莱茵衣藻增殖、沉降与死亡过程对底泥氮素动态的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
体富营养化是困扰着世界各国的污染问题之一。我国湖泊河流众多,也受到不同程度的污染。太湖作为重点治理的富营养化浅湖泊之一,外污染源目前得到了一定程度的控制,但其内源污染仍在持续。影响湖泊沉积物营养盐内源释放的因素有很多,其中富营养化的产物藻体将与其它环境因素共同作用影响沉积物营养盐释放。本文以太湖梅梁湾为研究原型区域,采集样和泥样,通过室内模拟实验,研究莱茵衣藻(Chlamydomonas Reinhardtii)增殖、沉降与死亡过程对底泥氮素动态的影响。
     通过添加莱茵衣藻藻液于含有不同浓度的NO3--N和NH4+-N-泥体系中,在实验室培养条件下研究莱茵衣藻对无机氮利用偏好,结果表明:莱茵衣藻在增殖过程中同时消耗NO3--N、NH4+-N,但较NH4+-N而言,莱茵衣藻更倾向于利用NO3--N;而且,以NO3--N含量为主导的培养体系更有利于藻体增殖。
     添加莱茵衣藻藻液于-泥体系中,在实验室不同温度培养条件下研究莱茵衣藻增殖与沉降过程对底泥氮素动态的影响,结果表明:①莱茵衣藻在大量增殖过程中伴随着藻体沉降,藻体沉降过程部分藻体死亡分解(高温条件比较明显)。高温条件虽然有利于藻体大量增殖,但是也加速了藻体个体的死亡分解,低温条件下藻体具有较低的增殖速率和分解速率,存活时间较长。②莱茵衣藻在大量增殖过程中促进了底泥中NH4+-N的释放,死亡过程加速了上覆中NH4+-N的增加。③莱茵衣藻在大量增殖过程中Nar、Nir和Urease活性明显增强,氮素转化的结果是加速硝态氮反硝化逸失,而不是导致异化成氨过程(铵态氮含量增加)。
     添加不同浓度的莱茵衣藻藻液于太湖样中,在实验室培养条件下研究无底泥条件莱茵衣藻增殖、沉降与死亡过程对体氮素动态变化影响,结果表明:莱茵衣藻增殖、沉降过程消耗体系中NO3--N、NO2--、NH4+-N,死亡过程中释放数量可观的NH4+-N。
Water eutrophication is a serious environmental problem in the world. There are numerous lakes and rivers that have been polluted in different levels in China. Taihu lake in China is one of the key administration eutrophication Shallow lakes. Currently, external pollutant sources got certain degree of control but releases of nutritive salt from sediment have always stimulated entrophication in Lake Taihu. As an important parameter that affects the release processes of nutrition salt from sediment, algae itself and various environmental parameters take actions together. Water and sediment samples from Meiliang Bay in Lake Taihu, Eastern China, were employed to investigate the effects of Chlamydomonas Reinhardtii proliferation, sedimentation and decay on nitrogen release processes from sediment under incubation conditions.
     Through studying utilization preference of Chlamydomonas Reinhardtii on inorganic nitrogen, the results showed that algae proliferation consumed NO3--N, NH4+-N. But NO3--N in the system more tended to been utilized by algae than NH4+-N. Moreover, the culture system with the dominant NO3--N was beneficial to enhance algae proliferation. This would be significant to further study effects of Chlamydomonas Reinhardtii proliferation and sedimentation on changes of nitrogen from water and sediment.
     Through studying effects of Chlamydomonas Reinhardtii proliferation and sedimentation on nitrogen concentrations in water and sediment, the results showed high temperature (35℃) was not only beneficial for algae proliferation and sedimentation but also accelerating algae decay. In contrast, there were only low proliferation and decay rates of algae under the low temperature condition (15℃) Algae sedimentation was found to be simultaneous with their proliferation and suspending. Most of algae died and decayed during the sedimentation, and minority of them survived on the surface of sediment. In addition,the mount of NH4+-N released from sediment got rise with algae proliferation, and the NH4+-N concentrations in water increased with algae decay. The algae proliferation obviously enhanced the activities of nitrate reductase, nitrite reductase and urease in sediment, which maybe accelerate NO3--N being transformed into the gaseous N rather than NH4+-N.
