沉水植物与沉积物作用对富营养化湖泊磷循环的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“水—沉积物”界面是水与沉积物之间的转换区,是水环境的一个特殊而重要的区域。沉水植物作为这一区域生态系统的重要组成部分,对“水—沉积物”界面磷的迁移、转化起到了调控作用。本课题以“水—沉水植物—沉积物”体系为研究对象,选取敬业湖为采样现场,现场与实验室模拟相结合,进行了沉水植物与沉积物作用对富营养化湖泊磷循环的影响的研究。
     采样期间敬业湖上覆水总氮浓度为6.21 mg/L~2.70 mg/L,总磷浓度为0.18 mg/L~0.12 mg/L,总氮和总磷浓度都远远超过了富营养化的发生浓度。菹草生长期间,除溶解性有机磷以外,敬业湖上覆水中总氮、总磷、颗粒态总磷、可溶性总磷和溶解性活性磷浓度都随菹草生物量的增加而降低,而菹草衰败后又开始升高。表层水和间隙水的碱性磷酸酶活性也呈现相同的变化趋势,而且表层水的碱性磷酸酶活性始终大于间隙水,说明沉水植物对碱性磷酸酶活性的抑制作用是沉水植物净化水质的重要特征之一。
     采样期间敬业湖藻型沉积物中的交换态磷、铁结合磷和碎屑磷含量始终高于草型沉积物,而闭蓄态磷、自生磷和有机磷含量则刚好相反,两沉积物中铝结合磷均未检出。由此可以得出,菹草自身生长吸收上覆水及表层沉积物中的生物可利用磷,其促淤作用又使得动植物残体及其中的磷在表层沉积物中蓄积(TOC含量为6.26 %~8.89 %,有机磷含量为25.4 mg/kg~62.8 mg/kg),同时通过改变表层沉积物的理化环境抑制表层沉积物中生物难利用磷的释放,从而间接地降低了上覆水中磷的浓度。因此,我们可以通过定期打捞衰老菹草降低水中磷的浓度,而且菹草的存在使得对富营养化有重要贡献的内源磷稳定地存在于沉积物中。可见,沉水植物菹草通过对敬业湖“水—沉积物”界面磷循环的调控,对敬业湖的富营养化状况起到了一定的控制作用。
     实验室研究表明,有机质对沉积物中磷的释放有明显的促进作用,随着TOC含量的增加,释放量也增加。而相对于腐殖酸,蓝藻更容易促进磷的释放,这是因为腐殖酸在释放与Fe3+、Al3+等阳离子结合的PO43-、SO42-等阴离子的同时,与活性磷发生了反应。
The water-sediment interface is the transformation-zone between water and sediments, a special and important area of aquatic environment. As the concernful composition in the ecosystem, submerged macrophytes have a dominative effect on the removal and transformation of phosphorus between the water-sediment interface. In this work, Jingye lake, a water-submerged macrophyte-sediment ecosystem, was selected as the sampling field to investigate the effect of submerged macrophytes together with sediments on the circulation of phosphorus of eutrophic lakes, and further lab-simulating experiments was also carried out.
     During the sampling period, the concentrations of TN and TP of overlying water of Jingye lake ranged from 6.21 mg/L to 2.70 mg/L, and 0.18 mg/L to 0.12 mg/L respectively, and both of which were beyond the limiting concentration of eutrophication. When the Potamogeton crispus was growing, the concentrations of TN, TP, PP, TDP and SRP of overlying water except DOP decreased with the increase of biomass of Potamogeton crispus, while increased when the biomass of Potamogeton crispus began to decline. The same change trend was also found with the alkaline phosphatase activity in surface and pore water, and the alkaline phosphatase activity in surface was higher than that in the pore water, sugesting that restraint in the alkaline phosphatase activity by submerged macrophytes is an important characteristic of decontamination of water.
