燕山地区中生代火山作用成因及其对深部过程的制约
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文通过对燕山地区中生代火山岩,特别是中基性火山岩,进行详细而系统的岩石学、主微量元素地球化学特征和Sr-Nd同位素组成特征的研究,主要取得了以下研究成果:
     1 燕山地区中生代(J-K)火山岩为一套钙碱性-高钾钙碱性-橄榄安粗岩系列岩石。中基性火山岩稀土配分模式为富集LREE的右倾型,富集LILE(如K、Ba),Sr变化较大、亏损HFSE(如Nb、Ta)。在中酸性火山岩系列中,张家口组火山岩表现出中等-强烈的Eu负异常和不同程度的Sr、Ti、P负异常;东岭台组火山岩表现出富集LREE和平坦的HREE的稀土配分模式,Nb/Ta分馏,高Zr/Sm比值。在Sr-Nd同位素组成上,中基性火山岩为中等富集的Sr和低的Nd同位素比值;中酸性火山岩的Sr同位素比值总体较中基性岩高且变化大,类似华北陆块下地壳岩石的同位素组成特征。
     2 燕山地区早侏罗世中基性火山岩来自于早期俯冲交代的古老岩石圈地幔部分熔融作用,俯冲交代作用可能与早期古亚洲洋闭合事件有关;晚侏罗世中基性火山岩更多来自于类似于EMI型地幔源区的部分熔融作用,俯冲交代成分贡献很弱;早白垩世基性火山岩则来自于EMI型地幔源区的部分熔融作用。燕山地区中酸性火山岩则来源于地壳,与玄武质岩浆底侵作用关系密切。
     3 燕山地区火山岩源区组分在时空上具有一定的演化规律:在时间上,从早期俯冲交代地幔及EMI的参与,经中期以EMI占主导及极少量俯冲交代组分的阶段,演变到晚期以EMI为主,可能有少量软流圈贡献的组分,再到晚白垩世以软流圈为主。古亚洲洋俯冲板块对古老岩石圈的交代作用在岩石圈减薄和置换过程中起了很重要的作用。在空间上,燕山地区中基性火山岩熔融地幔源区与邻区华北陆块和兴蒙造山对比表现出过渡的性质:从鲁西→燕山地区→兴蒙造山带,源区具有由华北陆块EMI型古老岩石圈地幔→EMI+/-俯冲交代组分→向俯冲交代岩石圈地幔转变的特征。
     4 燕山地区特有的相对“易熔”的岩石圈性质,所处的特殊的构造位置及发育的深大断裂,可以较好的解释该地区发生贯穿整个中生代的火山活动和构造变形的可能性。
     5 燕山地区岩浆活动与构造事件有较好的偶合关系,其构造岩浆活动可能是板块相互作用和深部岩石圈活动的共同结果。
On the basis of detailed and systematic studies on the petrography, major and trace elements and Sr-Nd isotopic data of Mesozoic volcanic rocks, especially the mafic volcanic rocks in Yanshan area, we successfully studied the deep processes related to magma generation and their relationship with shallow-level tectonic evolution. The major conclusions are summarized as below.
    1. The Mesozoic volcanic rocks in Yanshan area comprise a wide spectrum of rock types including calc-alkaline, high-K calc-alkaline and shoshonitic lava. All mafic rocks show significant enrichment in LREE, LILE and depletion in HFSE with variable Sr anomalies. Among the felsic rocks, samples from the Zhangjiakou Formation (Fm.) are characterized by moderately to strongly Eu anomalies, and variable negative anomaly of Sr, Ti and P, whereas samples from the Donglingtai Fm. exhibit enriched LREE and flat HREE patterns with Nb/Ta fractionation and high Zr/Sm ratios. All of the mafic samples have age-corrected moderate enriched Sr and enriched Nd isotopic ratios and the felsic rocks span larger range in the initial Sr and Nd isotopic ratios than mafic volcanics, similar to isotopic compositions of lower crust of North China Block.
    2. Early Jurassic mafic volcanic rocks in Yanshan area were derived from decompression melting of an ancient continental lithospheric mantle, which had been previously metasomatized by subducted slabs during the closure of Paleo-Asian Ocean; the mantle source of late Jurassic mafic volcanic rocks were contributed by dominant EMI and insignificant subducted Metasomatic components; Early Cretaceous mafic volcanic rocks were derived from decompression melting of an ancient continental lithospheric mantle (EMI). With regard to the basaltic lavas, the felsic rocks resulted from partial melting of continental crust, which closely related to basaltic underplating.
    3. The mantle source for the Mesozoic mafic volcanic rocks in Yanshan area exhibit transition character in space and time: the mantle source components vary from subduction-related metasomatic components and EMI components through
    
    
    dominant EMI components and slight subduction-related metasomatic components to EMI components; spatially, mantle source of the volcanic rocks show a regular variation trend from an enriched lithospheric mantle with EMI-like signatures in the western Shandong province through EMI and/or subduction-related metasomatic components in Yanshan area to subduction-related metasomatic lithospheric mantle in the Hinggan-Mongolian Orogen.