     Effects of Chlamydomonas Reinhardtii proliferation, sedimentation and decay on dynamic processes of nitrogen in water were studied under exclusive sediment condition. The results showed that NO3--N, NO2--N and NH4+-N in the system were all consumed by algae. And the release of NH4+-N from water was enhanced in the process of algae decay.
引文
[1]D F Boesch,RB Brinsfield,RE Magnien.ChesaPeake Bay Eutrophication Scientific Understanding,Ecosystem Restoration,and Challenges for Agriculture[J].Journal of Environmental Quality,2001,30:303—320.
    [2]Matthiensen A, Beattie K.A, Yunes J.S, et al.[D-leu]Microcystin-LR, from the cyanobacterium Microcystis RST 9501 and from a Microcystis Bloom in the Patos Lagoon Estuary, Brazil[J].Phyovhemistry,2000,55:383~387.
    [3]Brittain S, Mohamed Z.A, Wang J, et al. Isolation and Characterization of Microcystins from a River Nile Strain of Oscillatoria tenuis A gardh ex Gomont[J].Toxicon, 2000,38:1759~1771.
    [4]Mez K, Hanselmann K, Preisig H.R. Environmental Conditions in High Mountain Lakes Containing Toxic Benthic Cyanobacteria [J].Hydrobiolagia,1998,368:1~15.
    [5]Lee T.H, Chen Y.M, Chou H.N. First Report of Microcystins in Taiwan [J].Toxicon, 1998,36(2):247~255.
    [6]Vasconcelos V.M, Sivonen K, Evans W.R, et al. Hepatotoxic Microcystin Diversity in Cyanobacterial Blooms Collected in Portuguese Freshwaters [J].Wat.Res, 1996,30(10):2377~2384.
    [7]Ingrid C and Jamic B.Toxic cyanobacteria in water.London and New York.E&FN spon publish,1999.
    [8]Lee T H, ChenY M,Chou H N,First report of Microcystins in Taiwen.Toxicon, 1998.36(2)247-255.
    [9]Brittain S,Mohamed Z A,Wang J,et al.Isolation and characterization of microcystins from a River Nile Strain of Oscillatoria Ienuis Agardh ex Gom ont.Toxicon,2000,38:1759-1771.
    [10]Me Z k,Hanselm K,Preisig H R.Environmental conditions in high mountain lakes containing toxic benthic cyanobacteria[J].Hydrobiologia,1998,368:1-15.
    [11]金相灿等.中国湖泊富营养化[M].北京:中国环境科学出版社,1990,16-21.
    [12]蔡景波等.环境因子与沉植物对底泥磷释放的影响研究[D].浙江杭州:浙江大学,2006年.
    [13]周云龙,于明.华的发生、危害和防治[J].生物学通报。2004,39(6):11~14.
    [14]郭培章,宋群.中外体富营养化治理案例研究[M].北京:中国计划出版社,2003,3-9.
    [15]姜永军,丁敏.体富营养化控制因子及其污染途径研究[J].甘肃科技,2003,19(10):91~92.
    [16]陈勇,吕一锋.体富营养化的形成、危害和防治[[J].环境科学与技术,1999(2):11~15.
    [17]金相灿,刘鸿亮,屠洪瑛等主编.中国湖泊富营养化.北京:中国环境科学出版社,1990.300-314.
    [18]韦立峰.浅谈体富营养化的成因及其防治[J].中国资源综合利用,2006,24(8)
    [19]谯华,周丛植等.湖泊富营养的形成机理与防治对策[J].环境科学导刊,2007,26(6):45-48
    [20]余德辉,金相灿等.中国湖泊富营养化及其防治研究[M].中国环境科学出版社.
    [21]王淑芳,体富营养化及其防治[J],环境科学与管理,2005,30(6):63~65.
    [22]董镇,唐俊芳,富营养化体的生态危害及防治措施与修复技术[J],江西化工,2005(2):22~25.
    [23]国家环保总局.1999年中国环境状况公报[M].环境保护,2000(6):3-8.
    [24]郑怀礼等.论三峡库区的环境问题和环境保护对策[[J].重庆建筑大学学报,1999,21(4):91~95.