     During the sampling period, the concentrations of Ex-P, Fe-P and Ca-P of algae type sediments were higher than that of grass type sediments of Jingye lake, whereas the concentrations of Oc-P, De-P and Or-P were reverse. Al-P was not detected in both type of sediments. So it can be concluded that Potamogeton crispus absorbs the bioavailable phosphorus from overlying water and surface sediments and accelerates the accumulation of propagation residues and its phosphorus in the surface sediments (TOC: 6.26~8.89 %; organic phosphorus: 25.4~62.8 mg/kg). Meanwhile, by changing the physical and chemical characteristics of surface sediments, Potamogeton crispus restrains the desorption process of bio-unavailable phosphorus, decreases the phosphorus concentration of overlying water indirectly. Consequently, we can decrease the phosphorus concentration in water by removing the dead Potamogeton crispus termly. The live plant makes the sediment-bound phosphorus, which made great contribution to the eutrophication, exist in the sediments steadily. Therefore, Potamogeton crispus plays the role to some extent in controlling the degree of eutrophication of Jingye lake by influencing the circulation of the phosphorus of water-sediment interface.
     Lab-simulating investigation indicated that organic matter can accelerate the P desorption process greatly, and the desorption capacity had the same trend as TOC concentration. Meanwhile, cyanobacteria worked better by compared with humous acids. It is because that humous acids accelerated PO4- and SO42- desorption, as well as reacted with bioavailable phosphorus.
引文
[1]刘春光,王雯,庄源益,湖泊富营养化控制理论与技术,干旱环境监测,2004,18(1):16~19
    [2]谢礼国,郑怀礼,湖泊富营养化的防治对策研究,世界科技研究与发展,2004,26(2):7~11
    [3]金相灿,刘鸿亮,屠清瑛,中国湖泊富营养化,北京:中国环境科学出版社,1990,343~372
    [4]刘建康,湖泊与水库富营养化防治的理论和实践,北京:科学出版社,2003
    [5]李大成,吕锡武,纪荣平,受污染湖泊的生态修复,电力环境保护,2006,22(1):47~49
    [6]王淑芳,水体富营养化及其防治,环境科学与管理,2005,30(6):63~65
    [7]董镇,唐俊芳,富营养化水体的生态危害及防治措施与修复技术,江西化工,2005(2):22~25
    [8]濮培民,王国祥,胡春华等,底泥疏浚能控制湖泊富营养化吗?湖泊科学,2000,12 (3):269~279
    [9]Blindow I, Andersson G, Hargeby A, et a1, Iong-term pattern of alternative stable states in two shallow eutrophic lakes, Freshwater Biology, 1993, 30: 159~167
    [10]张喜勤,水蚤净化富营养化湖水试验研究,水资源保护,1997,4:32~36
    [11]Kairesalo T, Laine S, Luokkanen E, et a1, Direct and indirect mechanism behind successful biomanipulation , Hydrobiologia, 1999, 395/396: 99~106
    [12]Hosper SH, State, Buffers and Switches: an ecosystem approach to a restoration and management of shallow lakes in Netherlands, Wat Sei Teeh, 1998, 37 (3): 151~164
    [13]吴玉树,杞簏湖水生生态系统中重金属的迁移积累,中国环境科学1990,10(3):l97~201
    [14]黄文成,徐延志,试论沉水植物在治理滇池草海中的作用,广西植物,1994,14(4):334~337
    [15]Graneliand W, Solander D, Influence of aquatic macrophytes on phosphorus cycling in lakes, Hydrobiologia, 1988 , 70: 245~266
