光谱解析低温等离子体中O_2,N_2,CO_2的活性中间体及其环境化学行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低温等离子体技术在处理密闭舱室中低浓度、大气量、多品种有机污染物和分解CO2制氧气方面具有特殊的优势,但仍然面临着难以解决的问题:抑制有害副产物的生成和提高反应的选择性。要解决这些问题需要系统研究等离子体化学反应机理,需要搞清放电体系中各种气体组份的变化特征以及相互作用规律。
     本文以低温等离子体处理密闭舱室有机污染物时最常用的空气分子O2、N2、N2/O2、CO2等为放电体系,以大气压介质阻挡放电为等离子体产生方式,以放电时各种活性基团产生的发射光谱为主要研究手段,研究放电过程中产生的活性基团的类型、能量特征、化学活性、浓度变化规律和相互之间的化学反应过程。
     研究表明:
     1、氧气介质阻挡放电时产生的活性基团主要是各种能量在9.15~15.78 eV之间的激发态氧原子、激发态氧分子和能量高于15 eV的氧分子离子,当氧气中含有少量水蒸气时还会产生OH自由基和能量更高的激发态O+离子;这些活性物种的形成涉及氧气分子的激发、离解和电离等多种过程,氧分子激发产生的亚稳态及离解产生的氧原子是导致氧气电离激发和一系列高激发态氧原子生成的主要因素,这些活性基团是氧化分解气态有机污染物时最主要的氧化剂和能量来源;
     2、氮气放电时活性物种主要是能量在6至11 eV的不同激发态氮气分子及少量的N2+、NO和激发态N原子,增大放电频率能减少基态和激发态的NO浓度;
     3、N2/O2混合放电时,随着氧气含量的增加,五重态氮分子和NO迅速减少,而高能量、高活性的的浓度明显增大,同时电子温度也明显升高,因此,N2/O2混合气体提供的更多高能量活性基团和高能量电子有利于提高处理污染物的效率;
     4、CO2放电时活性基团主要是激发态CO、CO2+以及O原子,在常压介质阻挡放电这种温和的实验条件下,CO2分子也能够分解为CO、C和O2;
     5、量子化学计算表明,CO2在放电中存在三种分解途径,其中三重态分解途径能垒最低,是低能量放电体系中最可能的分解途径。
Although low temperature plasma has great advantage in treating gaseous organic pollutants, which are low in concentration, great in quantity, numerous in varieties, and oxygen generating by decomposing CO2. Some solved difficultly problems are still existing. They are how to inhibit harmful byproducts and enhance selectivity of reactions. There are some subjects, such as the mechanism of plasma chemical reaction, the change laws of gas components, and the rule of reactions of active species.
     The main purposes in this thesis are going to study the varieties, energy characteristics, chemical activity, the change laws in concentration, and chemical reactions of active species generated in discharges. The main researches are arranged following.
     1. The active species in oxygen dielectric barrier discharge mainly were excited oxygen atoms (9.15~15.78 eV), excited oxygen molecules and oxygen molecular ions (>15 eV). The OH Free Radical and more energic oxygen ions O+ exist in damp oxygen DBD. It has been affirmed that the oxygen atom dissociated from molecule one is the dominant species to producing a serial of higher excited state of oxygen atom and the ionized oxygen molecules.
     2. The active species in DBD of oxygen mainly were various excited nitrogen molecules (6~11 eV) and a spot of N2+, NO, excited nitrogen atoms. The concentration of NO was decreased by increasing the dischare frequency.
     3. In DBD of the N2/O2 mixture, with increasing concentration of oxygen, the quintuple states nitrogen molecules and NO were decreasing quickly, and the concentration of was increased obviously, and the electron temperature was ncreased markedly. Therefore, the many more energic active species and energic electron generated in N2/O2 discharge were beneficial to enhance the efficiency of treating pollutants.
     4. The active species in DBD of CO2 mainly were excited CO, CO2+ and O. Carbon dioxide can be decomposed into carbon monoxide, oxygen and carbon in DBD that is a gentle discharge.
     5. The results of Quantum Chemistry Calculation showed that the triplet states decomposing path was the most possible in low energy discharge systems.
引文
1.池凤东,美国潜艇空气取样和分析.国外舰船, 1982(1): p. 24.
    2.王腾蛟,潜艇空气污染物定性分析研究.解放军预防医学杂志, 1988(1): p. 24-28.
    3.刘洪林, 403潜艇长航90昼夜舱室有害气体定量检测.海军军事医学, 1988(2).
    4.周升如,马健, and王少波,密闭空间空气中有机物的色/质谱定性分析研究.分析化学, 1991(19): p. 1115-1121.
    5. Fridman, A., A. Chirokov, and A. Gutsol, Non-thermal atmospheric pressure discharges. Journal of Physics D: Applied Physics, 2005. 38(2).
    6. Kogelschatz, U., Filamentary, patterned, and diffuse barrier discharges. IEEE Transactions on Plasma Science, 2003. 30(4): p. 1400 - 1408.
    7. Goto, N. and S. Kudo, C6H6 decomposition using barrier discharge- Estimation of reaction processes in Ar at low O2 concentrations. IEEJ Transactions on Fundamentals and Materials, 2006. 126(5): p. 321-327.
    8. Subrahmanyam, C., et al., Catalytic abatement of volatile organic compounds assisted by non-thermal plasma. Part 1. A novel dielectric barrier discharge reactor containing catalytic electrode. Applied Catalysis B: Environmental, 2006. 65(1-2): p. 150-156.
