用户名: 密码: 验证码:
元城油田精细油藏描述与剩余油分布研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,世界各国的油田虽然总体上都已进入高含水、高采出阶段,但地下仍含有大量的剩余油,如何准确描述剩余油的分布和提高油气采收率成为当今油田勘探开发的主要目标。要实现这些目标,需要进行精细油藏描述和剩余油分布研究。
     本文通过综合岩心观察、测井、录井、化验分析、生产动态等多种动静态资料,以高分辨率层序地层学、沉积学、油藏工程、数值模拟等理论技术为基础,以庆64井区为研究对象,对元城油田地层划分、储层构造特征、沉积相与沉积微相、储层性质等进行研究,利用随机建模与相控建模技术进行油藏的三维定量化描述,并利用油藏数值模拟技术进行开发生产历史拟合、剩余油分布研究、方案优选与指标预测,取得了以下成果和认识:
     1、按旋回等时对比原则,对工区内的井进行了小层对比与划分。对比表明该区地层分布比较均匀,厚度横向变化比较小;该区构造是由于砂泥岩不同的压实比导致的差异压实作用形成的,表现为局部低幅的穹隆构造,构造形态不规则,长轴大致沿北西向展布,表现为两个构造高点,各小层构造高点基本一致,构造的发育具有较强的继承性。
     2、地层沉积特征研究表明,本区为辫状河流沉积体系,主要发育辫状河道、河道侧缘、天然堤和泛滥平原微相。沉积微相在横向上分布稳定,其中辫状河道为主要沉积微相,其它微相不太发育;平面上沉积微相发育对砂体分布具有严格的控制作用。
     3、非均质性研究表明,主要含油储层小层间在纵向上的分布存在差异,层内砂岩粒度具有明显的正韵律特征,物性分布与岩性分布具有很好的对应性。
     4、流动单元与沉积微相的对应关系研究表明,一类流动单元主要分布于辫状河流的河道中;二类流动单元主要分布在河道侧缘和天然堤微相;三类流动单元分布范围较小,主要分布于河漫滩微相内。
     5、储层四性关系研究表明,储层物性受岩性控制,岩性变细或泥质含量增加,储层物性变差,反之物性变好,同时,建立测井二次解释模型,给出油水层的判别标准,并对工区的井进行二次解释,应用沉积相控技术建立三维地质模型。
     6、应用油藏工程分析及油藏数值模拟技术对剩余油分布、开发井网的适应性进行研究,研究表明,剩余油形成与分布主要受微幅构造、储层发育、沉积相带、底水锥进及开发因素的控制。剩余油主要分布在井网不完善、构造高部位以及井间滞留区。提出了适合该区的开发技术政策及开发调整方案。
Today,oilfields of the world have come into high water-cut stage. But there are still large amounts of remaining oil stored in place. How to characterize the distribution of remaining oil and enhance oil recovery is the main purpose of the current exploration and exploitation activities. In order to realize this purpose, it is necessary to describe finely reservoir and study the distribution of remaining oil.
     After collecting and re-processing of the data related with geological background, core observation, drilling, logging, lab analysis and so on, this paper uses a multi-discipline theories and research methods such as stratigraphy, sedimentology, reservoir engineering, and well logging geology to study the structural framework, micro-structures, sedimentary facie, reservoir heterogeneity and flow units of the reservoirs. In this way, this paper establishes 3D quantitative reservoir geological model under the sedimentary facie controlling. Taking YuanQing 64 well area as a case study, this paper studies the distribution of remain oil, predict the production index using the technology of reservoir numerical simulation in both qualitative and quantitative ways on the base of matching production history. The main conclusions can be summarized as follows:
     1. According to the principle of deposition cycles and isochronic correlation, the division and correlation of substrata was carried out on the wells of field.The distribution of formation in Qing 64 area is large, the thickness is stable. The structure is a low vault structure formed by effect of differential compaction for the different compaction ratio of sand shale. Its shape is not regular, long axial toward to north-west, there are two high point which is consistent in different fine formations, all this provide that the development of structure is remarkable secession.
     2. Analyzing the background and characteristics of sedimentary and core, the micro facie of the formation are studied. The conclusion is that this area are mainly braided river sedimentary system, micro facie are mainly braided channel, inner-channels, natural dyke and alluvial flat, braided channel is the mainly sedimentary micro facie. the sedimentary facie determine the distribution of sand body in plane area.