    [25]郑兴灿,李亚新等.污除磷脱氮技术[[M].北京:中国建筑工业出版社,1998,11.
    [26]宗宫功(日),吴之丽,张荪楠.污除磷脱氮技术[M].北京:中国环境科学出版社,1987,10.
    [27]董镇,唐俊芳.富营养体的生态危害及防治措施与修复技术[J].江西化工,2005,2.
    [28]谢礼国,郑怀礼.湖泊富营养化的防治对策研究[J].世界科技研究与发展,2004,26(2).
    [29]王茹静,赵旭等.富营养化体底泥释磷的影响因素及其机理[J].江苏环境与科技.2005,18(4)
    [30]王化可,李文达等.富营养化体底泥污染控制及其修复技术探讨[J].能源与环境.2006,1.
    [31]金相灿主编.湖泊富营养化控制与管理技术[M].中国环境科学出版社,2001.
    [32]Runyu Zhang, Fengchang Wu, Congqiang Liu, Pingqing Fu,Wen Li,Liying Wang, Haiqing Liao, Jianyang Guo. Characteristics of organic phosphorus fractions in different trophic sediments of lakes from the middle and lower reaches of Yangtze River region and Southwestern Plateau, China[J].Environmental Pollution,2008(152):366-372.
    [33]B.Garban,D.Ollivon,M.Poulin,V.Gaultier and A.Chesterikoff.Exchanges at the Sediment-water Interface in the River Seine,Downstream from Paris[J].Environmental Pollution,1995(29):473-481.
    [34]JIN Xiang-Can, WANG Sheng-Rui, CHU Jian-Zhou, WU Feng-Chang.Organic phosphorus in shallow Lake sediments in middle and lower reaches of the Yangtze River Area in China[J].Elsevier Limited and Science Press,2008,18(3):394-400.
    [35]Xiuling Bai,Shiming Ding,Chengxin Fan, Tao Liu, Dan Shi, Lu Zhang. Organic phosphorus species in surface sediments of a large, shallow, eutrophic lake, Lake Taihu, China[J].Environmental Pollution,2009,(157):2507-2513.
    [36]Juris Aigars. Seasonal variations in phosphorus species in the surface sediments of the Gulf of Riga, Baltic Sea[J].Chemosphere,2001, (45):827-834.
    [37]曾巾,杨柳燕,肖琳,尹大强,秦伯强.湖泊氮素生物地球化学循环及微生物的作用[J].湖泊科学,2007,19(4):382-389.
    [38]王巧稚,曹文志,黄一山,何月云.沉积物界面硝化与反硝化作用研究[J].环境与可持续发展,2008,10(4):58-60.
    [39]徐继荣等.大亚湾海域沉积物中的硝化与反硝化作用[J].海洋与湖沼,2007,38(3):206-211.
    [40]魏全源等.低温条件下微生物对沉积物氮释放的影响研究[J].供技术,2009,3(4):26-29.
    [41]钟立香,姜霞等.巢湖华暴发过程-沉积物三项界面氮的变化特征[J].中国环境科学,2009(11):649-659.
    [42]秦伯强,朱广伟.长江中下游地区湖泊沉积物中营养盐的赋存、循环及其交换特征[J].中国科学D辑地球科学,2005,35(增刊Ⅱ):1~10.
    [43]管益东,唐运平等.浅湖泊营养盐的释放[J].环境科学与管理,2005,30(6):46~48.
    [44]Stimson. J, Larned. S.T. Nitrogen efflux from the sediments of a subtropical bay and the potential contribution to macroalgal nutrient requirements[J].Journal of experimental marine biology and ecology,2000,252:159~180.
    [45]Gomez E, Durillon C, Rofes G. Phosphate adsorption and release from sediments of brackish lagoons:pH,O2 and loading influence[J].Water research,1999,33(10):2437-2447.
    [46]Shengrui Wang, Xiangcan Jin, Haichao Zhao. Phosphorus fractions and its release in the sediments from the shallow lakes in the middle and lower reaches of Yangtze River area in China [J].Colloids and surfaces A,2006,(273):109-116.
    [47]Shujunan Sun, Suiliang Huang, Xueming Sun, Wei Wen. Phosphorus fractions and its release in the sediments of Haihe River, China [J].Journal of Environmental Sciences, 2009,(21):291~295.