    4. The relative fertile lithospheric characters of Yanshan area, unique plate tectonic situation and developed deep faults can explain reasons of the volcanism and tectonic events in Yanshan area throughout the Mesozoic.
    5. The Mesozoic volcanism in Yanshan area temporarily and spatially corresponds with the regional tectonic events, which might be a consequence of deep lithospheric processes and multi-plate interaction.
引文
[1] 鲍义冈,白志民,葛世炜等.北京燕山期火山地质及火山岩.北京:地质出版社,1995
    [2] 北京市地质矿产局编.北京市区域地质志.北京:地质出版社,1991
    [3] 陈斌,赵国春,WILDE S.内蒙古苏尼左旗南两类花岗岩同位素年代学及其构造意义.地质论评,2001,47(4):361~367
    [4] 陈国达.地洼学说的新进展.北京:科学出版社,1992:1~314
    [5] 陈绍海,张国辉,周新华等.汉诺坝玄武岩中麻粒岩类捕虏体的岩石学特征.岩石学报,1998,14(3):366~380
    [6] 陈义贤,陈文寄,周新华等.辽西及邻区中生代火山岩.北京:地震出版社,1997
    [7] 程裕淇.中国区域地质概论.北京:地质出版社,1994
    [8] 崔盛芹,李锦蓉,孙家树等.华北陆块北缘构造运动序列及区域构造格局.北京:地质出版社,2000
    [9] 邓晋福,赵海玲,莫宣学等.中国大陆根-柱构造.北京:地质出版社,1996
    [10] 樊祺诚,刘若新,李惠民等.汉诺坝捕掳体麻粒岩年代学与元素地球化学.科学通报,1998,43(2):133~137
    [11] 葛小月,李献华,陈志刚,李伍平.中国东部燕山期高Sr/低Y型中酸性火成岩的地球化学特征及成因——对中国东部地壳厚度的制约.科学通报,2002,47(6):474~480
    [12] 郭锋.山东中生代火山岩成因及其对岩石圈减薄过程的制约.博士学位论文,1999
    [13] 郭锋,范蔚茗,王岳军,林舸.大兴安岭南段晚中生代双峰式火山作用.岩石学报,2001,17(1):161~168
    [14] 河北省地质矿产局编.河北省北京市天津市区域地质志.北京:地质出版社,1989
    [15] 和政军,李锦轶,牛宝贵等.燕山—阴山地区晚侏罗世强烈推覆—隆升事件及沉积响应.地质论评,1998,44(4):407~418
    [16] 胡学文,张满江,权恒.冀北红旗营子群同位素年龄及其时代归属.中国区域地质,1996,2:186~192
    [17] 李江海,翟明国,李永刚等.冀北滦平-承德一带太古代高压麻粒岩的发现及其构造地质意义.岩石学报,1998a,14(1):34~41
    [18] 李江海,翟明国,钱祥麟等.华北中北部晚太古代高压麻粒岩的地质产状及其出露的区域构造背景.岩石学报,1998b,14(2):176~189
    [19] 李江海,钱祥麟,谷永昌等.华北中北部古元古代区域构造格架及其板块构造演化.地球科学,1998c,23(3):230~235
    [20] 李曙光,聂永红,Jagoutz E,肖益林,郑永飞.大别山俯冲陆壳的再循环—地球化学证据.中国科学(D辑),1997,27(5):412~418
    [21] 李伍平,路凤香,孙善平等.北京西山东岭台组(J_3)火山岩的成因及其构造环境探讨.