     3.The distribution of the main oil-bearing sandstone reservoir is different between the subzone. The research of the reservoir heterogeneity reveals that grain size distribution of in-layer sandstone is positive rhythm. The distribution of reservoir property is coincided with the distribution of litho.
     4 .The relationship between depositional micro-facie and flow unit reveal thatⅠflow unit distribute in braided channel,Ⅱflow unit distribute in inner-channel and natural dyke,Ⅲflow unit distribute in alluvial flat .
     5. The study of the four physical property relationship show that reservoir physical property are effected by lithologic character, the reservoir physical property become poor when the grain size become fine or clay content increase, the reservoir parameters secondary interpretation model established. Give the standard of recognizing oil or water, established the 3D geology model with depositional facie controlling.
     6. The reasonable of development well pattern is studied using the reservoir engineering and reservoir numerical simulation technology, the result reveal that the remaining oil is effected by low structure, reservoir,sedimentary facie, bottom water coning and other development factors. There are abundant remaining oil where the area is Reservoir injection-production faultiness, higher of the structure and the pressure balance area, then give the corresponding adjustment program and development technology policy.
引文
[1]裘择楠,陈子琪.油藏描述[M].北京:石油工业出版社,1996
    [2]徐守余,油藏描述方法原理[M].北京:石油工业出版社, 2005
    [3]王志章,石占中,等著.现代油藏描述技术[M],石油工业出版社,1999.12
    [4]张一伟,熊琦华,王志章,等著.陆相油藏描述[M],石油工业出版社,1997
    [5]刘译容,信荃麟,等著.,油藏描述原理及方法技术[M],石油工业出版社,1993
    [6]穆龙新,黄石岩,等.油藏描述新技术[A],中国石油天然气总公司油气田开发工作会议论文集(C),石油工业出版社,1996.1-10
    [7]张幸福,周嘉玺主编.陆相复杂断块油田精细油藏描述技术,石油工业出版社,2001.12
    [8] Haldorsen,H.H.and Damsleth,E:Challengesin reservoir characterization,AAPG,1993(77)4:541-551
    [9] Allan U S.Model for Hydrocarbon Migration and Entrapment within Faulted Structures.AAPG Bulletin,1989,73(7):803~812
    [10]邓宏文.美国层序地层研究中的新学派—高分辨率层序地层学,石油与天然气地质,1995,16(2):90-97
    [11]邓宏文,王红亮,祝永军著.高分辨率层序地层学—原理及应用,地质出版社,2002.9
    [12]姜在兴,等.层序地层学,陆相储层沉积进展,石油工业出版社,1996
    [13]姜在兴,等编著.层序地层学原理及应用,石油工业出版社,1996
    [14]姜在兴,操应长,等著.砂体层序地层及沉积学研究,地质出版社,2000.6
    [15]操应长,姜在兴.高分辨层序地层学在陆相断块油气田开发中的应用—以济阳坳陷临十三断块区沙二段研究为例,层序地层学及其在油气勘探开发中的应用论文集,石油工业出版社,1997
    [16]吴因业,顾家裕编著,油气层序地层学,石油工业出版社,2002.6
    [17] Hearn C L,Ebanks W J Jr,Tye R S,et al.Geological factors influencing reservoir performance of the Hartzog Dra field,Wyoming〔J〕.J Petrol Tech,1984,36:1 335-13[44]
    [18] Ebanks WJ Jr. Flow unit concept integrated approach to reservoir description for engineering projects[J]AAPG Annual Meeting,AAPG Bulletin,1987,71(5):551-552
    [19] Amaefule J O,Altunbay M. Enhanced reservoir description:Using core and log data to identify hydraulic(flow)units and predict permeability in u ncored intervals/well,SPE26436〔A〕.Presented at the 68th Annual SPE Conference and Exhibition〔C〕.Houston,Texas,Oct 2-5,1993.205-220.
    [20]裘亦楠,王振彪.油藏描述新技术〔A〕.见:中国石油天然气总公司油气田开发会议文集〔C〕.北京:石油工业出版社,1996 62-72.
    [21]裘亦楠,王衡鉴.松辽陆相湖盆—三角洲各种沉积砂体的油水运动特点〔J〕.石油学报,1980,1(增刊):73-93.
