Au/Ti-HMS双功能催化剂的制备、表征及其催化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金催化逐渐成为国内外的研究热点。人们已成功制备出MCM-41和SBA-15等中孔分子筛负载型纳米金催化剂,但关于HMS系列分子筛负载型金催化剂却鲜有报道。以Ti-HMS为催化剂,H2O2为氧化剂,可以实现燃油中大分子硫化物的深度氧化脱除。但反应中部分H2O2受热分解,其有效利用率大大降低。为解决上述问题,本论文以Ti-HMS为载体,采用一系列方法,进行了负载型双功能催化剂Au/Ti-HMS的合成,并将其用于催化H2/O2直接合成H2O2,以及原位H2O2氧化脱硫的研究。论文的主要内容如下:
     采用沉积沉淀(DP)法制备了Au/TS-1和Au/Ti-HMS,考察了二者在H2/O2直接法合成H2O2反应中催化性能的异同。研究发现,Au/TS-1在水中能获得更高的H2O2产率,而Au/Ti-HMS则更适合在甲醇中合成H2O2。通过H2-TPR技术确定了直接法合成H2O2的活性中心为Au0物种。Au/TS-1和Au/Ti-HMS在甲醇溶剂中催化H2O2氢解/分解速率均明显低于水做溶剂,并且金催化H2O2的氢解比分解更容易自发进行。
     采用DP法制备Au/Ti-HMS,载体的有序中孔结构受到明显影响,因此开发出原位法进行Au/Ti-HMS的合成,并比较了制备方法对载体结构及催化性能的影响。结果表明,原位法样品的载体蠕虫状中孔结构和骨架钛保持完好,并能有效地催化原位H2O2氧化脱除模拟燃料中的大分子硫化物,对4,6-二甲基二苯并噻吩的脱除率可达到93%。氨水DP法样品的载体中孔有序度降低,但其中孔结构依然保持完整,纳米金粒子尺寸较小,比原位法样品更能快速脱除苯并噻吩和二苯并噻吩。尿素DP法样品载体的中孔结构被水热条件破坏严重,但仍具有骨架钛结构,仅能实现苯并噻吩和二苯并噻吩的脱除,而对4,6-二甲基二苯并噻吩的氧化则完全失活。原位H2O2氧化脱硫过程中,H2O2的生成与硫化物被H2O2氧化过程同步发生。同Ti-HMS/市售H2O2氧化脱硫相比,原位H2O2氧化脱硫技术实现了H2O2的有效利用、产物的“零排放”以及工艺的简化。
     原位法催化剂的活性金组分在反应中出现流失,表现了较差的重复使用性能。进而开发出原位还原法合成Au/Ti-HMS。研究表明,合成中NaBH4/Au摩尔比控制在1.25:1并引入盐酸,能显著提高载体的中孔有序度,并获得尺寸较小且分布均匀的纳米金颗粒。金颗粒被牢固地镶嵌于载体的多重孔道之间,使其在直接法合成H2O2,以及催化原位H2O2氧化脱除苯并噻吩和二苯并噻吩等反应中能够重复使用多次而未失活。
Gold catalysis gradually becomes a focal research all over the world. Gold nanoparticles supported on mesoporous molecular sieves MCM-41 and SBA-15 have been prepared successfully. But there are few reports on HMS supported gold catalysts. Oxidative desulfurization of bulky sulfur compounds in diesel over Ti-HMS/H2O2 has been made a considerable progress. However, the continuous decomposition of commercial H2O2 during heated reaction seriously cuts down its effective availability. To resolve the above problems, a bifunctional catalyst Au/Ti-HMS is synthesized by a series of methods, and is used in the oxidative desulfurization by in-situ-H2O2 directly synthesized from H2/O2. The main contents of this paper are as follows.
     Au/TS-1 and Au/Ti-HMS prepared by deposition-precipitation (DP) method were used in the direct synthesis of H2O2 from H2/O2 to investigate the similarities and differences of their catalytic performance. It is shown that Au/TS-1 obtains a higher productivity of H2O2 in water solvent, whereas Au/Ti-HMS is more suitable to synthesize H2O2 in methanol solvent. The Au0 species act as the active sites during synthesis of H2O2, which is confirmed by H2-TPR technique. Both Au/TS-1 and Au/Ti-HMS obtain lower decomposition rate and hydrogenation rate of H2O2 in methanol solvent than in water. The hydrogenation of H2O2 occurs much more spontaneously than the decomposition.
     The ordered mesoporous structure of the support was seriously influenced during the DP preparation of Au/Ti-HMS. Therefore, Au/Ti-HMS was synthesized by an in situ method, and the effects of different preparation method on the structure of support and the catalytic performance of catalyst were investigated. It is shown that Au/Ti-HMS (In situ) maintains the wormlike mesoporous structure and the framework Ti successfully. It achieves effective in-situ-H2O2-oxidation of bulky sulfur compounds in model oil and especially obtains 93% removal rate for 4,6-dimethyldibenzothiophene. Au/Ti-HMS (NH3 DP) still possesses intact mesopores of HMS in spite of the decrease of mesopores ordering. In addition, it possesses smaller gold nanoparticles and achieves more effective removal of benzothiophene and dibenzothiophen than Au/Ti-HMS (In situ). For Au/Ti-HMS (Urea DP), the mesoporous structure of the support is seriously damaged in hydrothermal condition. It can only achieve the removal of benzothiophene and dibenzothiophen due to the existence of framework Ti, whereas, it has no catalytic activity for the removal of 4,6-dimethyldibenzothiophene. The formation of H2O2 and in-situ-H2O2 oxidation occur as a simultaneous process. Compared with Ti-HMS/commercial H2O2 method, the in-situ-H2O2-ODS technique achieves effective utilization of H2O2, zero emission and process simplification.
     Au/Ti-HMS(In situ) showed a poor reusability due to the loss of gold active sites during reactions. Therefore, an in-situ-reduction method was adopted to synthesize Au/Ti-HMS. It is shown that the sample with 1.25:1 of NaBH4/Au molar ratio and addition of HC1 possesses mesoppres with high order, as well as small and uniformly dispersed gold nanoparticles which were strongly embedded between the channels of the support. The catalyst exhibits attractive stability and recycled performance in the direct synthesis of H2O2 and in the in-situ-H2O2 oxidation of benzothiophene and dibenzothiophen.