    
    岩石学报,2000,16(3):345~352
    [22] 李伍平,路凤香,李献华等.北京西山髫髻山组火山岩的地球化学特征与岩浆起源.岩石矿物杂志,2001a,20(2):123~133
    [23] 李伍平,路凤香,李献华等.北京西山晚侏罗世粗安岩的成因及其地质意义.岩石矿物杂志,2001b,20(3):247~254
    [24] 李伍平,李献华,路凤香等.辽西早白垩世义县组火山岩的地质特征及其构造背景.岩石学报,2002,18(2):193~204
    [25] 寥群安,邱家骧.北京地区中生代钾玄岩系列-高钾钙碱性系列的识别与成因分析[J].岩石学报,1993,9(增刊):14~23
    [26] 刘丛强,解广轰,增田彰正.中国东部新生代玄武岩的地球化学-Ⅰ,主量元素和微量元素组成.地球化学,1995a,24(1):1~19
    [27] 刘丛强,解广轰,增田彰正.中国东部新生代玄武岩的地球化学-Ⅱ,Sr、Nd、Ce同位素组成.地球化学,1995B,24(3):203~214
    [28] 刘敦一.华北陆台前寒武系重大地质事件.北京:地质出版社,1991
    [29] 路凤香,郑建平,李伍平等.中国东部显生宙地幔演化的主要样式:“蘑菇云”模型.地学前缘,2000,7(1):97~108
    [30] 内蒙古地质矿产局编.内蒙古区域地质志,北京:地质出版社,1991
    [31] 聂宗笙.华北地区的燕山运动.地质科学,1985,20(4):320~333
    [32] 马寅生,崔盛芹,赵越,曾庆利,吴满路.华北北部中新生代构造体制的转换过程.地质力学学报,2002,8(1):15~25
    [33] 牟堡垒,阎国翰.燕辽三叠纪碱性杂岩体地球化学特征及意义.地质学报,1992,66(2):108~120
    [34] 乔秀夫.青白口群地层学研究.地质科学,1976,3:246~265
    [35] 邱家骧,寥群安.北京地区中元古代与中生代火山岩的酸度、系列、构造环境及岩浆成因.岩石矿物杂志,1998,17(20):104~117
    [36] 任纪舜,陈廷愚,牛宝贵等.中国东部及邻区大陆岩石圈的构造演化与成矿.北京:科学出版社,1990:73~103
    [37] 宋鸿林.变质核杂岩研究进展、基本特征及成因探讨.地学前缘,1995,2(1/2):103~111
    [38] 邵济安,唐克东.中国东北地体与东北亚大陆边缘演化.北京:地震出版社,1996
    [39] 邵济安,牟保垒,何国琦等.华北北部在古亚洲域与古太平洋域构造叠加过程中地质作用.中国科学(D辑),1997,27(5):390~394
    [40] 邵济安,牟保垒,张履桥.华北东部中生代构造格局转换过程中的深部作用与浅部响应.地质论评,2000,46(1):32~40
    
    
    [41] 邵济安,李献华,张履桥,牟保磊,刘玉琳.南口古崖居中生代双峰式岩墙群形成机制的地球化学制约.地球化学,2001,30(6):517~524
    [42] 唐克东,邵济安.中亚褶皱区构造演化问题—俄罗斯学者近年研究成果评价.现代地质,1997,11(1):21~28
    [43] 唐克东,王莹,何国琦等.中国东北及邻区大陆边缘构造.地质学报,1995,69:16~30
    [44] 王小凤,李中坚,陈柏林等.郯庐断裂带.北京:地质出版社,2000
    [45] 王强,许继锋,赵振华.一种新的火成岩——埃达克岩的研究综述.地球科学进展,2001,16(2):201~208
    [46] 王季亮,李丙泽,周德星等.河北省中酸性岩体地质特征及成矿关系.北京:地质出版社,1994
    [47] 王瑜.晚古生代末-中生代内蒙古-燕山地区造山过程中的岩浆热事件与构造演化.现代地质,1996,10(1):66~75
    [48] 王瑜.中生代以来华北地区造山带与盆地的演化及动力学.北京:地质出版社,1978
    [49] 王友勤,苏养正,刘尔义.东北区区域地层.武汉:中国地质大学出版社,1996
    [50] 王岳军,Zhang Y H,范蔚茗等.湖南印支期过铝质花岗岩的形成:岩浆底侵与地壳加厚热效应的数值模拟.中国科学,2002,32(6):491~499
    [51] 翁文灏.中国东部中生代造山运动.中国地质学会志,1929,8(1):33~44
    [52] 吴福元,曹林.东北地区的若干重要基础地质问题.世界地质,1999,18(2):1~11
    [53] 吴福元,孙德有.中国东部中生代岩浆作用与岩石圈减薄.长春科技大学学报,1999,29(4):313~317
    [54] 吴福元,孙德有,张广良,任向文.论燕山运动的深部地球动力学本质.高校地质学报,2000,6(3):379~388
    [55] 吴珍汉.略论华北地块北缘显生宙三类不同的造山作用.地质力学学报,2000,6:44~50
    [56] 吴珍汉,崔盛芹,吴淦国等.燕山山脉隆升过程的热年代学分析.地质论评,2000,16(1):49~57
    [57] 吴利仁,齐进英,王听渡等.中国东部中生代火山岩.地质学报,1982,3:223~232
    [58] 许保良,阎国翰,徐振邦等.冀北燕山期三个系列花岗质岩石的地球化学特征及其成因学意义.岩石学报,1999,15(2):208~216
    [59] 徐备.华北板块北缘元古代年代地层格架及其形成过程.现代地质,1999,2:219~220
    [60] 徐嘉炜,朱光,吕培基等.郯庐断裂带平移年代学研究的进展.安徽地质,1995,5(1):1~12
    [61] 徐义刚.拉张环境中的大陆玄武岩浆作用:性质及动力学过程.郑永飞主编:化学地球动力学,北京:科学出版社,1999:119~167
    
    
    [62] 阎国翰,牟保磊,许保良等.燕辽-阴山三叠纪碱性侵入岩年代学和Sr,Nd,Pb同位素特征及意义.中国科学(D辑),2000,30(4):383~387
    [63] 翟明国,卞爱国.华北克拉通新太古代末超大陆拼合及古元古代末-中元古代裂解.中国科学(增刊),2000:129~137
    [64] 翟明国,郭敬辉,赵太平.新太古-古元古代华北陆块构造演化的研究进展.前寒武纪研究进展,2001,24(3):17~27
    [65] 张长厚.初论板内造山带.地学前缘,1999,6(4):295~308
    [66] 张长厚,宋鸿林.燕山板内造山带中生代逆冲推覆构造及其与前陆褶冲带的对比研究.地球科学,1997,22(1):33~36
    [67] 张国辉.河北汉诺坝玄武岩中麻粒岩和辉石岩类捕虏体地球化学研究—兼论壳幔相互作用.中国科学院地质研究所博士学位论文,1997
    [68] 张国辉,周新华,陈绍海,孙敏.汉诺坝玄武岩中麻粒岩和辉石岩捕虏体Sr-Nd-Pb同位素五维空间特征及其地质意义.科学通报,1998,43(20):2218~2222
    [69] 张宏仁.燕山事件.地质学报,1998,72(2):103~111
    [70] 张进江,郑亚东.变质核杂岩与岩浆作用成因关系综述.地质科技情报,1998,17(1):19~24
    [71] 张旗,钱青,王二七等.燕山中晚期的中国东部高原:埃达克岩的启示.地质科学,2001,36(2):248~255