    [22]穆龙新,黄石岩,贾爱林.油藏描述新技术〔A〕.见:中国石油天然气总公司油气田开发工作会议文集〔C〕.北京:石油工业出版社,1996.1-10.
    [23]焦养泉,李祯.河道储层砂体中隔挡层的成因与分布规律〔J〕.石油勘探与开发,1995,中国地质大学(北京)博士学位论文22(4):78-81.
    [24]焦养泉,李思田,李祯,等.碎屑岩储层物性非均质性的层次结构〔J〕.石油与天然气地质,1998,19(2):89-92.
    [25]李思田,李祯,孙永传,等.陕甘宁盆地河流砂体露头调查及地质知识库基础研究〔R〕.中国油气储层研究(85—103)成果报告,1994.60-69.
    [26]冯晓宏,刘学峰,岳青山,等.厚油层非均质特征描述的新方法——水力(渗流)单元分析〔J〕,石油学报,1994,15(专刊):149-1[57]
    [27]吕晓光,闫伟林,杨银锁.储层岩石物理相划分方法及应用〔J〕.大庆石油地质与开发,1997,16(3):18-21.
    [28]闫伟林,吕晓光,苏洋.岩石物理相研究和神经网络技术在高含水期测井解释中的应用〔A〕.见:水驱油田开发测井'96国际学术讨论会论文集〔C〕.北京:石油工业出版社,1996.99-107.
    [29]姚光庆,赵彦超,张森龙.新民油田低渗细粒储集砂岩岩石物理相研究〔J〕.地球科学——中国地质大学学报,1995,20(3):355-360.
    [30]熊琦华,王志章,纪发华.现代油藏描述技术及其应用〔J〕.石油学报,1994,15(专刊):1-8.
    [31] Rodriguez A,Maraven S A. Facies modeling and the flow unit concept as a sedimentological tool in reservoir description:A case study,SPE18154〔A〕.Presented at the 63th Annual SPE Technical Conference and Exhibition〔C〕.Houston,Tesas,Oct,2-5,1988.465-472.
    [32]熊琦华,彭仕宓,黄述旺,等.岩石物理相研究方法初探——以辽河凹陷冷东—雷家地区为例〔J〕石油学报,1994,15(专刊):68-74.
    [33]孙健评,等.双河油田开发后期流动单元划分方法,(J),新疆石油地质,1999,02
    [34]刘吉余,郝景波,尹万泉,等.流动单元的研究方法及其研究意义〔J〕,大庆石油学院学报,1998,22(1):5-7.
    [35] H. H. Haldorson, at al., Challenges in Reservoir Characterization. AAPG Bull, 1993, 77(4), 541—551
    [36]刘丁曾,王启民,李伯虎.大庆多层砂岩油田开发〔M〕.北京:石油工业出版社,1996.1-4
    [37] Alden Jeff Martin,Stephen T Solomon,Dan J Hartman.碳酸盐岩储层岩石物理流动单元描述〔J〕.刘庆怀译.石油地质科技动态,1997,(6):21-47.
    [38] Guangming Ti,Baker Hughes INTEQ,Ogbe D O,et al. Use of flow units as a toolfor reservoir description: A case study〔J〕. SPE Formation Evaluation, 1995,10(2):122-128.
    [39]阎长辉,羊裔常,董继芬.动态流动单元研究〔J〕,成都理工学院学报,1999,03:34-39
    [40] Guangming Ti,Baker Hughes INTEQ,Ogbe D O,et al. Use of flow units as a tool for reservoir description:A case study〔J〕.SPE Formation Evaluation,1995,10(2):122-128.
    [41] Haldorsen H H,Damsieth E.Stochastic Modeling[J].JPT,1991,4.
    [42]张团峰,王家华,等.三维储层随机建模和随机模拟技术研究室,中国数学地质出社,1996,59-85
    [43] Damsieth E,Jiolsen C B,Haldorsen H H.A two-stage stochastic model applied to a north sea reservoir[J].SPE 20605.
    [44] Alabert F G,Massonnat G J. Heterogeneity in a complex turbiditic reservoir:Stochastic Modeling of Facies and Petrophysical Variability[J].SPE 20604.