引文
[1]Iizuka Y, Tode T, Takao T et al. A kinetic and adsorption study of CO oxidation over unsupported fine gold powder and over gold supported on titanium dioxide. J. Catal.,1999, 187 (1):50-58.
    [2]Date M, Haruta M. Moisture effect on CO oxidation over Au/TiO2 catalyst. J. Catal. 2001,201 (2):221-224.
    [3]Boccuzzi F, Chiorino A, Manzoli M et al. Au/TiO2 nanosized samples:A catalytic, TEM, and FTIR study of the effect of calcination temperature on the CO oxidation. J. Catal., 2001,202 (2):256-267.
    [4]Okumura M, Coronado J M, Soria J et al. EPR study of CO and O2 interaction with supported Au catalysts. J. Catal.,2001,203.(1):168-174.
    [5]Landon P, Collier P J, Papworth A J et al. Direct formation of hydrogen peroxide from H2/O2 using a gold catalyst. Chem. Commun.,2002,2 (18):2058-2059.
    [6]Li G, Edwards J, Carley A F et al. Direct synthesis of hydrogen peroxide from H2 and O2 and in situ oxidation using zeolite-supported catalysts. Catal. Commun.,2007,8 (3): 247-250.
    [7]Li G, Edwards J, Carley A F et al. Direct synthesis of hydrogen peroxide from H2 and O2 using zeolite-supported Au catalysts. Catal. Today,2006,114 (4):369-371.
    [8]Li G, Edwards J, Carley A F et al. Direct synthesis of hydrogen peroxide from H2 and O2 using zeolite-supported Au-Pd catalysts. Catal. Today,2007,122 (3-4):361-364.
    [9]Abad A, Concepcion P, Corma A et al. A collaborative effect between gold and a support induces the selective oxidation of alcohols. Angew. Chem. Int. Ed.,2005,44 (26): 4066-4069.
    [10]徐新,罗国华,赵如松.高活性负载型纳米金催化剂的制备及应用进展.石油化工,2005,34(9): 898-902.
    [11]Moreau F, Bond G C. Influence of the surface area of the support on the activity of gold catalysts for CO oxidation. Catal. Today,2007,122 (3-4):215-221.
    [12]Olea M, Iwasawa Y. Transient studies on carbon monoxide oxidation over supported gold catalysts:support effect. Appl. Catal. A:General,2004,275 (1-2):35-42.
    [13]Bravo-Suarez J J, Bando K K, Akita T et al. Propane reacts with O2 and H2 on gold supported TS-1 to form oxygenates with high selectivity. Chem. Commun.,2008,28:3272-3274.
    [14]Lu J, Zhang X, Bravo-Suarez J J et al. Effect of composition and promoters in Au/TS-1 catalysts for direct propylene epoxidation using H2 and 02. Catal. Today,2008,147 (3-4): 186-195.
    [15]Bravo-Suarez J J, Bando K K, Fujitani T et al. Mechanistic study of propane selective oxidation with H2 and O2 on Au/TS-1. J. Catal.,2008,257 (1):32-42.
    [16]Sierraalta A, Alejos P, Ehrmann E et al. DFT-ONIOM study of Au/ZSM-5 catalyst:Active sites, thermodynamic and vibrational frequencies. J. Mol. Catal. A:Chem.,2009,301 (1-2): 61-66.
    [17]Salama T M, Ohnishi R, Shido T et al. Highly selective catalytic reduction of NO by H2 over Au0 and Au(Ⅰ) impregnated in NaY zeolite catalysts. J. Catal.,1996,162 (2): 169-178.
    [18]Mohamed M M, Mekkawy I. Electrical and chemical characteristics of nano-meter gold encapsulated in mesoporous and microporous channels and cages of FSM-16 and Y zeolites. J. Phys. Chem. Solids,2003,64 (2):299-306.
    [19]Hosseini M, Siffert S, Tidahy H L et al. Promotional effect of gold added to palladium supported on a new mesoporous Ti02 for total oxidation of volatile organic compounds. Catal. Today,2007,122 (3-4):391-396.
    [20]Sreethawong T, Yoshikawa S. Comparative investigation on photocatalytic hydrogen evolution over Cu, Pd, and Au-loaded mesoporous TiO2 photocatalysts. Catal. Commun.,2005, 6 (10):661-668.
    [21]Fu G, Cai W, Gan Y et al. An ambience-induced optical absorption peak for Au/Si02 mesoporous assembly. Chem. Phys. Lett.,2004,385 (1-2):15-19.
    [22]Chen W, Zhang J, Cai W. Sonochemical preparation of Au, Ag, Pd/SiO2 mesoporous nanocomposites. Scripta Mater.,2003,48 (8):1061-1066.
    [23]Seker E, Gulari E. Single step sol-gel made gold on alumina catalyst for selective reduction of NOx under oxidizing conditions:effect of gold precursor and reaction conditions. Appl. Catal. A:General,2002,232 (1-2):203-217.
    [24]Yin D, Qin L, Liu J et al. Gold nanoparticles deposited on mesoporous alumina for epoxidation of styrene:Effects of the surface basicity of the supports. J. Mol. Catal. A:Chem.,2005,240 (1-2):40-48.
    [25]Li J, Zhan Y, Lin X et al. Influence of calcination temperature on properties of Au/Fe2O3 catalysts for low temperature water cas shift reaction. Acta Phys. Chim. Sin.,2008,24 (6):932-938.
    [26]Li J, Zhan Y, Zhang F et al. Au/Fe2O3 water-gas shift catalyst prepared by modified deposition-precipitation method. Chin. J. Catal.,2008,29 (4):346-350.
    [27]Campo B, Volpe M, Ivanova S et al. Selective hydrogenation of crotonaldehyde on Au/HSA-CeO2 catalysts. J. Catal.,2006,242 (1):162-171.
    [28]Campo B, Petit C, Volpe M A. Hydrogenation of crotonaldehyde on different Au/CeO2 catalysts. J. Catal.,2008,254 (1):71-78.