    [72] 张文佑,张抗,赵永贵.华北断块区中、新生代地质构造特征及岩石圈动力学模型.地质学报,1983,57(1):33~42
    [73] 赵越.燕山地区中生代造山运动及构造演化.地质论评,1990,36(1):1~12
    [74] 郑建平,路凤香,O'Reilly S Y,Grifin W L.华北地台东部古生代与新生代岩石圈地幔特征及其演化.地质学报,1999,73(1):47~56
    [75] 郑亚东,Davis G A,王琮等.内蒙古大青山大型逆冲推覆构造.中国科学(D辑),1998,28(4):289~295
    [76] 郑亚东,G A,Davis,王琮等.燕山带中生代主要构造事件与板块构造背景问题.地质学报,2000,74,4:289~302
    [77] 周新华,张国辉,杨进辉等.华北克拉通北缘晚中生代火山岩Sr-Nd-Pb同位素填图及构造意义.地球化学,2001,30(1):11~23
    [78] 朱大岗,吴珍汉,崔盛芹等.燕山地区中生代岩浆活动特征及其陆内造山作用关系.地质论评,1999,15(2):163~172
    [79] Arculus R J., Aspects of magma genesis in arcs. Lithos, 1994, 33: 189~208
    [80] Altherr R., Hol A., Hegner E., Langer C and Kreuzer H. High-potassium, calc-alkaline plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald
    
    (Germany). Lithos, 2000, 50: 51~73
    [81] Bergantz W V. Underplating and partial melting: implications for melt generation and extraction. Science, 1989, 245: 1093~1095
    [82] Card K D. A review of the Superior province of the Canadian Shield, a product of Archean accretion. Precambrian Research, 1990, 48: 99~156
    [83] Chen B, Jahn BM, Wilde S., Xu B. Two contrasting paleozoic magmatic belts in northern Inner Mongolia, China: petrogenesis and tectonic implications. Tectophysics, 2000: 157~182
    [84] Coulon C, Megartsi M, Fourcade S, Maury R C, Bellon H, Louni-Hacini A, Cotten J, Coutelle A, Hermitte D., Post-collisional transition from calc-alkaline to alkaline volcanism during the Neogene in Oranie (Algeria): magmatic expression ora slab breakoff. Lithos, 2002, 62, 87~110
    [85] Davis G A, Qian X, Zheng Y et al. The deformation and plutonism in the Yunmeng Shan: A Chinese metamorphic core complex north of Beijing. In: Yin A, Harrison T M, ED. The tectonic evolution of Asia. Cambridge Uinv. Press, 1996a, 253~280
    [86] Davis G A, Qian X, Zheng Y et al. The Huairou ductile shear zone, Yunmeng Shan Mts. Beijing. 30th. Int. Geol. Congress Field Trip Guide. Beijing: Geological Publishing House, 1996b: 25
    [87] Davis G A, Wang C, Zheng Y, et al. The enigmatic Yanshan fold and thrust belt of northern China: new views on its intraplate teetotracton styles. Geology, 1998, 26: 43~46
    [88] Davis G A, Zheng Y, Wang C et al. Geometry and geochronology of Yanshan Belt tectonics, In: Collected Works of International Symposium on Geological Science, 100th Anniversary Celebration of Peking University, 1998: 275~292
    [89] Davis G A, Zheng Y D, Wang C and Brian J D. Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning province, northern China. Geol. Soc., Am. Memoir, 2001, 194: 171~197
    [90] Davis J H, Blackenourg von F. Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogenics. Earth Plannet Sci. Lett., 1995, 129: 327~343
    [91] Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere [J]. Nature, 1990, 347: 662~665
    [92] Defant M. J. and Drummond M. S. Mount St. Helens: potential example of partial melting of subducted lithosphere in a volcanic arc. Geology, 1993, 21: 547~550
    [93] De Wit M J and Ashwal L D. Greenstone Belts. Oxford: Clarendon Press, 1997, 450~725
    [94] DePaolo D J and Wasserburg G J. Petrogenetic mixing models and Nd-Sr isotopic patterns.
