(-3)μm~2)油藏为典型代表,且今后我国陆上新增储量将有更大比例(70%以上)属于低渗难采油藏。这部分油气资源若采用常规方法进行描述和开发,很难开采和动用,取得好的经济效益。因此,解决低渗难采油藏系列开采技术难题,发展先进适用的油藏精细描述技术,将是当前和今后一段时期内我国油气勘探与开发的重点之一。
     本文以新疆准噶尔盆地乌尔禾油田的克拉玛依组和百口泉组油藏为研究对象,综合利用岩心、测井、地震及生产动态等资料,将测井精细解释与地质建模相结合、勘探地质与开发地质相结合、确定性分析与随机模拟相结合、精细油藏描述与油藏工程、数值模拟相结合,采用多种新方法新技术,重点开展了以下7个方面的研究工作:①地层划分对比与地层厚度模型的建立;②断裂系统精细解释与微构造模型研究:③储层沉积微相定量识别与微相分布模型的建立;④储层测井精细解释方法研究;⑤储层定量地质模型的建立及储层物性特征分析;⑥油水分布规律研究与储量分布模型的建立;⑦剩余油分布规律及开发调整研究。论文研究内容丰富、难度大且工作量重,通过研究取得的创新性成果如下:
     (1) 采用高分辨率层序地层学结合标准层对比、沉积旋回对比、厚度对比等多种方法,完成了本区地层划分与对比,建立了地层厚度模型,弄清了地层的空间展布特征;
     (2) 利用静、动态资料对地震资料解释的断裂系统进行了核实,确定了本区断裂的分布及产状;
     (3) 综合使用最佳方差聚类分层法、灰色关联法及测井曲线元法,实现了沉积微相的定量识别,建立了研究区块沉积微相平面分布模型,弄清了本区微相的纵横向分布特征及其对储层物性和油水分布规律的影响程度;
     (4) 基于测井、岩电、岩心和试油资料,采用适用性更强的多因素非线性的神经网络法、最优化多功能法和多参数交会图技术建立了储层四性参数分层精细解释模型,进行了储层物性参数的精细解释和油水层的准确识别,为储层建模、储量计算和油藏数模提供了可靠的地质依据;
     (5) 综合多种方法搞清了研究区块的油水分布规律和地质储量的空间展布特征,根据储量分布模型计算的石油地质储量为3938.0×10~4t、溶解气地质储量为16.808×10~8m~3,储量丰度为130.83×10~4t/km~2,研究区块属中偏低丰度储量的中型油田;
     (6) 提出了合理开发本区低渗难采油藏的层系划分,井网、井距,注采系统及合理的开采技术政策界限,指出了油藏存在的潜力及今后挖潜的方向。
     通过以上研究,最终形成了一套实用有效的低渗难采油藏精细描述方法和技术,为这类油藏的增储上产与合理开发提供了有力的技术保障。
At present, it is an urgent problem for us to develop some advanced and practical fine description techniques for the low efficient and complex reservoir with low-permeability and difficultly movable reserve in our petroleum industry.The reservoir in Kelamayi & Baikouquan formation of Triassic zone in Wuerhe oilfield is a typical low-efficient reservoir. Based on the study on fine reservoir description of this reservoir, the results not only provide more information of this low efficient reservoir, but help to establish the efficient development model and exploitation techniques. And the results also ensure that Wuerhe has high and stable production and high-efficient development, which can enhance its exploitation technology and provide very important and valuable instructions to the other entire low-efficient oilfield of Junggar basin.Aimed at the problems in the reservoir description of Wuerhe oilfield, the investigating is focused on the Kelamayi and Baikouquan formation of Triassic zone of Wu5 and Wu16 areas. The research integrates all of data, such as core, well logging, seismic, dynamic information while production and etc., and adopts many novel methods. The main contents include the following 7 aspects: (1) stratigraphic division and correlation and establishment of the formation thickness model,(2) intensive interpretation of faults and study on the micro-structure model, (3) Identification of sedimentary microfacies and establishment of distribution model of that, (4) precision processing of well logging data, (5)foundation