    [29]Yuan Z-Y, Idakiev V, Vantomme A et al. Mesoporous and nanostructured CeO2 as supports of nano-sized gold catalysts for low-temperature water-gas shift reaction. Catal. Today, 2008,131 (1-4):203-210.
    [30]Zheng S, Gao L. Synthesis and characterization of Pt, Au or Pd clusters deposited titania-modified mesoporous silicate MCM-41. Mater. Chem. Phys.,2002,78 (2):512-517.
    [31]Sobczak I, Kusior A, Grams J et al. The role of chlorine in the generation of catalytic active species located in Au-containing MCM-41 materials. J. Catal.,2007,245 (2): 259-266.
    [32]Sobczak I, Kusior A, Ziolek M. FTIR study of NO, C3H6 and O2 adsorption and interaction on gold modified MCM-41 materials. Catal. Today,2008,137 (2-4):203-208.
    [33]Sobczak I, Kieronczyk N, Trejda M et al. Gold, vanadium and niobium containing MCM-41 materials-Catalytic properties in methanol oxidation. Catal. Today,2008,139 (3): 188-195.
    [34]Uphade B S, Okumura M, Tsubota S et al. Effect of physical mixing of CsCl with Au/Ti-MCM-41 on the gas-phase epoxidation of propene using H2 and O2:Drastic depression of H2 consumption. Appl. Catal. A:General,2000,190 (1-2):43-50.
    [35]Uphade B S, Yamada Y, Akita T et al. Synthesis and characterization of Ti-MCM-41 and vapor-phase epoxidation of propylene using H2 and O2 over Au/Ti-MCM-41. Appl. Catal. A: General,2001,215 (1-2):137-148.
    [36]Sinha A K, Seelan S, Akita T et al. Vapor phase propylene epoxidation over Au/Ti-MCM-41 catalysts prepared by different Ti incorporation modes. Appl. Catal. A:General,2003,240 (1-2):243-252.
    [37]Chatterjee M, Ikushima Y, Hakuta Y et al. In situ synthesis of gold nanoparticles inside the pores of MCM-48 in supercritical carbon dioxide and its catalytic application. Adv. Synth. Catal.,2006,348 (12):1580-1590.
    [38]Lee B, Zhu H, Zhang Z et al. Preparation of bicontinuous mesoporous silica and organosilica materials containing gold nanoparticles by co-synthesis method. Micropor. Mesopor. Mater.,2004,70 (1-3):71-80.
    [39]Overbury S H, Ortiz-Soto L, Zhu H et al. Comparison of Au catalysts supported on mesoporous titania and silica:investigation of Au particle size effects and metal-support interactions. Catal. Lett.,2004,95 (3-4):99-106.
    [40]Song H, Li G, Wang X et al. Direct synthesis of hydrogen peroxide from H2 and O2 using Ti-HMS supported gold catalysts. Prepr. Pap.-Am. Chem. Soc., Div. Petr. Chem.,2007,52 (2):297-298.
    [41]Song H, Li G, Wang X. In situ synthesis of Au/Ti-HMS and its catalytic performance in oxidation of bulky sulfur compounds using in situ generated H2O2 in the presence of H2/O2. Micropor. Mesopor. Mater.,2009,120 (3):346-350.
    [42]Liu P-H, Chang Y-P, Phan T-H et al. The morphology and size of nanostructured Au in Au/SBA-15 affected by preparation conditions. Mat. Sci. Eng. C,2006,26 (5-7):1017-1022.
    [43]Jin Y, Wang P, Yin D et al. Gold nanoparticles stabilized in a novel periodic mesoporous organosilica of SBA-15 for styrene epoxidation. Micropor. Mesopor. Mater.,2008,111 (1-3): 569-576.
    [44]Sacaliuc E, Beale A M, Weckhuysen B M et al. Propene epoxidation over Au/Ti-SBA-15 catalysts. J. Catal.,2007,248 (2):235-248.
    [45]Ruszel M, Grzybowska B, Laniecki M et al. Au/Ti-SBA-15 catalysts in CO and preferential (PROX) CO oxidation. Catal. Commun.,2007,8 (8):1284-1286.
    [46]Hutchings G J, Carrettin S, Landon P et al. New approaches to designing selective oxidation catalysts:Au/C a versatile catalyst. Top. Catal.,2006,38 (4):223-230.
    [47]Tello A, Cardenas G, Haberle P et al. The synthesis of hybrid nanostructures of gold nanoparticles and carbon nanotubes and their transformation to solid carbon nanorods.2008, 46 (6):884-889.
    [48]Fasi A, Hernadi K, Palinko I et al. The activity of Au supported on various types of carbon in the ring transformation reactions of methyloxirane Catal. Lett.,2006,87 (2): 343-348.
    [49]Song H-Y, Li G, Wang X-S et al. Characterization and catalytic performance of Au/Ti-HMS catalysts on the oxidative desulphurization using in situ H2O2:Effect of method catalysts preparation. Catal. Today,2010,149-(1-2):127-131.
    [50]Uphade B S, Akita T, Nakamura T et al. Vapor-phase epoxidation of propene using H2 and O2 over Au/Ti-MCM-48. J. Catal.,2002,209 (2):331-340.
    [51]Sinha A K, Seelan S, Tsubota S et al. A three-dimensional mesoporous titanosilicate support for gold nanoparticles:vapor-phase epoxidation of propene with high conversion. Angew. Chem. Int. Ed.,2004,43 (12):1546-1548.
    [52].Okumura M, Tsubota S, Haruta M. Preparation of supported gold catalysts by gas-phase grafting of gold acethylacetonate for low-temperature oxidation of CO and of H2. J. Mol. Catal. A:Chem.,2003,199 (1-2):73-84.
    [53]Haruta M, Kobayashi T, Sano H et al. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0℃. Chem. Lett.,1987,16 (2):405-408.
    [54]鲁继青,罗孟飞,辛勤.纳米金催化剂在CO低温氧化和选择性氧化中的研究进展.化工进展,2007,26 (3): 306-309.
    [55]Bandyopadhyay M, Korsak 0, Berg M W E v d et al. Gold nano-particles stabilized in mesoporous MCM-48 as active CO-oxidation catalyst. Micropor. Mesopor. Mater.,2006,89 (1-3):158-163.