    
    Geochim.Cosmochim. Acta., 1979, 43: 615~627
    [95] DePaolo D J., Sm-Nd, Rb-Sr and U-Th-Pb systematics of granulite facies rocks from Fyfe Hills, Ederby Land, Antartica. Nature, 1985, 298: 14~61
    [96] DePaolo D. J. and Daley E. E. Neodymium isotopes in basalts of the southwest basin and range and the lithospheric thinning during continental extension. 2000, Chem. Geol. 169, 157-185
    [97] Dirks P H G M and Jelsma H A. Horizontal accretion and stabilization of the Archean Zimbabwe Craton. Geology, 1998, 26(1): 11~14
    [98] Ellis D J, Thompson A B. Subsolidus and partial melting reaction in the quartz excess CaO+MgO+Al_2O_3+SiO_2+H_2O system under water excess and water deficient conditions to 10 Kb: some implications for the origin of peraluminous melts from mafic rocks. J. Petrol., 1986, 27: 91~121
    [99] Engebretson D C, Cox A. and Gordon R G. Relative motions between oceanic and continental plates in the Pacific basins. Geol. Soc. Am. Spec., 1985, 206: 1~59
    [100] England C, Houseman G A. Extension during continental convergence with application to the Tibetan plateau. J. Geophys. Res., 1989, 94: 17561~17579
    [101] Fan W M, Guo F, Wang Y J, Lin G and Zhang M. Post-orogenic bimodal volcanism along the Sulu Orogenic Belt in eastern China. Phys. Chem. Earth (A), 2001, 26: 733~746
    [102] Fan W M, Guo F, Wang Y J, Lin G. Late Mesozoic calc-alkaline volcanism of Post-orogenic extension in the northern Da Hinggan Mountains, northeastern China. J. of Volcanology and Geothermal Research, 2003, 121(1-2): 115~135
    [103] Faulds J E, Geissman J W, Mawer C K. Structure development of a major extensional accommodation zone in the Basin and Range province, northwestern Arizona and southern Nevada, in Basin and Range Extensional Tectonics Near the Latitude of Las Vegas, Nevada, edited by Wernicke B, Mem. Geol. Soc. Am., 1990, 176: 37~76
    [104] Feng C., Zhang H.-F., and Zhou X. H. New kimberlite field found in Liaoxi, China. Seismological Geol. 1993, 22 (supl), 95-98.
    [105] Foley S. Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin potassic alkaline magmas. Lithos, 1992, 28: 435~453
    [106] Foley S F, Barth M G and Jenner G A. Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochim. Cosmochim. Acta, 2000, 64: 933~938
    [107] Foley S, Tiepolo M, Vannucci R. Growth of early continental crust controlled by melting of amphibolite in subduction zone. Nature, 2002, 417(20): 837~840
    [108] Gao S, Luo T C, Zhang B R, Zhang H F, Han Y W, Zhao Z D, Hu Y K. Chemical
    
    composition of the continetental crust as revealed by studies in East China. Geochim, Cosmochim, Acta, 1998, 62: 1959~1975
    [109] Gao S. Rudnick R., Carlson R. W., McDonough W. F., and Liu Y. S. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth Planet. Sci. Lett. 2002, 198, 307~322
    [110] Gardien V, Thompson A B, Grujic D., Experimental melting of biotite+plagioclase+quartz+muscovite assemblages and implication for crustal melting. J. Geophys. Res., 1995, 100: 15581~15591
    [111] Gill J B. Orogenic Andesites and Plate Tectonics. New York: Springer-Verlag, 1981, 390
    [112] Goldstein S L, O'Nions R K and Hamilton P J., A Sm-Nd study of atmospheric dusts and particulates from major river systems. Earth Planet. Sci. Lett., 1984, 70: 221~236
    [113] Goodwin A. Principles of Precambrian Geology. London: Academic Press, 1996, 51~121
    [114] Griffin W. L., O'Reilly S. Y., and Ryan C. G. Composition and thermal structure of the lithosphere beneath south Africa, Siberia and China: proton microprobe studies, bstract of International Symposium on Cenozoic volcanic rocks and deep-seated xenoliths of China and its environs, Beijing, 1992, pp. 65-66
    [115] Griffin W. L., Zhang A. D., O'Reilly S. Y., and Ryan C. G. Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton. In Mantle dynamics and plate interactions in east Asia (eds. M. F. J. Flower, S. L. Chung, C. H. Lo, and T. Y. Lee), 1998, pp. 107-126. American Geophysical Union, Geodynamics Series 27.