    [16]Hucher D B, Gurham P R, Biphasic mineral nutrition of the submersed aquatic macrophyte potamogeton pectinanus, Aduat Bot, l983, 16: 269~284
    [17]王少梅,武汉东湖沉积物中氮和磷释放试验,水生生物学报,1991,15(4):379~380
    [18]彭近新,陈慧君,水质富营养化与防治,北京:中国环境科学出版社,1988,45~62
    [19]Golterman H L, Reflection on fraction and bioavailability of sediment bound phosphate, Arch Hydrobiol, 1988, 30: 1~4
    [20]李悦,乌大年,薛永先,沉积物中不同形态磷提取方法的改进及其环境地球化学意义,海洋环境科学,1998,17(1):15~20
    [21]Logan T J, Mechanisms for release of sediment-bound phosphate to water and the effects of agricultural land management on fluvial transport of particulate and dissolved phosphate. Hydrobiologia, 1982, 92: 519~530
    [22]蒋柏藩,沈仁芳,土壤无机磷分级的研究,土壤学进展,1990,18(1):1~8
    [23]Patrick, Wm H, Jr and I C Mahapatra, Transformation and availability to rice of nitrogen and phosphorus in waterlogged soils, Advances in Agronomy, 1968, 20: 323~359
    [24]Conley J, Stockenberg A, Carman R, et a1, Sediment-water nutrient fluxes in the gulf of inland, baltic sea, Estuarine, Coastal and Shelf Science, 1997, 45: 591~598
    [25]Weng H X, Presley B J, Armstrong D, Distribution of sedimentary phosphorus in gulf of mexico estuaries, Marine Environmental Research, 1994, 37: 375~392
    [26]Andrieux L F, Aminot A, Phosphorus forms related to sediment grain size and geochemical characteristics in French coastal areas, Estuarine, Coastal and Shelf Science, 2001, 52: 617~629
    [27]湖泊富营养化调查规范(第二版),北京:中国环境科学出版社,1990
    [28]刘素美,张经,沉积物中磷的化学提取分析方法,海洋科学,2001,25(1):22~25
    [29]Hieltjes A H, Lijklema L, Fractionation of inorganic phosphorus in calcareous sediments, Journal of Environmental Quality, 1980, 8: 130~132
    [30]De Groot C J, Golterman H L, Sequential fractionation of sediment phosphate, Hydrobiologia, 1990, 192: 143~148
    [31]Olila O G, Reddy K R, Phosphorus sorption characteristics of sediments in shallow eutrophic lakes of Florida, Archives of Hydrobiology, 1993, 129: 45~65
    [32]Jensen H S, Thamdrup B, Iron-bound phosphorus in marine sediments as measured by bicarbonate-dithionate extraction, Hydrobiologia, 1993, 253: 47~59
    [33]Ruttenberg K C, Development of a sequential extraction method for different forms of phosphorus in marine sediments, Limnology&Oceanography, 1992, 37(7): 1460~1482
    [34]朱广伟,秦伯强,沉积物中磷形态的化学连续提取法应用研究,农业环境科学学报,2003,22(3):349~352
    [35]Michael R P, Martin T A, Eric L V, et a1, Phosphorus diagenesis in lake sediments: investigation using fractionation techniques, Mar Freshwater Res, 1995, 46: 89~99
    [36]隋少峰,罗启芳,武汉东湖底泥释磷特点,环境科学,2001,22(1):102~105
    [37]侯立军,刘敏,许世远,环境因素对苏州河市区段底泥内源磷释放的影响,上海环境科学,2002,22(4):258~260
    [38]李勇,王超,城市浅水型湖泊底泥磷释放特性试验研究,环境科学与技术,2003,26(1):26~28