    [48]Lee-Hyung Kim, Euiso Choi, Kyung-Ik Gil, Michael K. Stenstrom. Phosphorus release rates from sediments and pollutant characerristics in Han River, Seoul, Korea[J].Science of the Total Environment,2004,(321):115~125.
    [49]Shengrui Wang, Xiangcan Jin, Dalin Niu, Fengchang Wu. Potentially mineralizable nitrogen in sediments of the shallow lakes in the middle and lower reaches of the Yangtze River area in China[J].Applied Geochemistry,2009,(24):1788~1792.
    [50]Brian E. Haggard, Thomas S. Soerens. Sediment phosphorus release at a small impoundment on the Illinois River, Arkansas and Oklahoma, USA [J].Ecological Engineering,2006,(28):280~287.
    [51]范成新,张路,秦伯强.太湖沉积物-界面生源要素迁移机制及定量化[J].湖泊科学,2004,16(1):10~20.
    [52]陈后合,孔健健,王淑贤.深型湖泊底泥NH4+-N释放的环境因子实验研究[J].环境科学与管理,2006,31(7):57~60.
    [53]Reddy K. R, Fisher M.M, Ivanoff D. Resuspension and diffusive flux of nitrogen and phosphorus in a hypereutrophic lake [J].Journal of Environmental Quality, 2004,25(1):363~371.
    [54]Sndergaard M, Kristensen P, Jeppesen E. Phosphorus release from resuspended sediment in the shallow and wind-exposed Lake Arreso, Denmark [J].Hydrobiologia, 2002,228(5):91~99.
    [55]秦伯强,朱广伟,张路等.大型浅湖泊内源营养盐释放模式及其估算方法[J].中国科学D辑:地球科学,2005,35(增刊Ⅱ):33-44.
    [56]姜爱霞.环境氮污染的机理和防治对策[J].中国人口·资源与环境,2000,10(1):75-76.
    [57]白晓慧,钟卫国,陈群燕等.城市内河体污染修复中沉积物的影响与控制[J].环境科学,2002,23(1):89~92.
    [58]Qunhe Wu, Renduo Zhang, Shan Huang, Hengjun Zhang. Effects of bacteria on nitrogen and phosphorus release from river sediment [J].Journal of Environmental Sciences, 2008,(20):404~412.
    [59]杨荣敏,李宽意,等.大型生植物对太湖底泥磷释放的影响研究[J].农业环境科学学报,2007,26(增刊):274~278.
    [60]包先明,丁卓丽等.不同沉植物在太湖污染底泥上适应性生长过程及体氮磷的响应[J].土壤通报,2007,38(6):1191~1195.
    [61]朱广伟,陈英旭,等.沉积物的污染控制技术研究进展[J].农业环境保护,2002,21(4):378~380.
    [62]包先明,陈开宁等.种植沉植物和疏浚底泥对氮磷营养平的影响[J].土壤通报,2006,37(5):932~935.
    [63]童昌华,杨肖娥等.生植物控制湖泊底泥营养盐释放的效果与机理[J].农业环境科学学报,2003,22(6):673~676.
    [64]Herbert R A. Nitrogen cycling in coastal marine ecosystems [J].FEMS Microbiology Reviews,1999,23(3):563.-590.
    [65]Yamada H. Liberation of nitrogenous compounds from bottom sediments and effects of bioturbation by small bivalve, theora lata(Hinds)[J].Estuarine, Coastal and Shelf Science, 1987,24(7):539~555.
    [66]Sayama M, Kurihara Y. Relationship between burrowing activity of the polychaetous annelid Neanthes japonica and nitrification-denitrification processes in the sediments [J]. Journal of Experimental Marine Biology and Ecology,1983,72(2):233~234.
    [67]陈天乙,刘孜.摇蚊幼虫对底泥中氮、磷释放作用的研究[J].昆虫学报,1995,38(4):448~451.
    [68]陈振楼,刘杰,许世远等.大型底栖动物对长江口潮滩沉积物-界面无机氮交换的影响[J].环境科学,2005,26(6):43~50.
    [69]孔繁翔,高光.大型浅富营养化湖泊中蓝藻华形成机理的思考[J].生态学报,2005,25(3):589-595.