    [56]Beck A, Horvath A, Stefler G et al. Formation and structure of Au/TiO2 and Au/CeO2 nanostructures in mesoporous SBA-15. Catal. Today,2008,139 (3):180-187.
    [57]Liu X, Wang A, Wang X et al. Au-Cu Alloy nanoparticles confined in SBA-15 as a highly efficient catalyst for CO oxidation. Chem. Commun.,2008,27:3187-3189.
    [58]Hernandez J A, Gomez S, Pawelec B et al. CO oxidation on Au nanoparticles supported on wormhole HMS material:Effect of support modification with CeO2. Appl. Catal. B:Environ. 2009,89 (1-2):128-136.
    [59]Hayashi T, Tanaka K, Haruta M. Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen. J. Catal.,1998,178 (2):566-575.
    [60]Nijhuis T A, Huizinga B J, Makkee M et al. Direct epoxidation of propene using gold dispersed on TS-1 and other titanium-containing supports. Ind. Eng. Chem. Res.,1999,38 (3):884-891.
    [61]Chowdhury B, Bravo-Suarez J J, Mimura N et al. In situ UV-vis and EPR study on the formation of hydroperoxide species during direct gas phase propylene epoxidation over Au/Ti-SiO2 catalyst. J. Phys. Chem. B,2009,110 (46):22995-22999.
    [62]Lu J, Zhang X, Bravo-Suarez J J et al. Kinetics of propylene epoxidation using H2 and O2 over a gold/mesoporous titanosilicate catalyst. Catal. Today,2007,123 (1-4):189-197.
    [63]王东辉,程代云,郝郑平等.纳米金催化剂及其应用.北京:国防工业出版社,2006:205-206.
    [64]Ilieva L, Pantaleo G, Sobczak J W et al. NO reduction by CO in the presence of water over gold supported catalysts on Ce02-Al2O3 mixed support, prepared by mechanochemical activation. Appl. Catal. B:Environ.,2007,76 (1-2):107-114.
    [65]Ilieya L, Pantaleo G, Ivanov I et al. NO reduction by CO over gold based on ceria, doped by rare earth metals. Catal. Today,2008,139 (3):168-173.
    [66]Ilieva L, Pantaleo G, Nedyalkova R et al. NO reduction by CO over gold catalysts based on ceria supports, prepared by mechanochemical activation, modified by Me3+(Me= Al or lanthanides):Effect of water in the feed gas. Appl. Catal. B:Environ.,2009,90 (1-2): 286-294.
    [67]Porta F, Prati L. Selective oxidation of glycerol to sodium glycerate with gold-on-carbon catalyst:an insight into reaction selectivity. J. Catal.,2004,224 (2): 397-403.
    [68]Carrettin S, McMorn P, Johnston P et al. Selective oxidation of glycerol to glyceric acid using a gold catalyst in aqueous sodium hydroxide. Chem. Commun.,2002,2 (7):696-697.
    [69]Jia M, Shen Y, Li C et al. Effect of supports on the gold catalyst activity for catalytic combustion of CO and HCHO. Catal. Lett.,2005,99 (3-4):235-239.
    [70]Andreeva D, Tabakova T, Idakiev V et al. Complete oxidation of benzene over Au-V205/TiO2 and Au-V205/ZrO2 catalysts. Gold Bull.,1998,31 (3):105-106.
    [71]Idakiev V, Ilieva L, Andreeva D et al. Complete benzene oxidation over gold-vanadia catalysts supported on nanostructured mesoporous titania and zirconia. Appl. Catal. A: General,2003,243 (1):25-39.
    [72]Andreeva D, Nedyalkova R, Ilieva L et al. Nanosize gold-ceria catalysts promoted by vanadia for complete benzene oxidation. Appl. Catal. A:General,2003,246 (1):29-38.
    [73]Munteanu G, Ilieva L, Nedyalkova R et al. Influence of gold on the reduction behaviour of Au-V205/Ce02 catalytic systems:TPR and kinetic parameters of reduction. Appl. Catal. A:General,2004,277 (1-2):31-40.
    [74]Si X, Cheng S, Lu Y et al. Oxidative desulfurization of model oil over Au/Ti-MWW. Catal. Lett.,2008,122 (3-4):321-324.
    [75]Riedl H-J, Pfleiderer G. Production of hydrogen peroxide. U. S. Pat.,2158525.1939.
    [76]Campos-Martin J M, Blanco-Brieva G, Fierro J L G. Hydrogen peroxide synthesis:An outlook beyond the anthraquinone process. Angew. Chem. Int. Ed.,2006,45 (42):6962-6984.
    [77]Rust F F, Poster L M, Vaughan W E. Process for the production of hydrogen peroxide. U.S.Pat.,2871102.1959.
    [78]Rust F F. Manufacture of hydrogen peroxide. U.S.Pat.,2871104.1959.
    [79]Cochran R N, Candela L M. Recovery of hydrogen peroxide. U. S. Pat.,4897085.1990.
    [80]Cochran R N, Candela L M. Production of hydrogen peroxide. U. S. Pat.,4897252.1990.
    [81]Albal R S, Cochran R N, Candela L M. Production of hydrogen peroxide. U.S.Pat.,4897266. 1990.
    [82]Albal R S, Cochran R N. Production of hydrogen peroxide. U.S.Pat.,4994625.1991.
    [83]Cochran R N, Candela L M. Production of hydrogen peroxide. U.S.Pat.,5039508.1991.
    [84]Albal R S, Cochran R N, Woinsky A P. Production of hydrogen peroxide. U. S. Pat.,5041680. 1991.
    [85]Leyshon D W, Jones R J, Cochran R N. Manufacture of hydrogen peroxide by liquid-phase oxidation of methylbenzyl alcohol with molecular oxygen. U. S. Pat.,5254326.1993.
    [86]Delgado-Oyague J A, De-Frutos M P, Padilla-Polo A. Production process of hydrogen peroxide by oxidation of secondary alcohols with molecular oxygen in liquid phase. E. Pat. 0839760.1998.
    [87]De-Frutos M P, Padilla-Polo A, Campos-Martin J M. Continuous production of propylene oxide and other alkene oxides. E.Pat.,1074548.2002.