of quantitative geological model of formation and analysis of formation characteristics, (6) research of the oil-water distribution and establishment of distribution model of storage capacity, (7)study on the development program.Formation sequence (depth interface) of T_2k- T_1b, including 20 sand layers, is determined through stratigraphic division and correlation with several methods, and the results are approved and adopted by this oilfield. From this data, the formation structure model of this area is established successfully.The characteristics of faults are made sure based on the fine interpretation of seismic data and analysis of dynamic information, and the structure distribution models of the top of 20 layers are founded. The fault F5, F12, F13, F14 and F16 are validated, but the position of F5 on the plane is as almost same as the F10, which was marked in 1999, the only difference is the length of F5 is smaller than that of F10. Positive and negative micro-structures with different scale exist at nose structure, which makes oil and water more complex relationship.The microfacies of this reservoir are identifying quantitatively by integrating the faces signs, sediment logy and pattern recognition techniques, and then 3 subfaces and 13 microfacies are marked. Based on the analysis of microfacies of single well and profile microfacies of
    multi-well, the model of microfacies distribution is established. The most profitable microfacies are braided channel of fan delta plain, sub-aqueous distributaries channel and river mouth bar of fan delta front of fan delta sedimentation.The vital technology is the comprehensive interpretation and intensive processing of log data. According to the corresponding characteristics of complex lithology and low permeability reservoir, and the principle of core calibrating log, the charts for the interpretation of reservoir parameters and fluid-face are found by using neural network and multi-parameter cross-plot. Based on these, the data are processed for 324 wells, and the cutoffs of each parameter are set. Optimal interpretation based on multi-mineral model is adopted to solve the complicated oil/water zone with low permeability and water-flooded oil zone. Serial methods, much fit for the fine processing of low-efficient reservoir, are formed.The distribution characteristics of oil and water and the reservoir reserve is made sure completely. From distribution model of this reservoir reserve, the geological reserve of oil of this oilfield is 39.38 million ton, and that of solution gas is 1.6808 billion cube meter, the reserve abundance is 1.3083 million ton per square