    [70]潘慧云,徐小花,高士祥.沉植物衰亡过程中营养盐的释放过程及规律[J].环境科学研究,2008,21(1):64~68.
    [71]周礼恺.土壤酶学[M].北京:科学出版社,1987,5.
    [72](苏)哈兹耶夫等.土壤酶活性[M].北京:科学出版社,1980,11.
    [73]关松荫等.土壤酶及其研究法[M].北京:农业出版社,1986,7.
    [74]Rihani M, Botton B, Villemin G, et al. Ultrastructural patterns of beech leaf degradation by Sporatrichum pulverulentum [J].Eur J Soil Biol,2001,37:75~84.
    [75]Marx M C, Wood M, Jarvis S C. A microplate fluorimetric assay for the study of enzyme diversity in soils [J].Soil Biol Biochem,2001,33:1633~1640.
    [76]Vepsalainen M, Kukkonen S, Vestberg M, et al. Application of soil enzyme activity test kit in a field experiment [J].Soil Biol Biochem,2001,33:1665~1672.
    [77]Berchet V, Boulanger D, Gounot A M. Use of gel electrophoresis for the study of ezymatic activities in cold-adapted bacteria [J].J Microbiol Methods,2002,40:105~110.
    [78]De Cesare F, Garzillo A M V, Buonocore V, et al. Use of sonication for measuring acid phosphatase activity in soil[J].Soil Biol Biochem,2000,32:825~832.
    [79]Zornoza R, Guerrero C, Mataix-solera J, et al. Assessing air-drying and rewetting pre-treatment effect on some soil enzyme activities under Mediterranean conditions[J]. Soil Biology& Biochemistry,2006,38:2125~2134.
    [80]Xiao-hua Yao, Hang Min, Zhen-hua Lu, et al. Influence of acetamiprid on soil enzymatic activities and respiration [J].European Journal of Soil Biology,2006(42):120~126.
    [81]Roldan A, Salinas-garcia J R, Alguacil M M, et al. Changes in soil enzyme activity, fertility, aggregation and C sequestration mediated by conservation tillage practices and water regime in a maize field [J]. Applied Soil Ecology,2005,30:11~20.
    [82]Fenner N, Freeman C, Reynolds B. Observations of a seasonally shifting thermal optimum in peatland carbon-cycling processes:implications for the global carbon cycle and soil enzyme methodologies [J].Soil Biology& Biochemistry,2005,37:1814~1821.
    [83]Hakulinen R, Salkinoja-salonen. Vertical distribution of sediment enzyme activities involved in the cycling of carbon, nitrogen, phosphorus and sulphur in three boreal rural lakes [J].water Research,2005(39):2319~2326.
    [84]Trasar-cepeda C, Gil-sotres F, Leiros M C. Thermodynamic parameters of enzymes in grassland soils from Galicia, NW Spain [J].Soil Biology& Biochemistry,2007(39):311~ 319.
    [85]Mitsch W J, Cronkj K, Wu X, et al. Phosphorus retention in constructed freshwater riparian marshes [J].Ecol Appl,1995,5:830~845.
    [86]Derrick Yuk Fo Lai, Kin Che Lam. Phosphorus retention and release by sediments in the eutrophic Mai Po Marshes, Hong Kong [J].Marine Pollution Bulletin,2008,57(6-12):349~ 356.
    [87]Chrost R J. Microbial enzymes in aquatic environments [M].New York:Spronger-Verlag, 1991.
    [88]Sinsabaugh R L, Antibus R K, Linkins A E, et al. Wood decomposition:nitrogen and phosphorus dynamics in relation to extracellular Enzyme activity [J].Ecology,1993, 74:1586-1593.
    [89]Mclatchey G P, Reddy K R. Regulation of organic matter decomposition and nutrient release in a wetland soil[J].Journal of Environmental Quality,1998,37(5):1268~1274.
    [90]Venkareswaran K, Natarajan R. Distribution of phosphatase in sediments of Porto Novo [J]. Indian J Mar Sci,1983,12:231-242.
    [91]Zhou Y Y, Lij Q, Zhang M. Temporal and spatial vatiations in kinetics of alkaline phosphatase in sediments of a shallow Chinese eutrophic lake (Lake Donghu) [J].Water Reseach,2002,36:2084-2090.