    [88]Leyshon D W, Jones R J, Cochran R N. Production of hydrogen peroxide. U. S. Pat.,5254326, 1993.
    [89]Sheldon R A, Arends I W C E. Organocatalytic oxidations mediated by nitroxyl radicals. Adv. Synth. Catal.,2004,346 (9):1051-1071.
    [90]Foller P C, Bombard R T. Processes for the production of mixtures of caustic soda and hydrogen peroxide via the reduction of oxygen. J. Appl. Electrochem.,1995,25 (7): 613-627.
    [91]Clerici M G, Ingallina P. Oxidation reactions with in situ generated oxidants. Catal. Today,1998,41 (4):351-364.
    [92]Niwa S-i, Eswaramoorthy M, Nair J et al. A one-step conversion of benzene to phenol with a palladium membrane. Science,2002 295:105-107.
    [93]Hoelderich W F.'One-pot'reactions:a contribution to environmental protection. Appl. Catal. A:General,2000,194-195 (13):487-496.
    [94]Henkel H, Weber W. Manufacture of hydrogen peroxide. U.S.Pat.,1108752,1914.
    [95]Gosser L W. Direct synthesis of hydrogen peroxide with palladium catalysts on acidic supports. E. Pat.,132294,1985.
    [96]Burch R, Ellis P R. An investigation of alternative catalytic approaches for the direct synthesis of hydrogen peroxide from hydrogen and oxygen. Appl. Catal. B:Environ.,2003, 42 (2):203-211.
    [97]Choudhary V R, Sansare S D, Gaikwad A G. Direct oxidation of H2 to H2O2 and decomposition of H2O2 over oxidized and reduced Pd-containing zeolite catalysts in acidic medium Catal. Lett.,2002,84 (1-2):81-87.
    [98]Chinta S, Lunsford J H. A mechanistic study of H2O2 and H20 formation from H2 and O2 catalyzed by palladium in an aqueous medium. J. Catal.,2004,225 (1):249-255.
    [99]Lunsford J H. The direct formation of H2O2 from H2 and O2 over palladium catalysts. J. Catal.,2003,216-(1-2):455-460.
    [100]Maraschino M J. Process for producing hydrogen peroxide. U.S.Pat.,5169618,1992.
    [101]Gosser L W. Hydrogen peroxide method using optimized H+ and BR- concentrations. U.S.Pat.,4889705,1989.
    [102]Gosser L W, Schwartz J A T. Catalytic process for making hydrogen peroxide from hydrogen and oxygen employing a bromide promoter. U. S. Pat.,4772458,1988.
    [103]Gosser L W, Schwartz J A T. Hydrogen peroxide production method using platinum/palladium catalysts. U.S.Pat.,4832938,1989.
    [104]Gosser L W, Paoli M A. Method for catalytic production of hydrogen peroxide. U.S.Pat. 5135731,1992.
    [105]Schwartz J A T. Silica microspheres, method of improving attrition resistance and use. U.S.Pat.,5352645,1994.
    [106]Landon P, Collier P J, Carley A F et al. Direct synthesis of hydrogen peroxide from H2 and O2 using Pd and Au catalysts. Phys. Chem. Chem. Phys.,2003,5 (9):1917-1923.
    [107]Edwards J K, Solsona B, Landon P et al. Direct synthesis of hydrogen peroxide from H2 and 02 using Au-Pd/Fe203 catalysts. J. Mater. Chem.,2005,15 (43):4595-4600.
    [108]Solsona B E, Edwards J K, Landon P et al. Direct synthesis of hydrogen peroxide from H2 and O2 using Al2O3 supported Au-Pd catalysts. Chem. Mater.,2006,18 (11):2689-2695.
    [109]Edwards J K, Thomas A, Solsona B E et al. Comparison of.supports for the direct synthesis of hydrogen peroxide from H2 and O2 using Au-Pd catalysts. Catal. Today,2007, 122 (3-4):397-402.
    [110]Edwards J K, Solsona B E, Landon P et al. Direct synthesis of hydrogen peroxide from H2 and O2 using TiO2-supported Au-Pd catalysts. J. Catal.,2005,236 (1):69-79.
    [111]Jones C A, Grey R A. Process for producing hydrogen peroxide. U. S. Pat.,6468496,2002.
    [112]Sato S, Takahashi R, Sodesawa T et al. Bimodal porous Pd-silica for liquid-phase hydrogenation. Appl. Catal. A:General,2005,284 (1-2):247-251.
    [113]Niquille-Rothlisberger A, Prins R. Hydrodesulfurization of 4,6-dimethyldibenzo-thiophene and dibenzothiophene over alumina-supported Pt, Pd, and Pt-Pd catalysts. J. Catal.,2006,242 (1):207-216.
    [114]Okumura M, Kitagawa Y, Yamagcuhi K et al. Direct production of hydrogen peroxide from H2 and O2 over highly dispersed Au catalysts. Chem. Lett.,2003,32 (9):822-823.
    [115]Clerici M G, Bellussi G, Romano V. Synthesis of propylene oxide from propylene and hydrogen peroxide catalyzed by titanium silicalite. J. Catal.,1991,129 (1):159-167.
    [116]Krishnan V V, Dokoutchaev A G, Thompson M E. Direct production of hydrogen peroxide with palladium supported on.phosphate viologen phosphonate catalysts. J. Catal.,2000,196 (2):366-374.
    [117]Rueter M, Zhou B, Parasher S. Process for direct catalytic hydrogen peroxide production. U.S.Pat.,7144565,2006.
    [118]Paparatto G, Rivetti F, Andrigo P et al. Process for the continuous production of hydrogen peroxide. U. S. Pat.,6649140,2003.
    [119]Parasher S, Rueter M, Zhou B. Nanocatalyst anchored onto acid functionalized solid support and methods of making and using same. U. S. Pat.,7045481,2006.
    [120]Han Y-F, Lunsford J H. A comparison of ethanol and water as the liquid phase in the direct formation of H202 from H2 and O2 over a palladium catalyst. Catal. Lett.,2005,99 (1-2):13-19.
    [121]Gosser L W, Schwartz J A T. Hydrogen peroxide production method using platinum/palladium catalysts. U.S.Pat.,4832938,1989.