    [45]张团峰,王家华.储层随机建模和随机模拟原则[J].测井技术,1995,19(6)
    [46]张团峰,王家华.试论克里金估计与随机模拟的本质区别[J].西安石油学院学报,1995,12(5).
    [47]吕晓光、王德发,等.储层地质模型及随机建模技术[J],网上数字化期刊
    [48]文健,等.油藏早期评价阶段储集层随机建模技术的发展方向[J].石油勘探与开发,1994,21(5).
    [49] Chang, M.M., et al.: Evaluation and comparison of residual oil saturation determination techniques,SPEFE, March, 1988, 251~262.
    [50] Gomez-hernandez J等著.三维多元指示条件模拟方法[M].毛宁波摘译.世界石油科学,1994,1.
    [51] Grane S P,Tubman K M. Reservoir variability and modeling with Fractals[J],SPE20606.
    [52] Sen M K et al. Stochastic reservoir modeling using simulated annealing and genetic algorithm[J].SPE 24754.2):90-97
    [53] Hearn CL,Ebanks WJJ,Tye R S,el.al. Geological factors in fluencing reservoir performance of the Harizog Drafield,Eyoming.JPT,1984,36(9):1335-1344
    [54] Allan U S. Model for Hydrocarbon Migration and Entrapment within Faulted Structures.AAPG Bulletin,1989,73(7):803~812
    [55]杨久西,谢凤桥.构造油气层的人式神经网络识别[J],石油与天然气地质,2002,23(1):76-80
    [56]徐丽娜.神经网络控制,哈尔滨:哈尔滨工业出版社,1998,1-87
    [57]焦李成.神经网络的应用与实现,哈尔滨:哈尔滨工业出版社
    [58]刘永红.神经网络理论的发展与前沿问题,信息与控制,1999,28(1):31-44
    [59]魏永佩,陈会鑫.人工神经网络及其在油气勘探开发中的应用,大自然探索,1998,17(63):
    [60]薛林福,潘保芝.用自组织神经网络自动识别岩相,长春科技大学学报1999,29(2):144-149
    [61]马力,郑艳辉.人工神经网络预测木状油田储层孔隙度渗透率,河南石油,2002,16(3):15-17
    [62]李敏生,刘斌.BP学习算法的改进与应用,北京理工大学学报,1999,16(6)
    [63]徐春晖,徐向东.前馈型神经网络新学习算法研究,清华大学学报(自然科学版),1999,17(5)
    [64]胡向阳,熊琦华,等.人工神经网络技术在储层参数预测中的应用,2001,22(4):38-41
    [65]杨庆军,邓春呈,等.利用人工神经网络求取产位的流动系数,新疆石油地质,2001,22(1):66-67
    [66]阎铁,刘春天,等.人工神经网络在大庆深厚感情井钻头优选中的应用,石油学报,2002,23(4):102-106
    [67]胡宋仁.神经网络导论,长沙:国防科技大学出版社,1997,1-3
    [68]陈亚秋,等.多层前传神经网络的广义误差反传训练与模式分类,1999,9(2):161-164
    [69] E.Causin,J.Rochon, and D.Marzorati, Field Measurements of Remaining Oil Saturation, SPE 20260,April,1990
    [70] Chang, M.M., et al.: Evaluation and comparison of residual oil saturation determination techniques, SPEFE, March, 1988, 251~262.
    [71] Azhar Al-Kindi, et al. Identification of High Residual Gas Saturation Zone and Evaluation of its Impact on the Development of the Central-C Gas Condensate Field- Oman, SPE81436
    [72] Martin Wolff, A.M.AI-Jalahma, and P.F.Hook, Log Determination of Residual Oil Saturation in the Mauddud Zone, Bahrain Field, SPE 25648,April,1993
    [73]孙焕然,孙国,等.胜坨油田特高含水期剩余油分布仿真模型,2002,29(3):66-68
    [74] Miall, A. D. Architectural elements and bounding surfaces in fluvial deposits: anatomy of the Kayente formation (lower Jurassic), southwest Colorado. Sedimentary Geology. 1988, 55: 233-262
    [75] M. J. Blunt,at al., What Determines Residual Oil Saturation in Three-phase Flow? SPE27816,1994.