kilo-meter. So this reservoir is middle-low reserve abundance oilfield.Based on the fine description of this reservoir and study of reservoir engineering, a serial suitable technique is presented and set up for us to develop highly efficient this reservoir.From the above research, a serial of methods for this reservoir fine description and study is formed, which will be most helpful to increase reserve and enhance production and design effective development plan of other low-efficient reservoir in China.
引文
[1] 乌尔禾油田乌5、乌16井区块新增探明石油储量报告,石油新疆油田分公司,1999年12月
    [2] 乌尔禾油田乌5、乌16井区克拉玛依组、百口泉组油藏开发方案”附件1和附件1-2.新疆石油管理局,2002年3月
    [3] 乌尔禾地区三维地震资料精细解释、圈闭描述及储层横向预测报告及附图册.东方地球物理勘探有限责任公司地质研究中心,2003年12月
    [4] 乌尔禾油田乌5井区克拉玛依组油藏扩边新增探明石油储量报告,新疆油田分公司,2004年10月
    [5] 陈恭洋.碎屑岩油气储层随机建模.北京:地质出版社,2000:11~15
    [6] 张团峰,王家华.油气储层随机模拟的地质应用.中国数学地质.地质出版社,1994
    [7] 王家华,张团峰.油气储层随机建模[A].北京:石油工业出版社,2000
    [8] 冯国庆.测井资料精细解释及储层随机模拟方法研究[D].西南石油学院,2001
    [9] 沈平平,宋新民,曹宏.现代油藏描述新方法.北京:石油工业出版社,2003
    [10] 裘怿楠,王振彪.油藏描述新技术[C].CNPC油气田开发会议文集.石油工业出版社,1996:P62~72
    [11] 穆龙新.油藏描述的阶段性及特点[J].石油学报,2000(5):103~108
    [12] 熊琦华,王志章,张一伟.油藏描述研究的新进展[J].石油大学学报(自然科学版),1995(3):96~101
    [13] 陈亮,等.应用截断高斯随机模拟法研究沉积微相.石油勘探与开发,1998,25(6),74~75
    [14] D. L. Jordon, et al, 1995, Application of categorical indicator geoststistical for facies modeling in sand-rich turbidite systems, SPE 30603
    [15] L. Y. Hu, et al, 1994, Random genetic simulation of the internal geometry of deltaic sand bodies, SPE Formation, Dec. 1994
    [16] Jeffrey M. Yarus, et al, Stochastic modeling and geostatistics, AAPG, 1994
    [17] 李少华等,应用改进的布尔方法建立砂体骨架模型,石油勘探与开发,2000,27(3):91-92
    [18] M. Srivastava, Reservior characterization with probability simulation, SPE 24753
    [19] Suro-perez, L. Ramos Martinez, An Angorithm for the Stochastic Simulation of Sand Bodies, SPE 27024
    [20] 王留奇等,岩相骨架的地质统计模拟,石油勘探与开发,1999,26(3):93-98
    [21] A. G. Journel, et al, New method for reservior mapping. JPT, Feb. 1990
    [22] 李云省,分形地质统计学在储层非均质定量描述中的应用研究,西南石油学院博士论文
    [23] T. A. Gray, et al. 1993, Critical comparison of kriging, fractal and Indicator Kriging tecniques. APEA Journal 1993
    [24] 张永贵等,储层地质统计随机模拟,石油大学学报,1998,22(3):113-116
    [25] M. K. Sen, et al, 1992, Stochastic reservior modelling using simulated annealing and genetic algorithm, SPE 29754
    [26] G. B. Savioli, et al, Applications of simualted annealing of actual but a typical permeability data, 1996, SPE 35345
    [27] Ahmed Ouenes, et al, Application of simulated annealing and other global optimization methods to reservior description:Myths and realities, 1994, SPE 28415