    [122]Gosser L W, Paoli M A. Method for catalytic production of hydrogen peroxide. U. S. Pat. US5135731,1992.
    [123]Fu L, Chuang K T, Fiedorow R. Selective oxidation of hydrogen to hydrogen peroxide. Stud. Surf. Sci. Catal.,1992,72:33-41.
    [124]Reis K P, Joshi V K, Thompson M E. Molecular engineering of heterogeneous catalysts: An efficient catalyst for the production of hydrogen peroxide. J. Catal.,1996,161 (1): 62-67.
    [125]Dissanayake D P, Lunsford J H. Evidence for the role of colloidal palladium in the catalytic formation of H202 from H2 and 02. J. Catal.,2002,206 (2):173-176.
    [126]Chinta S, Lunsford J H. A. mechanistic study of H2O2 and H20 formation from H2 and O2 catalyzed by palladium in an aqueous medium. J. Catal.,2004,225 (1):249-255.
    [127]Han Y-F, Lunsford J H. Direct formation of H2O2 from H2 and O2 over a Pd/SiO2 catalyst: the roles of the acid and the liquid phase. J. Catal.,2005,230 (2):313-316.
    [128]Choudhary V R, Samanta C. Role of chloride or bromide anions and protons for promoting the selective oxidation of H2 by O2 to H2O2 over supported Pd catalysts in an aqueous medium. J. Catal.,2006,238 (1):28-38.
    [129]Choudhary V R, Samanta C, Gaikwad A G. Drastic increase of selectivity for H2O2 formation in direct oxidation of H2 to H2O2 over supported Pd catalysts due to their bromination. Chem. Commun.,2004,4 (18):2054-2055.
    [130]Samanta C, Choudhary V R. Direct synthesis of H2O2 from H2 and O2 and decomposition/hydrogenation of H2O2 in an aqueous acidic medium over halide-modif ied Pd/Al2O3 catalysts. Appl. Catal. A:General,2007,330 (1):23-32.
    [131]Choudhary V R, Jana P. Synergetic effect of two halogen promoters present in acidic reaction medium or catalyst on the H2O2 formation (in H2-to-H2O2 oxidation) and destruction over Pd/C (or Al2O3) catalyst. J. Catal.,2007,246 (2):434-439.
    [132]Choudhary V R, Samanta C, Jana P. Formation from direct oxidation of H2 and destruction by decomposition/hydrogenation of H2O2 over Pd/C catalyst in aqueous medium containing different acids and halide anions. Appl. Catal. A:General,2007,317 (2):234-243.
    [133]Samanta C, Choudhary V R. Direct oxidation of H2 to H2O2 over Pd/Ga203 catalyst under ambient conditions:Influence of halide ions added to the catalyst or reaction medium. Appl. Catal. A:General,2007,326 (1):28-36.
    [134]Gosser L W. Catalytic process for making H2O2 from hydrogen and oxygen. U.S.Pat. 4681751,1987.
    [135]Gosser L W. Hydrogen peroxide method using optimized H+ and BR- concentrations. U.S.Pat.,4889705,1989.
    [136]Samanta C. Direct synthesis of hydrogen peroxide from hydrogen and oxygen:An overview of recent developments in the process Appl. Catal. A:General,2008,350 (2):133-149.
    [137]Ma S, Li G, Wang X. The direct synthesis of hydrogen peroxide from H2 and O2 over Au/TS-1 and application in oxidation of thiophene in situ. Chem. Lett.,2006,35 (4):428-429.
    [138]Minero C, Mariella G, Maurino V et al. Photocatalytic transformation of organic compounds in the presence of inorganic anions.1. Hydroxyl-mediated and direct electron-transfer reactions of phenol on a titanium dioxide-fluoride system. Langmuir,2000, 16 (6):2632-2641.
    [139]Park H, Choi W. Effects of TiO2 surface fluorination on photocatalytic reactions and photoelectrochemical behaviors. J. Phys. Chem. B,2004,108 (13):4086-4093.
    [140]Maurino V, Minero C, Mariella G et al. Sustained production of H2O2 on irradiated Ti02-fluoride systems. Chem. Commun.,2005,5 (20):2627-2629.
    [141]Bianchi D, Bortolo R, D'Aloisio R et al. Biphasic synthesis of hydrogen peroxide from carbon monoxide, water, and oxygen catalyzed by palladium complexes with bidentate nitrogen ligands. Angew. Chem. Int. Ed.,1999,38 (5):706-708.
    [142]Bianchi D, Bortolo R, D'Aloisio R et al. A novel palladium catalyst for the synthesis of hydrogen peroxide from carbon monoxide, water and oxygen. J. Mol. Catal. A:Chem.,1999, 150 (1-2):87-94.
    [143]Querci C, D'Aloisio R, Bortolo R et al. Quinone-mediated synthesis of hydrogen peroxide from carbon monoxide, water and oxygen. J. Mol. Catal. A:Chem.,2001,176 (1-2): 95-100.
    [144]Thiel W R. New routes to hydrogen peroxide:Alternatives for established processes? Angew. Chem. Int. Ed.,1999,38 (21):3157-3158.
    [145]Venugopalan M, Jones R A. Chemistry of dissociated water vapor and related systems. Chem. Rev.,1966,66 (2):133-160.
    [146]Zhou J, Guo H, Wang X et al. Direct and continuous synthesis of concentrated hydrogen peroxide by the gaseous reaction of H2/O2 non-equilibrium plasma. Chem. Commun.,2005,5 (12):1631-1633.
    [147]李林,唐晓东,王余平等.汽油氧化脱硫技术的研究进展.天然气与石油,2008,26(4):30-33.
    [148]孔令艳,李钢,王祥生.液体燃料催化氧化脱硫.化学通报,2004(3):178-184.
    [149]Te M, Fairbridge C, Ring Z. Oxidation reactivities of dibenzothiophenes in polyoxometalate/H202 and formic acid/H2O2 systems. Appl. Catal. A:General,2001,219 (1-2): 267-280.
    [150]Al-Shahrani F, Xiao T, A.Llewellyn S et al. Desulfurization of diesel via the H2O2 oxidation of aromatic sulfides to sulfones using a tungstate catalyst. Appl. Catal. B: Environ.,2007,73 (3-4):311-316.