    [76]江晓晖,钱根宝,等.数值模拟技术在油藏开发中的应用—以沙南油田梧桐沟组油藏为例,新疆石油地质,2001,22(1):61-62
    [77]谢海兵、到远乐,等.非结构网格油藏数值模拟方法研究[J],石油学报2001,22(1):63-66
    [78] Setta T,吴元,模拟技术的新发展[J],国外油气科技,1993,(3):51-54
    [79] Watts J.W. Reservoir simulation:past,present,and future[N].Paper SPE 38441 presented at the SPE 1997 Reservoir Simulation Symposium Held inDallas,Texas,USA.8-11 June 1997
    [80]王者生,李祥贵.油藏模拟局域精细网络方法的扩展应用[J],石油大学学报(自科版),1993,17(5):123-128
    [81]张烈辉,李允.混合网格在水平井油藏数值模拟中的应用[J].西南石油学院学报,1995,17(1):63-69
    [82] Shama R,孙明.混合-CVFE法在弹性网格泊藏模拟中的应用[J].石油勘探开发情报,1995,(5):69-78
    [83] Gamer L.J. Resewoir simdation using mixed models[N].Paper SPE 37981 presented at the SPE 1997 Reservoir Simulation Symposium Held in Dallas,Texas,USA.8-11 June 1997
    [84] Charles M.Kidwell,Abner J.Guillory. A Recipe For Residual Oil Saturation Determination SPE8451,1980
    [85] Hemam K,杨耀忠.油藏模拟并行计算[J].国外石油地质,1995,(3):71-79
    [86]陈文兰,宋杰.并行处理技术在油田开发中的应用[J].世界石油工业,1996,3(1):36-42
    [87]徐守余,著.油藏描述方法原理,石油工业出版社,2005
    [88]赵陷,曲志浩,等.砂岩微观孔隙模型两相驱替实验,石油勘探与开发,1991,18(2):79-85
    [89]李劲峰,曲志浩,等.用微观模型组合实验研究最低吸水层渗透率,石油学报,2000,21(1):55-59
    [90]程芳,孙德杰,等.核磁共振测井(MR)的应用,新疆石油地质,2002,23(6):41-43
    [91]赵明,章海宁.两种评价剩余油饱和度的测井方法应用研究,石油学报,2002,23(5):3-7
    [92]李淑霞,陈月明,等.利用井间示踪剂确定剩余油饱和度的方法,石油勘探与开发,2001,28(2):73-75
    [93] Goddin, C.S.,Jr.,Craigs,F.F.,Jr.,Wilkes,J.O. and Tek.,M.R., A Numerical Study of Water-flood Performance in a Stratified System with Cross-flow, J. Pot. Tech. 1996,7,765-771
    [94] W J Jr Ebanks. Flow unit concept- integrated approcach to reservoir description for engineering projects [J]. AAPG Annual Meeting, AAPG Bulletin, 1987, 71(5)
    [95]巨登峰,张志录,等.华北油田“九五”期间堵水调剖技术的新发展,河南石油,2002,16(3):27-30
    [96]俞启泰.论侧钻水平井是开采“大尺度”未波及剩余油最重要的技术,石油学报,22(4):44-48
    [97]俞启泰.注水油藏“大尺度”未波及剩余油开采技术,新疆石油地质,2002,23(2):34-38
    [98]俞启泰.侧钻水平井开采正韵律油层顶剖剩余油可行性评价公式,石油勘探与开发,2001,
    [99]五德辰,杨天瑞,等.老君庙油田H184井组胶束/聚合物驱油先导试验,石油勘探与开发,1999,26(1):47-49
    [100] Charles M.Kidwell,Abner J.Guillory. A Recipe For Residual Oil Saturation Determination SPE8451,1980
    [101] Craig,F.F. The Reservoir Engineering Aspects of Waterflooding Monigraph Series.SPE,Richardson, TX(1971)3
    [102] Hearn CL,Ebanks WJJ,Tye R S,el.al. Geological factors in fluencing reservoir performance of the Harizog Drafield,Eyoming.JPT,1984,36(9):1335-1344
    [103] Van Daalen F and H R Van Domselaar. Scaled Fluid-flow Models with Geometry Differing from That of Prototype. Pet. Trans. AIME, 1972, Vol. 207, p220
    [104] B C Craft and M T Jr Hawkins. Applied Petroleum Reservoir Engineering.Pentice Hall Inc. Englewood Cliffs, NJ, 195

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700