    [116] Guo F, Fan W M, Wang Y J and Lin G. Late Mesozoic mafic intrusive complexes in North China Block: constraints on the nature of subcontinental lithospheric mantle. Physics and Chemistry of the Earth, 2001, 26: 759~771
    [117] Guo F, Fan W M, Wang Y J, Lin G. Geochemistry of late Mesozoic mafic magmatism in west Shandong Province, eastern China: Characterizing the lost lithospheric mantle beneath the North China Block. Geochemical Journal, 2003, 37: 63~77
    [118] Hawkesworth C J, Turner S, Gallagher K et al., Calc-alkaline magmatism, lithospheric thinning and extension in the basin and range. J. Geophys. Res., 1995, 100 (B7): 10271~10286
    [119] Hirose K. Melting experiments on 1herzolite LKB-1 under hydrous conditions and generation of high-magnesian andesitic melt. Geol., 1997,25, 1: 42~44
    [120] Hooper P R, Bailey D G, Holder G A M. Tertiary calc-alkaline magmatism associated with lithospheric extension in the Pacific northwest. J. Geophys. Res., 1995, 100(B7): 10303~10319
    [121] Hunter A G, Blake S. Petrogenetic evolution of a transitional tholeiitic/calc-alkaline series: Towada Volcano, Japan. J. Petrol., 1995, 36: 1579~1605
    
    
    [122] Jahn B M, Wu F Y, Lu C H, Tsai C H. Crust-mantle interaction induced by deep subduction of the continent crust: Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusion of the northern Dabie complex, central China. Chem. Geol., 1999, 157: 119~146
    [123] Jochum K P, McDonough W F, Palme H, Spettel B., Compositional constraints on the continental lithospheric mantle from trace elements in spinel peridotite xenoliths. Nature, 1989, 340: 548~550
    [124] Jochum K P, Seufert H M, Spettel B, Palme H. The solar system abundances of Nb, Ta and Y and the relative abundancesof refractory lithopile elements in differentiated planetary bodies. Geochim. Cosmochim. Acta, 1986, 50: 1173~1183
    [125] Kuno H. Lateral variation of basalt magma types across continental margins and I sland arcs. Bull, Volcanol.,1966, 29: 195~222
    [126] Kusky T M. Tectonic setting and terrane accretion of the Archean Zimbabwe Craton. Geolog-y, 1998, 26 (2): 163~168
    [127] LaFlèche M R, Camire G and Tenner G A. Geochemistry of post-Acadian, Carboniferous continental intraplate basalts from the Marimes Basin, Magdalen Islands, Quebec, Canada. Chemical Geology, 1998, 148 (3-4): 115~136
    [128] Le Maitre R W, Bateman P, Dudek A, Lameyre J. A Classification of igneous rocks and glossary of terms. Oxford: Blackwell, 1989
    [129] Liang R. The characteristics of the ophiolite sequences and its rock associations in central and eastern Inner Mongolia. In: Oshii K, Xueya L, Ichikawa K, Huang B (eds.), Pre-Jurassic Geology of Inner Mongolia, China. China-Japan Cooperative Research Group, 1991: 65~84
    [130] Liu M. Cenozoic extension and magmatism in the North American Cordillera: the role of gravitational collapse. Tectonophysics, 2001,342(3-4): 407~433
    [131] Mania P D and Piccoli P M. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 1989, 101: 635~643
    [132] Martin H. Alternative geodynamic models for the Damara Orogeny: critical discussion. In: Martin, Eder, eds. Intracontinental Fold Belts, 1983: 913~945
    [133] McKenzie D P, Bickle M J. The volume and composition of melt generated by extension of the lithosphere. J.Petrol.,1988,32: 625~679
    [134] Menzies M A. Cratonic, circucratonic and oceanic mantle domains beneath the western United States. J.Geophys.Res., 1989, 94 (B6): 7899~7915
    [135] Menzies M A & Kyle P R. Continental volcanism: A crust-mantle probe. In: Menzies M A (ed.), Continental mantle, Oxford Scien ce Publication, 1990: 157~177
    
    
    [136] Menzies M A, Fan W M, Zhang M. Paleozoic and Cenozoic lithoprobes and loss of>120km of Archaean lithosphere, Sino-Koreau Craton, China. In: Pichard H M. Alabasler T. Harris N B W et al eds. Magmatic Processes and Plate Tectonics. Geol. Soc. Spel. Pub., 19o3,76: 71 78
    [137] Miao L C, Qin Y M, McNaughton N et al. SHRIMP U-Pb zircon geochionology of gtanitoids from Dongping area, Hebei Province, China: constraints on tectonic evolution and geodynamic setting for gold metalogeny. Ore Geology Reviews, 2002, 19(3-4): 187-204
    [138] Middlemost E A K. Iron oxidation ratios, norms and the classification of volcanic rocks. Chem. Geol., 1989, 77: 19~26
    [139] Millet C, Schuster R, Klotzli U et al. Post-collisional potassic and ultrapotassic magmatism in SW (?)ibet: Geochemical and Sr-Nd-Pb-O isotopic constrains for mantle source characteristics and petrogenesis. J. Petrol., 1999, 40(9): 1399~1424
    [140] Mogk D W, Mueller P A and Wooden J (?). The nature of Archean terrane bo(?)daties: an example from the northern Wyoming province. Precambrian Research, 1992, 55: 155~16