    [92]Boshker H T S, Cappenberg T E. Patterns of extracellular enzyme activities in littoral sediments of Lake Gooimeer, The Netherlands [J]. FEMS Microbiology Ecology, 1998,25:79-86.
    [93]张银龙.九龙江口红树林土壤酶活性等性质及其细根的生态学研究[D].厦门:厦门大学,1996.
    [94]孙炳寅,朱长生.互花米草(Spartina alterniflora)草场土壤微生物生物分布及某些酶活性的影响[J].生态学报,1989,9(3):240~244.
    [95]Wright A L, Reddy K R. Phosphorus loading effects on extracellular enzyme activity in everglades wetland soils [J].The Soil Science Society of America Journal, 2001,65(2):588~599.
    [96]Zhou Y Y, L I J Q, Zhang M. Vertical variations in kinetics of alkaline phosphatase and P species in sediments of a shallow Chinese eutrophic lake (Lake Donghu)[J].Hydrobiologia, 2001,450:91~98.
    [97]胡鸿钧,魏印心.中国淡藻类-系统、分类及生态[M].北京:科学出版社,2006,10.
    [98]周凤霞,陈剑虹.淡微型生物图谱[M].北京:化学工业出版社,2005.2.
    [99]Rochaix J D. Chlamydomonas reinhardtii as the photosynthetic yeast[J].Annu Rev Genet, 1995,29:209-230.
    [100]Feng Chen. High cell density culture of microalgae in heterotrophic growth [J].Focus Tibthchnology,1996,(14):421~426.
    [101]Christopher A K, Elena Litchman, Tanguy Daufresnel elt. Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton [J].Nature,2004,429:171-174.
    [102]Stephane L Helguena, Christian Madec, Pierre Le Corre. Nitrogen uptake in permanently well-mixed temperate Coastal waters [J].Estuarine, Coastal and Shelf Science, 1996,42:803-818.
    [103]李铁,胡立阁,史致丽.营养盐对中肋骨条藻和新月菱形藻生长及氮磷组成的影响[J].海洋与湖沼,2003,31(1):46~52.
    [104]Qi-min Chen, Jin-zhong Wang, Yun-qi Geng. Molecular biology[M].Tianjin:Nankai University press,2001:269-271.
    [105]陈伟民,秦伯强.太湖梅梁湾冬末春初浮游动物时空变化及其环境意义[J].湖泊科学,1998,10(4):10-16.
    [106]张晓峰,孔繁翔,等.太湖梅梁湾华蓝藻复苏过程的研究[J].应用生态学报,2005,16(7):1346-1350.
    [107]张宪政等主编.植物生理学实验技术.沈阳:辽宁科技出版社,1989.
    [108]阎荣,孔繁翔,韩晓波.太湖底泥表层越冬藻类群落动态的荧光分析法初步研究[J].湖泊科学,2004,16(2):163~168.
    [109]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2005,1.
    [110]陈雄峰,荆一凤等.电渗法对太湖环保疏浚底泥脱干化研究[J].环境科学研究,2006,19(5)
    [111]Lee R E. Phycology.2nd edition. Cambridge, the United Kingdom:Cambridge University Press,1989:13~22.
    [112]章宗涉,等.淡浮游生物研究方法[M].上海:上海科学出版社,1991.21-22.
    [113]Hankamer B, Barber J, Boekema E J. Structure and membrane organization of photosystem Ⅱ in green plants. Annu Rev Plant Physiol Plant Mol Biol,1997,48:641~ 671.
    [114]朱广伟.太湖富营养化现状及原因分析[J].湖泊科学.2008,20(1):21-26.
    [115]逢勇,韩涛,李一平,翟金波.太湖底泥营养要素动态释放模拟和模型计算[J]环境科学,2007,28(9):1960-1964.
    [116]Xie LQ, Xie P, Li SX. The low TN:TP ratio, a cause or a result of Microcystis blooms? [J] Water Research,2003,37:2073-2080.
    [117]孙小静,秦伯强,朱光伟.蓝藻死亡分解过程中胶体态磷、氮、有机碳的释放[J].中国环境科学,2007,27(3):341~345.