    [28] MacDonzld A. C., et al. Stochastic Flow Unit Modelling of a North Sea Coastal-Ⅰ)etaic Reservoir. First Break, V. 10, NO. 4, 1992, P. 124-133
    [29] Bourgault G.. Probability Field for the Post- Processing of Stochastic Simulation. Math Geology, C. 28, NO. 6, 1996, P. 723-734
    [30] Kelka M. and Shibli, S. Description of Reservoir Properties Using Fractals, in Yarus. J. M and Chambers, R. L, eds. AAPG Computer Application in Geology NO. 3, Stochastic Modelling and Gex~mtistics: Princi-ples, Methods and Case Studies: American Association of Petroleum Geolc~sts, Tulsa, OK, 1994, P. 261—272
    [31] Begg S. H., et al. Characterization of a Complex Fluvial- Deltaic Reservoir for Simulation. Paper SPE28098, Presented at the 1994 SPE Annual Technical Conference-Exhibition, New Orleans, LA, Sept. 25-28, P. 275-284
    [32] 姚光庆.包日温都扇三角洲砂砾岩低渗透油藏小层沉积微相识别与制图.特种油气藏,2000,7(2)
    [33] 沅敏,等.低渗透油层渗流特征对油田开发的影响.特种油气藏,1998(3):25~28
    [34] 贾文瑞,等.低渗透油田开发部署中的几个问题的研究.石油勘探与开发,1995(4):47~51
    [35] 何琰,伍友佳,吴念胜.特低渗透油藏开发技术.钻采工艺,1999(2):20~24
    [36] 谢桂学,寇永强,黄琼冰.低渗透油田开发中的特点、主要矛盾及基本做法.低渗透油田,1997(2)
    [37] 马世煜,等.马西深层层状低渗透砂岩油藏开发模式及工艺技术系列研究.石油工业出版社,1996
    [38] 胡文瑞,张世富等.安塞特低渗透油田开发实践.低渗透油田开发技术,北京:石油工业出版社,19947
    [39] 李道品.低渗油田的开发方式.特低渗油气田,1997(1):38~44
    [40] 彭军.高分辨率层序地层学在油气勘探开发中的应用研究.西南石油学院博士后科研工作报告,2002
    [41] 刘宝珺等,岩相古地理基础和工作方法.北京:地质出版社,1985
    [42] 徐怀大等译.层序地层学原理.北京:石油工业出版社,1993
    [43] 余素玉,等.层序地层学方法及其在陆相湖盆研究中的应用.地质科技情报,1993,12(2)
    [44] 邓宏文.美国层序地层研究中的新学派—高分辨率层序地层学.石油与天然气地质,1995,16(2)
    [45] 邓宏文,等.层序地层基准面的识别、对比技术及应用.石油天然气地质,1996,17(3):177-184
    [46] 徐怀大.陆相层序地层学研究中的某些问题.石油与天然气地质,1997,18(2):83-89
    [47] 邓宏文等.沉积物体积分配原理—高分辨率层序地层学的理论基础.地学前缘,2000,7(4)
    [48] 樊太亮等.沉积基准面变化分析技术及其应用.石油与天然气地质,1997,18(2):108-113
    [49] 王鸿祯等.沉积层序及海平面旋回的分类级别—旋回周期的成因讨论.现代地质,1998,12(1):1-16
    [50] 薛良清.层序地层学在湖相盆地中的应用探讨.石油勘探与开发,1990,17(6):29-34
    [51] 刘宝珺,李文汉主编.层序地层学研究与应用.成都:四川科学技术出版社,1994
    [52] 郑荣才,等.浅谈陆相盆地高分辨率层序地层研究.成都理工学院学报,2000,27(3):241-244
    [53] 王寿庆.扇三角洲模式.北京:石油工业出版社,1993.11
    [54] 穆龙新,贾爱林.扇三角洲沉积储层模式及预测方法研究.北京:石油工业出版社,2003.6
    [55] 顾家裕,何斌.塔里木盆地轮南地区三叠系扇三角洲沉积与储集层研究.沉积学报,1994,12(2)
    [56] 陈程,等.油田开发后期扇三角洲前缘微相分析及应用.现代地质,2001,15(1)
    [57] 石占中,友亮.湖平面频繁变化环境下的扇三角洲沉积.西安石油学院学报,2002,17(1)
    [58] 张文朝,等.吐哈盆地扇三角洲沉积特征及油气意义.新疆石油地质,1998,19(4)
    [59] 朱筱敏,信荃麟.湖泊扇三角洲的重要性.石油大学学报(自然科学版),1994,18(3)
    [60] 周礼清.随机建模技术在冲积扇一河流三角洲储层定量表征中的应用.石油大学博士论文
    [61] 陈福煊等,油气田地球物理测井原理与解释.石油工业出版社 1996.8.
    [62] 雍世和,张超谟著,测井数据处理与综合解释,石油大学出版社,1996.9
    [63] 欧阳健等,测井地质分析与油气层定量评价,石油工业出版社,1999.6
    [64] 焦李成等著.神经网络系统原理.西安电子科大出版社,1990
    [65] 夏宏泉,等,基于神经网络法的渗透率逐点解释研究,西南石油学报 2001,23(1)
    [66] 夏宏泉,等,计算束缚水含量和阳离子交换容量的新方法,西南石油学报 2000,22(1)
    [67] 齐保全,夏宏泉等,用CMR资料识别储层流体性质方法探讨,SWPI学报2001,23(1)
    [68] 陈福煊等,泥质砂岩新双水模型研究及应用,天然气工业,2004.