    [39]Aazam Khoshmanesh, Barry T, Hart, Luxury uptake of phosphorus by sediment bacteria, Water Research, 2002, 36: 774~778
    [40]陈玉娟,珠江广州河段中磷的形态研究,中山大学学报(自然科学版),1990, 9(4):73~78
    [41]廖文根,太湖水体的磷负荷分析,水利学报,1994(11):77~81
    [42]Rochford D J, Studies in Australian estuarine hydrology, I, Introductory and comparative features, Austr J Mar Freshw Res, 1951(2): 110~116
    [43]商翎,提福魁,王淑华等,元素生态地球化学及其应用,沈阳:辽宁大学出版社,1997,91~92
    [44]Anu Kisand, Peeter Noges, Sediment phosphorus release in phytoplankton dominated versus macrophyte dominated shallow lakes: importance of oxygen conditions, Hudrobiologia, 2003(506-509): 129~133
    [45]Karjalainen H, Stefansdottir G, Tuominen L, et al, Do submersed plants enhance microbial activity in sediment? Aquatic Botany, 2001 (69): 1~13
    [46]刁正谷,中国水生杂草,重庆:重庆出版社,1990
    [47]刘建康,高级水生生物学,北京:科学出版社,1999
    [48]颜素珠,中国水生高等植物图说,北京:科学出版社,1983
    [49]张鸿,陈光荣,两种人工湿地中氮、磷净化率与细菌分布关系的初步研究,华中师范大学学报,1999,33(4):575~578
    [50]殷敏,陈桂珠,利用水生高等植物净化污水研究的探讨,广州环境科学,2002,17(1):6~9
    [51]况琪军,人工模拟生态系统中水生植物与藻类的相关性研究,水生生物学报,1997,21(1):90~93
    [52]孙祥钟,中国植物志(第8卷),北京:科学出版社,1992,52~55
    [53]刘兵钦,王万贤,宋春雷等,菹草对湖泊沉积物磷状态的影响,武汉植物学研究,2004,22(5):394~399
    [54]Lopez-Pineiro A, Garcia Navarro A, Phosphate sorption in Vertisols of southwestern Spain, Soil Science, 1997, 162(1): 69~77
    [55]文明,盛哲,林亲众,蛋白质新资源—黑藻的研究,黑藻生物学特性及营养成分的分析,湖南农学院学报,1994,20(5):457~463
    [56]王圣瑞,金相灿,赵海超等,沉水植物黑藻对上覆水中各形态磷浓度的影响,地球化学,2006, 35(2):179~186
    [57]胡俊,丰民义,吴永红等,沉水植物对沉积物中磷赋存形态影响的初步研究,环境化学,2006,25(1):28~31
    [58]Slomp C P, Malschaert J F P, Van Raaphorst W, The role of adsorption in sediment-water exchange of phosphate in North Sea continental margin sediments, Limnology and Oceanography, 1998, 43(5): 832~846
    [59]Jansson M, Olsson H, Pettersson K, Phosphatases: Origin, characteristics and function in lakes, Hydrobiologia, 1988, 170(1): 157~175
    [60]张龙翔,生化试验方法和技术,北京:高等教育出版社,1987,145~152
    [61]周易勇,李建秋,张敏,湿地中碱性磷酸酶的动力学特征与水生植物的关系,湖泊科学,2002,14(2):134~138
    [62]Madsen Tom Vindbaek, Cedergreen Nina, Sources of nutrients to rooted submerged macrophytes growing in a nutrient-rich stream, Freshwater Biology, 2002, 47(2): 283~291
    [63]Vincent W J, Nutrient partitioning in the upper Canning River, Western Australia, and implications for the control of cyanobacterial blooms using salinity, Ecological Engineering, 2001, 16(3): 359~371
    [64]James William F, Barko John W, Eakin Harry L, et al, Phosphorus budget and management strategies for an urban Wisconsin lake, Lake&Reservoir Management, 2002, 18(2): 149~163
    [65]Zhou Q, Gibson C E, Zhu Y, Evaluation of phosphorus bioavailability in sediments of three contrasting lakes in china and the UK, Chemopher, 2001, 42: 221~225
    [66]Ting D S, Appan A, General characteristics and fractions of phosphorus in aquatic sediments of two tropical reservoirs, Wat Sci Technol, 1996, 34(7~8): 53~59