    [141] O'Brien H E, Irving A J, McCallum I S and Thirlwall M F. Strontium, neodymium, and lead isotopic evidence for the interaction of post-subduction asthenosphere potassic mafic magmas of the Highwood Mountains, Montana. USA, with ancjent Wyoming craton lithospheric mantle. Geochimica et Cosmochimica Acta, 1995, 59(21): 4539~4556
    [142] O'Reilly S Y and Zhang M. Geochemical characteristics of lava-field basalts from castern Australia and inferred sources: Connection with the subcontinental lithospheric mantle? Contrih. Mineral Petrol., 1995. 121: 148~170
    [143] O'Reilly S. Y., Griffin W. L., Poudjom Djomani Y. H., and Morgan P. Are lithospheres forever? Tracking changes in sub-continental lithospheric mantle through time. GSA Today, 2001, 11(4),4~10.
    [144] Patino Dounce A E, Humphreys E D, Johnston A D. Anatexis and metamorphism in tectoically thickened continental crust exemplified by the Sevier hinterlan, western North America. Earth and Planet Sci. Lett., 1990, 97: 290~315
    [145] Patio Douce A E, Harris N. Experimental constraints on Himalayan Anatexis. Journal of Petrology. 1998, 39, 689-710
    [146] Petford N, Atherton M. 1996. Na-rich partial melts from newly underplated hasaltic crust: the Cordillera Blanca Batholith, Peru. J. Petiol., 37: 1491~1521
    [147] Rapp P. P. Wastson E B. Dehydration melting of metabasalt at 8-32 Kbar: implication for continental growth and crust-mantle recycling. J. Petrol., 1995, 36: 891~931
    [148] Robinson P T, Zhou M F, Hu X F et al. Geochemical constrains on the origin of the
    
    Hegenshan Ophiolite, Inner Mongolia, China. J. Asian Earth Sci., 1999, 17: 423~442
    [149] Rogers N W, Hawkworth C J, Ormerod D S. Late Cenozoic basaltic magmatism in the westem Great Basin, California and Nevada. J.Geophys.Res., 1995, 100 (B7): 10287~10302
    [150] Rotturaa A, Bargossia G M., Caggianellib A, Del Moroc A, Visonàd D and Trannea C A., Origin and significance of the Permian high-K calc-alkaline magmatism in the central-eastern Southern Alps, Italy. Lithos, 1998, 45: 329~348
    [151] Rudnick R L, McDonough W F and Chappell B C. Carbonatite metasomtism in the northern Tanzaninan mantle. Earth Planet. Sci. Lett., 1993, 114: 463~475
    [152] Ruppel C., Extensional processes in continental lithosphere. J. Geophys. Res., 1995, 100 (B7): 24187~24215
    [153] Saunders A D, Norry M J and Tarney J. Origin of MORB and chemically depleted mantle reserviors: trace elements constraints. J. Petrol., Special Lithosphere Issue, 1988, 415~445
    [154] Sen C, Dunn T. Dehydration melting of a basaltic composition amphibole at 1.5 Gpa and 2.0 Gpa: implication for the origin of adakites. Contrib. Mineral. Petrol., 1994, 117: 394~409
    [155] Sengor A M C, Natal'in B A, Burtman V S. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature, 1993, 364: 299~307
    [156] Sun S-s, MacDonough W F. Chemical and isotopic systematics of oceanic basalts: Implication for mantle composition and processes [A]. Saunders A D, Norry M J. Magmatism in the ocean basins[C]. Geological Society Special Publication, 1989, 313~345
    [157] Tang K D. Tectonic development of Paleozoic fold belts at the north margin of the Sino-Korean Craton. Tectonics, 1990, 9(2): 249~260
    [158] Tarney, J, Jones, C E. Trace element geochemistry of orogenic igneous rocks and crustal growth models. J. Geol. Soc. London, 1994, 151, 855~868
    [159] Taylor S R and Mclennan S M. The continental crust: its composition and evolution. Oxford: Blackwell, 1985
    [160] Tiepolo M, Bottazzi P, Foley S F, Oberti R and Zanetti A. Fractionation of Nb and Ta from Zr and Hf at mantle depth: the role of titanian-pagasite and kaersutite. J. Petrol., 2001, 42: 221~232
    [161] Turner S, Arnaud N, Liu J et al., Post-collision, shoshonitic volcanism on the Tibet Plateau: implication for convective thinning of the lithosphere and the source of oceanic basalts. J.Petrol., 1996, 37: 45~71
    [162] Wang Y J, Fan W M, Guo F. Geochemistry of early Mesozoic potassium-rich diorites-granodiorites in southeastern Hunan Province, South China: petrogenesis and tectonic implications. Geochemical Journal, 2003, (in press)
    
    
    [163] Weaver B. The origin of oceanic island basalt end member composition: trace elements and isotopic constraints. Earth Planet Sci. Lett., 1991, 104: 364~397
    [164] Wolf M B and Wyllie P J. Dehydration melting of amphibolite at 10 Kbar: the effects of temperature and time. Contrib. Mineral. Petrol., 1994, 115: 369~383
    [165] Wu F. Y., Walker R. J., Ren X. W., Sun D. Y., and Zhou X. H. Osmium isotopic constraints on the age of lithospheric mantle beneath northeastern China. Chem. Geol. 2003, 14156, 1~23.