    [151]Garcia-Gutierrez J L, Fuentes G A, Hernandez-Teran M E et al. Ultra-deep oxidative desulfurization of diesel fuel by the Mo/Al2O3-H2O2 system:The effect of system parameters on catalytic activity. Appl. Catal. A:General,2008,334 (1-2):366-373.
    [152]Giuseppe A D, Crucianelli M, Angelis F D et al. Efficient oxidation of thiophene derivatives with homogeneous and heterogeneous MTO/H2O2 systems:A novel approach for, oxidative desulfurization (ODS) of diesel fuel. Appl. Catal. B:Environ.,2009,89 (1-2): 239-245.
    [153]孔令艳,李钢,王祥生等.TS-1/过氧化氢催化体系中有机硫化物的选择氧化.催化学报,2004,25(10):775-778.
    [154]刘淑芝,孙兰兰,范印帅等.模拟轻质油氧化脱硫研究.精细化工,2007,24(8):820-823.
    [155]刘淑芝,孙兰兰,王宝辉.加氢柴油超深度氧化脱硫研究.化工科技,2007,2(7):17-19.
    [156]Hulea V, Moreau P, Renzo F D. Thioether oxidation by hydrogen peroxide using titanium-containing zeolites as catalysts. J. Mol. Catal. A:Chem.,1996,111 (3):325-332.
    [157]Hulea V, Moreau P. The solvent effect in the sulfoxidation of thioethers by hydrogen peroxide using Ti-containing zeolites as catalysts. J. Mol. Catal. A:Chem.,1996, 113 (3): 499-505.
    [158]Moreau P, Hulea V, Gomez S et al. Oxidation of sulfoxides to sulfones by hydrogen peroxide over Ti-containing zeolites. Appl. Catal. A:General,1997,155 (2):253-263.
    [159]Hulea V, Fajula F, Bousquet J. Mild oxidation with H2O2 over Ti-containing molecular sieves—A very efficient method for removing aromatic sulfur compounds from fuels. J. Catal. 2001,198 (2):179-186.
    [160]Otsuki S, Nonaka T, Takashima N et al. Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction. Energy Fuels,2000,14 (6): 1232-1239.
    [161]Shiraishi Y, Naito T, Hirai T. Vanadosilicate molecular sieve as a catalyst for. oxidative desulfurization of light oil. Ind. Eng. Chem. Res.,2003,42 (24):6034-6039.
    [162]Kong L, Li G, Wang X. Mild oxidation of thiophene over TS-1/H2O2. Catal. Today,2004, 93-95:341-345.
    [163]Kong L, Li G, Wang X. Kinetics and mechanism of liquid-phase oxidation of thiophene over TS-1 using H2O2 under mild conditions. Catal. Lett.,2004,92 (3-4):163-167.
    [164]Kong L, Li G, Wang X et al. Thiophene oxidation over titanium silicalite using hydrogen peroxide. Chin. J. Catal.,2004,25 (2):89-90.
    [165]Jin C, Li G, Wang X et al. Synthesis, characterization and catalytic performance of Ti-containing mesoporous molecular sieves assembled from titanosilicate precursors. Chem. Mater.,2007,19 (7):1664-1670.
    [166]Jin C, Li G, Wang X et al. A titanium containing micro/mesoporous composite and its catalytic performance in oxidative desulfurization. Micropor. Mesopor. Mater.,2008,111 (1-3):236-242.
    [167]Jin C, Li G, Wang X et al. A Ti-containing molecular sieve assembled from titanosilicate precursors with long-chain alkylamines. Top. Catal.,2008,49 (1-2): 118-124.
    [168]Wang Y, Li G, Wang X et al. Oxidative desulphurization of 4,6-dimethyldibenzothiophene with hydrogen peroxide over Ti-HMS. Energy Fuels,2007,21 (3):1415-1419.
    [169]王云,李钢,王祥生等.Ti-HMS催化氧化脱除模拟燃料中的硫化物.催化学报,2005,26(7):567-570.
    [170]张玉芬,周家顺.柴油中噻吩类化合物的催化氧化.精细石油化工进展,2006,7(7):11-16.
    [171]Ma X, Zhou A, Song C. A novel method for oxidative desulfurization of liquid hydrocarbon fuels based on catalytic oxidation using molecular oxygen coupled with selective adsorption. Catal. Today,2007,123 (1-4):276-284.
    [172]Zaykina R F, Zaykin Y A, Yagudin S G et al. Specific approaches to radiation processing of high-sulfuric oil. Radiat. Phys. Chem.,2004,71 (1-2):465-468.
    [173]杨金荣,侯影飞,孔瑛等.柴油臭氧氧化脱硫研究.石油大学学报(自然科学版),2002,26(4):84-89.
    [174]齐云霞,熊杰明,任绍梅等.乙酸酐/过氧化氢催化氧化脱除α-甲基萘中甲基苯并噻吩.石油化工高等学校学报,2006,19(4):15-18.
    [175]余国贤,陈辉,陆善祥等.柴油催化氧化深度脱硫研究.高校化学工程学报,2006,20(4):616-621.
    [176]Collins F M, Lucy A R, Sharp C. Oxidative desulphurisation of oils via hydrogen peroxide and heteropolyanion catalysis. J. Mol. Catal. A:Chem.,1997,117 (1-3):397-403.
    [177]Yazu K, Yamamoto Y, Furuya T et al. Oxidation of dibenzothiophenes in an organic biphasic system and its application to oxidative desulfurization of light oil. Energy Fuels, 2001,15 (6):1535-1536.
    [178]李忠铭,余国贤,陆善祥等.亚铁离子及甲酸催化过氧化氢氧化柴油深度脱硫研究.石油与天然气化工,2006,35(4):285-288.
    [179]孙刚,夏道宏.金属盐对车用油品氧化脱硫效果的影响.燃料化学学报,2001,29(6):509-514.
    [180]Shiraishi Y, Hirai T, Komasawa I. Oxidative desulfurization process for light oil using titanium silicate molecular sieve catalysts. J. Chem. Eng. Jpn.,2002,35 (12): 1305-1311.