    [118]Hongjun Wang, Weidong Wang, Chengqing Yin, Yuchun Wang, Jinwei Lu. Littoral zones as the "hotspots" of nitrous oxide (N20) emission in a hyper-eutrophic lake in China [J]. Atmospheric Environment,2006,40:5522-5527.
    [119]Zumft WG Cell Biology and Molecular Basis of Denitrification [J]. Microbiol Mol Biol Rev.,1997,61(4):533-616.
    [120]Mark JM, Peter JL, Long-yuan Yang, Lu Zhang, Yu-wei Chen, Bo-qiang Qin, Wayne SG Nitrogen dynamics and microbial food web structure during a summer cyanobacterial bloom in a subtropical, shallow, well-mixed, eutrophic lake (Lake Taihu, China) [J].Hydrobiologia,2007,581:195-207.
    [121]Kewei Yu, Sten S, Annelise K, Guanxiong Chen. Denitrification rate determined by nitrate disappearance is higher than determined by nitrous oxide production with acetylene blockage [J].Ecological Engineering,2008,32(1):90-96.
    [122]Barbiero R P, Kann J. The importance of benthic recruitment to the population development of Aphanizomenon flos-aquae and internal loading in a shallow lake. J Plankton Res,1994,16:1581-1588.
    [123]Brunberg A K, Blomqvist P. Benthic overwintering of Microcystis colonies under different environmental conditions. J Plankton Res,2002,24:1247-1252.
    [124]Reynolds C S. Growth and buoyancy of Microcystis aetuginosa K tz. Emend. Elenkin in a shallow eutrophic lake. Proc R Soc Land,1973,184:29-50.
    [125]Takamura N M, Yasuno M, Sugahara K. Overwintering of Microcystis aeruginosa Ktuz in a shallow lake. Plankton Res,1984,6:1019-1029.
    [126]Neillm. A method to determine which nutrient is limiting for plant growth in estuarine waters-at any salinity [J].Marine Pollution Bulletin,2005,50:945~955.
    [127]Antal T,Krendeleva T,Laurinavichene T,et al.The dependence of algal H2 production on photosystem Hand O2 consumption activities in sulfur-deprived C. reinhardtii cells [J].Biochimica et Biophysica Acta,2003,1607(2):153~160.
    [128]贾立娜,张栩,谭天伟.谷氨酸废液培养莱茵衣藻的产氢研究[J].生物加工工程,2005,3(1):45-48.
    [129]Graneli W. Internal phosphorus loading in Lake Ringsjon [J]. Hydrobiologia,1999,(404): 19~26.
    [130]Wang H, Appan A, Gulliver J S. Modeling of phosphorus dynamics in aquatic sediments: I-model development [J].Water Research,2003,37:3928~3938.
    [131]Mcmanus J, Berelson W, Coale K H. Phosphorus regeneration in continental margin sediment [J].Geochim Cosmochim Acta,1997,61(14):2891~2907.
    [132]陈伟民,蔡后建.微生物对太湖微囊藻的好氧降解研究[J].湖泊科学,1996,8(3):248-252.
    [133]史红星,刘会娟,曲久辉.富营养化体中微囊藻细胞碎屑对氨氮的吸附特性[J].环境化学,2005,24(3):241~244.
    [134]徐敏,程凯,孟博等.环境因子对衣藻华消长影响的初步研究[J].华中师范大学学报,2001,35(3):322-325.
    [135]Lars Tranvik. Effects of colloidal organic matter on the growth of bacteria and protests in lake water[J]. Limnol Oceanogr,1994,39(6):1276~1285.
    [136]郑爱蓉,陈敏等.海洋胶体中的氮、磷和铁对微藻生长的效应[J].自然科学进展,2004,14(3):339~343.
    [137]Shaw J D. Introduction to colloid and surface chemistry [M].Fourth edition. Butterworth Heinemann:Word Publishing Corporation,2000:1~45.
    [138]高光,秦伯强等.太湖梅梁湾中碱性磷酸酶的活性及其与藻类生长的关系[J].湖泊科学,2004,16(3):245~251.
    [139]Ulrike Ruckauf, Jurgen Augustin, Rolf Russow, Wolfgang Merbach. Nitrate removal from drained and reflooded fen soils affected by soil N transformation processes and plant uptake[J].Soil Biology& Biochemistry,2004,36:77~90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700