    [166] Xu J W. The Tangcheng-Lujiang wrench fault system. New York: John Wiley & Sons Ltd., 993
    [167] Xu J W, Zhu G, Tong W X, Cui K R and Liu Q. Formation and evolution of the Tancheng Lujiang wrench fault system; a major shear system to the northwest of the Pacific Ocean. Tectonophysics, 1987, 134: 273~310
    [168] Xu Y G, Fan W M and Lin G. Lithosphere-asthenosphere interaction: A comparative study on Cenozoic and Menozoic basalts around Bohai Area. Geotectonic et Metallogenia, 1995,19(4): 1~13
    [169] Xu Y. G., Menzies M. A., Vroon P., Mercier J. C., and Lin C. Y. Texture-temperature-geochemistry relationship in the upper mantle as revealed from spinel peridotite xenoliths from Wangqing, NE China. J. Petrol. 1998, 39, 469~493
    [170] Xu Y. G. Evidence for crustal components in the mantle and constraints on crustal recycling mechanism: pyroxenite xenoliths from Hannuoba, North China. Chem. Geol. 2002, 182, 301~322
    [171] Yin A, Nie S. A Phanerozoic palinspastic reconstruction of China and its neighboring regions. In: Yin A, Harrison T M, ed. The tectonic evolution of Asia. Cambridge Univ. Press, 1996: 442~485
    [172] Zhang C, Song H, Chen A et al. Mesozoic thrust tectonics in Yanshan intraplate orogenic belt. In: Wu Z, Chai Y, ed. Tectonics of China: Proceedings of the 1995 Annual Conference of Tectonics in China. Beijing: Geological Publishing House, 1996: 77~82
    [173] Zhang H.-F., Sun M., Zhou X. H., Fan W. M., Zhai M. G., and Yin J. F. Mesozoic lithosphere destruction beneath the North China Craton: evidence from major, trace element, and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contrib. Mineral. Petrol. 2002, 144, 241~253.
    [174] Zhang H F, Sun M, Zhou M F, Fan W M, Zheng J P. Secular evolution of the lithosphere beneath the eastern North China Craton: evidence from Mesozoic basalts and high-Mg andesites. 2003, in press
    [175] Zhang Y, Tang K D. Pre-Jurassic tectonic evolution of inter-continental region and the
    
    suture zone between the North China and Siberian Platforms. J. Southeast Asian Earth Sci., 1989, 3: 47~55
    [176] Zhao X, Coe R S, Zhou Y et al. New paleomagnetic results from northern China: collision and suturing with Siberia and Kazakhstan. Tectonophysics, 1990, 181: 43~81
    [177] Ziegler A M, Rees P M, Rowley D G, et al. Mesozoic assembly of Asia: from fossil floras, tectonics, and paleomagnetism. In: Yin A, Harrison T M, ed. The tectonic evolution of Asia. Cambridge Univ. Press, 1996: 371~400
    [178] Zindler A and Hart S R. Chemical geodynamics. Ann. Rev. Earth Planet. Sci., 1986, 14: 493~571
    [179] Zonenshain L P, Kuzmin M I, Kononov M V. Absolute reconstructions of the paleozoic oceans. Earth Planet Sci. Lett., 1985, 74: 103~116
    [180] Zonenshain L P, Muzmin M I, Natapov L M. Mongol-Okhotsk fold belt. In: Page B M ed. Geology of the USSR: a plate tectonic Synthesis. Geophysical Union Geodynamic Series, 1990, 21: 97~120

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700