    [181]Iwamoto M, Tanaka Y, Hirosumi J et al. Enantioselective oxidation of sulfide to sulfoxide on Ti-containing mesoporous silica prepared by a template-ion exchange method. Micropor. Mesopor. Mater.,2001,48 (1-3):271-277.
    [182]Shiraishi Y, Hara H, Hirai T et al. A deep desulfurization process for light oil by photosensitized oxidation using a triplet photosensitizer and hydrogen peroxide in an oil/water two-phase liquid-liquid extraction system. Ind. Eng. Chem. Res.,1999,38 (4): 1589-1595.
    [183]Shiraishi Y, Hirai T, Komasawa I. Photochemical desulfurization of light oils using an oil/hydrogen peroxide aqueous solution extraction system:Application for high sulfur content straight-run light gas oil and aromatic rich light cycle oil. J. Chem. Eng. Jpn. 1999,32 (1):158-161.
    [184]周新锐,李建源,赵彩霞等.过氧化叔戊醇对二苯并噻吩的氧化脱硫研究.燃料化学学报,2006,34(4):506-508.
    [185]Wang D, Qian E W, Amano H et al. Oxidative desulfurization of fuel oil:Part I. Oxidation of dibenzothiophenes using tert-butyl hydroperoxide. Appl. Catal. A:General, 2003,253 (1):91-99.
    [186]唐晓东,税蕾蕾,刘亮.直馏柴油NOx-空气催化氧化脱硫研究.催化学报,2004,25(10):789-792.
    [187]Murata S, Murata K, Kidena K et al. A Novel oxidative desulfurization system for diesel fuels with molecular oxygen in the presence of cobalt catalysts and aldehydes. Energy Fuels, 2004,18 (1):116-121.
    [188]Tanev P T, Chibwe M, Pinnavaia T J. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds. Nature,1994,368 (6469):321-323
    [189]Lee B, Ma Z, Zhang Z et al. Influences of synthesis conditions and mesoporous structures on the gold nanoparticles supported on mesoporous silica hosts. Micropor. Mesopor. Mater.,2009,122 (1-3):160-167.
    [190]Ma S, Li G, Wang X. Direct synthesis of hydrogen peroxide from H2/O2 and oxidation of thiophene over supported gold catalysts. Chem. Eng. J.,2010,156 (3):532-539.
    [191]Hashmi A S K, Hutchings G J. Gold Catalysis. Angew. Chem. Int. Ed.,2006,45 (47): 7896-7936.
    [192]Moreau F, Bond G C, Taylor A 0. Gold on titania catalysts for the oxidation of carbon monoxide:control of pH during preparation with various gold contents. J. Catal.,2005, 231 (1):105-114.
    [193]Moreau F, Bond G C. Gold on titania catalysts, influence of some physicochemical parameters on the activity and stability for the oxidation of carbon monoxide. Appl. Catal. A:General,2006,302 (1):110-117.
    [194]Agnes F, Imre K, Niwa S-I et al. Mesoporous materials synthesized by intercalation of silicate tubes between magadiite layers. Appl. Catal. A:General,1999,176 (2): L153-L158.
    [195]Gutierrez 0 Y, Valencia D, Fuentes G A et al. Mo and NiMo catalysts supported on SBA-15 modified by grafted ZrO2 species:Synthesis, characterization and evaluation in 4,6-dimethyldibenzothiophene hydrodesulfurization. J. Catal.,2007,249 (2):140-153.
    [196]Tanev P T, Pinnavaia T J. A neutral templating route to mesoporous molecular sieves. Science,1995,267 (5199):865-867.
    [197]Li J, Lin X. Electrocatalytic oxidation of hydrazine and hydroxylamine at gold nanoparticle-polypyrrole nanowire modified glassy carbon electrode. Sensor. Actuat. B: Chem.,2007,126 (2):527-535.
    [198]Zepeda T A, Pawelec B, Fierro J L G et al. Synthesis and characterization of P-modified mesoporous CoMo/HMS-Ti catalysts. Micropor. Mesopor. Mater.,2008,111 (1-3):493-506.
    [199]Zepeda T A, Fierro J L G, Pawelec B et al. Synthesis and characterization of Ti-HMS and CoMo/Ti-HMS oxide materials with varying Ti content. Chem. Mater.,2005,17 (16): 4062-4073.
    [200]Zhang W, Froba M, Wang J et al. Mesoporous titanosilicate molecular sieves prepared at ambient temperature by electrostatic (S+I-, S+X-I+) and Neutral (S I) Assembly Pathways: A comparison of physical properties and catalytic activity for peroxide oxidations. J. Am. Chem. Soc.,1996,118 (38):9164-9171.
    [201]Kumar A, Mandal S, Selvakannan P R et al. Investigation into the interaction between surface-bound alkylamines and gold nanoparticles. Langmuir,2003,19 (15):6277-6282.
    [202]Jenzer G, Mallat T, Maciejewski M et al. Continuous epoxidation of propylene with oxygen and hydrogen on a Pd-Pt/TS-1 catalyst. Appl. Catal. A:General,2001,208 (1-2): 125-133.
    [203]Cumaranatunge L, Delgass W N. Enhancement of Au capture efficiency and activity of Au/TS-1 catalysts for propylene epoxidation. J. Catal.,2005,232 (1):38-42.
    [204]Jiang G, Wang L, Chen T et al. Preparation of gold nanoparticles in the presence of poly (benzyl ether) alcohol dendrons. Mater. Chem. Phys.,2006,98 (1):76-82.
    [205]Zhao D, Huo Q, Feng J et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses, of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc.,1998,120 (24):6024-6036.
    [206]Lazarides A A, Schatz G C. DNA-linked metal nanosphere materials:Structural basis for the optical properties. J. Phys. Chem. B,2000,104 (3):460-467.
    [207]Sau T K, Pal A, Jana N R et al. Size controlled synthesis of gold nanoparticles using photochemically prepared seed particles. J. Nanopart. Res.,2001,3 (4):257-261.
    [208]Wang Y, Li G, Wang X et al. Performance, deactivation and modification of Ti-HMS in the oxidation of 4,6-dimethyldibenzothiophene with hydrogen peroxide. Prepr. Pap.-Am. Chem. Soc, Div. Petr. Chem.,2006,51 (2):824-825.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700