    [69] 范宜仁.低矿化度条件下的泥质砂岩阿尔奇参数研究,测井技术,1997,21(3)
    [70] 夏宏泉等,测井曲线分数维的计算与储层类型识别研究,国外测井技术,2003,18(6)
    [71] 江汉测井研究所,吴冰洁,泥质砂岩的阳离子交换测量,测井技术,1986.
    [72] 欧阳健著.测井地质分析与油气层定量评价.石油工业出版社,1999
    [73] FORWARD-WATCH用户实用手册.石油大学出版社,1999
    [74] 司马立强.测井地质应用技术.石油工业出版社,2002
    [75] Jian-huo Zhang, Qi Hu, Zhen-hua Liu. Estimation of ture formation resistivity and water saturation with a time-lapse induction logging method. The Log Analyst, Mar~Apr. 1999: P138~148
    [76] 多矿物模型在复杂岩性地层中的应用,测井技术 2000,Vol24 No6 P460-463
    [77] T. S. Ramakrishnan, D. J. Wilkinson. Water-cut and fractional-flow logs from array-induction measurements. SPE Reservoir Eval & Eng, 1999. 2(1): P85~93
    [78] A. B. Dixit, S. R. Mcdougall, K. S. Sorbie et al. Pore-scale modeling of wettability effects and their influence on oil recovery. SPE Reservoir Eval & Eng, 1999. 2(1): P25~36
    [79] 侯连华.地质条件约束的水淹层测井评价方法研究:[硕士学位论文],石油大学(华东),:1997.12
    [80] G.. R. Jerauld, J. J. Rathmell. Wettability and relative permeability of prudhole bay: A case study in mixed-wet reservoirs. SPE Reservoir Engineering, 1997. 12(1): P58~65
    [81] Niels Beth, Dan Olsen, C. M. Nielsen. Determination of oil/water saturation functions of chalk core plugs from two-phase flow experiments. SPE Reservoir Eval & Eng, 2000. 3(1): P50~59
    [82] 陈序三.一种新型储层饱和度测井方法及应用.测井技术,2001.25(3):P105~107
    [83] S. M. Ei-hadidi, G. K. Falade, C. Dabbouk ea al. Water injection profile modification in a layered reservoir with polymer treatment. SPE Reservoir Eval & Eng, 2000. 3(3): P197~203
    [84] Elvlnd Damsleth, et al. A two-stage stochastic model applied to North Sea reservoir[J]. JPT, April, 1992:402~408
    [85] 张朝琛,王文祥,吕学谦等.确定剩余油分布技术.中国石油天然气总公司信息研究所,1995
    [86] 陈月明.油藏数值模拟基础.石油大学出版社,1994:P101~131
    [87] Ridvan Akkurt, Dave Marschall, R. Y. Eyvazzadeh, et al. Determination of residual oil saturation by use of enhanced diffusion. SPE Reservoir Eval & Eng, 1999. 2(3): P303~309
    [88] M. Gutierrz, R. W. Lewis, I. Masters. Petroleum reservoir simulation coupling fluid flow and geomechamics. SPE Reservoir Eval & Eng, 2001. 4(3): P164~172
    [89] 宋考平,等.单层剩余油分布及动态指标预测动态劈分法.石油学报,2000.21(6):P122~126
    [90] 葛家理等编著.现代油藏渗流力学原理.北京:石油工业出版社,2001:P65~93
    [91] 陈元千著.现代油藏工程.北京:石油工业出版社,2001.8:P59~60
    [92] M.霍纳波等著.油藏相对渗透率.马志元等译.石油工业出版社,1989.6:P55~120
    [93] Peter Naylor, Terence Fishlock, David Mogford et al. Relative permeability measurements for post-waterflood depressurization of the Miller field, North sea. SPE Reservoir Evla & Eng, 2001. 4(4). P276~289
    [94] M. K. Hwang. Modeling nonlinear interactions among near-well flow restrictions in well-deliverability prediction and simulation. SPE Reservoir Eval & Eng, 2000. 3(4): P360~368

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700