    [67]韩沙沙,温琰茂,富营养化水体沉积物中磷的释放及其影响因素,生态学杂志,2004,23(2):98~101
    [68]Kozerski H P, Kleeberg A, The sediments and the benthic pelagic exchange in the shallow lake Muggelsee, Int Rev Hydrobio1, l998, 83: 77~112
    [69]Song Y, Hahn H H, Hoffmann E, The effect of carbonate on the precipitation of calcium phosphate, Environ Techno1, 2002, 23: 207~215
    [70]刘晓端,徐清,刘浏等,密云水库沉积物水界面磷的地球化学作用,岩矿测试,2004,23(4):246~250
    [71]包先明,陈开宁,范成新,种植沉水植物对富营养化水体沉积物中磷形态的影响,土壤通报,2006,37(4):710~715
    [72]朱广伟,高光,秦伯强等,浅水湖泊沉积物中磷的地球化学特征,水科学进展,2003,14(6):714~719
    [73]Miller-Way T, G S Boland, G T Rowe, et a1, Sediment oxygen consumption and benthic nutrients fluxes on the Louisiana continental self: A metbodologcal comparision, Estuaries, 1994, 17(4): 809~815
    [74]刘玉生,皱兰,郑丙辉,光照、温度和藻类对底泥释放磷的影响,环境科学研究,1992,5(2):41~44
    [75]况琪军,夏宜曷,吴振斌等,人工模拟生态系统中水生植物与藻类的相关性研究,水生生物学报,l997,21(1):90~94
    [76]李明刚,但野利秋,分泌性磷酸酶既有计算与根际分布状况的初步研究,烟台大学学报,1998,11(1):41~47
    [77]史红星,刘慧娟,曲久辉等,富营养化水体中微囊藻细胞碎屑对氨氮的吸附特性,环境化学,2005,24(3):241~244
    [78]Yenkie M K N, Natarajan G S, Adsorption equilibrium studies of some aqueous aromatic pollutants on granule activated carbon samples, Science and Technology, 1991, 26(5): 661~674
    [79]Lopez P, Lluch X, Vidal M, et al, Adsorption of Phosphorus on Sediments of the Balearic Islands(Spain) Related to Their Composition, Estuarine, Coastal and Shelf Science, 1996(42): 185~196
    [80]王庭键,苏睿,城市富营养湖泊沉积物中磷负荷及其释放对水质的影响,环境科学研究,1997,7(4):12~19
    [81]Yenkie M K N, Natarajan G S, Adsorption equilibrium studies of some aqueous aromatic pollutants on granule activated carbon samples, Science and Technology, 1991, 26(5): 661~674
    [82]常学礼,赵爱芬,李胜功等,科尔沁沙地固定沙地植被物种多样性对降水变化的响应,植物生态学报,2000,24(2):147~151
    [83]侯宪文,张鸾,李美清,腐殖酸类物质对土壤磷形态的影响,山西农业大学学报,2005(03):255~256
    [84]戴树桂,环境化学,北京:高等教育出版社,1997,158
    [85]杨红,黄焕忠,植物根系分泌物中有机酸的分析方法,分析测试学报,2001, 20(4):19~22
    [86]田中民,根系分泌物在植物磷营养中的作用,咸阳师范学院学报,2001(12):60~63
    [87]Jason C White, MaryJane Incorvia Mattina, Role of organic acids in enhancing the desorption and uptake of weathered p,p’-DDE by Cucurbita pepo, Environmental Pollution, 2003 (124): 71~80
    [88]Hoffland E, Findenegg G R, Nelemans J N, Solubilization of rock phosphate by rapeⅡLocal root exudation of organic acids as a response to P-starvation, Plant and soil, 1989(113): 161~165
    [89]Gardner W K, Parbery D G, Barber D A, The acquisition of phosphorus by lupinus albus L, The probable mechanism by which phosphorus movement in the soil/root interface is enhanced, Plant and Soil, 1983, 70: 107~124
    [90]Jones D L, Organic acids in the rhizosphere-a critical review, Plant and Soil, 1998, 205: 25~29

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700