    9. Malik, M.A., Y. Minamitani, and K.H. Schoenbach, Comparison of catalytic activity of aluminum oxide and silica gel for decomposition of volatile organic compounds (VOCs) in a plasmacatalytic reactor. IEEE Transactions on Plasma Science, 2005. 33(1 1): p. 50-56.
    10. Lee, B.Y., et al., Decomposition of benzene by using a discharge plasma-photocatalyst hybrid system. Catalysis Today, 2004. 93-95: p. 769-776.
    11. Oda, T., Decomposition of dilute trichloroethylene by using nonthermal plasma processing frequency and catalyst effects. IEEE Trans. Ind. Appl., 2001. 37: p. 965-970.
    12. Ogata, A. and N. Shintani, Decomposition of benzene using a nonthermal plasma reactor packed with ferroelectric pellets. IEEE Trans. Ind. Appl., 1999. 35(4): p. 753-759.
    13.蒋洁敏,侯键, and郑光云,介质阻挡放电常压分解苯、二甲苯.中国环境科学, 2001. 21(6): p. 531-534.
    14. Lee, H.M. and M.B. Chang, Abatement of Gas-phase p-Xylene via Dielectric Barrier Discharges. Plasma Chemistry and Plasma Processing, 2003. 23(3): p. 541-558.
    15. Evans., D., Plasma remediation of trichloroethylene in silent discharge plasma. J. Apple. Phys., 1993. 74(9): p. 5378-5386.
    16. Ogata, A., et al., Decomposition of Benzene in Air in a Plasma Reactor: Effect of Reactor Type and Operating Conditions. Plasma Chemistry and Plasma Processing, 2002. 22(4): p. 537-551.
    17. Oda, T., Nonthermal plasma processing for dilute VOCs decomposition. IEEE Trans. Ind. Appl., 2002. 38: p. 873-878.
    18. Yuranov, I., A. Renken, and L. Kiwi-Minsker, Zeolite/sintered metal fibers composites as effective structured catalysts. Applied Catalysis A: General, 2005. 281(1-2): p. 55-60.
    19. Subrahmanyam, C., A. Renken, and L. Kiwi-Minsker, Catalytic abatement of volatile organic compounds assisted by non-thermal plasma. Part II. Optimized catalytic electrode and operating conditions. Applied Catalysis B: Environmental, 2006. 65(1-2): p. 157-162.
    20. Yamamoto, T., VOC decomposition by nonthermal plasma processing-a new approach. Journal of Electrostatics, 1997. 42: p. 227-238.
    21. Lyon, R., Thermal De-NOx Controlling Nitrogen Oxides Emissions by a Noncatalytic Process. Environmental Science and Technology, 1987. 21(3): p. 231-236.
    22. Zhu, A.M., et al., Conversion of NO in NO/N2, NO/O2/N2, NO/C2H4/N2 and NO/C2H4/O2/N2 systems by dielectric barrier discharge plasmas. Plasma Chemistry and Plasma Processing, 2005. 25(4): p. 371-386.
    23. Shimizu, K., De-NOx process in flue gas combined with nonthermal plasma and catalyst. IEEE Trans. Ind. Appl., 1999. 35: p. 1311-1317.
    24. Li, D. and Yakushiji, Decomposition of toluene by streamer corona discharge with catalyst. J. Electrostatics, 2002. 55: p. 311-319.
    25. Mok, Y.S., et al., Abatement of Nitrogen Oxides in a Catalytic Reactor Enhanced by Nonthermal Plasma Discharge. IEEE transactions on plasma scienc, 2003. 31(1): p. 157-165.
    26. Rajanikanth, B.S. and S. Rout., Studies on nitric oxide removal in simulated gas compositions under plasma dielectric catalytic discharges. Fuel Processing Technology, 2001. 74: p. 177-195.
    27. Istadi, N.A.S.A., Co-generation of synthesis gas and C2+ hydrocarbons from methane and carbon dioxide in a hybrid catalytic-plasma reactor: A review. Fuel, 2006. 85: p. 577-592.
    28. Eliasson, B., L. C.-J., and U. Kogelschatz, Direct conversion of methane and carbon dioxide to higher hydrocarbons using catalytic dielectric-barrier discharges with zeolites. Industrial & engineering chemistry research, 2000. 39(5): p. 1221-1227.
    29. Lee, H., et al., The effect of the electric pulse polarity on CO2 reforming of CH4 using dielectric barrier discharge. Energy and Fuels, 2007. 21(1): p. 23-29.
    30. Cheng, D.-g., et al., Carbon dioxide reforming of methane over Ni/Al2O3 treated with glow discharge plasma. Catalysis Today, 2006. 115: p. 205-210.
    31. Malik, M.A. and X.Z. Jiang, The CO2 reforming of natural gas in a pulsed corona discharge reactor. Plasma Chem Plasma Process, 1999. 19(4): p. 505-512.
    32. Amin, N.A.S. and T.C. Yaw, Thermodynamic equilibrium analysis of combined carbon dioxide reforming with partial oxidation of methane to syngas. International Journal of Hydrogen Energy, 2007. 32(12): p. 1789-1798.
    33. Song, H.K., et al., Effect of electrical pulse forms on the CO2 reforming of methane using atmospheric dielectric barrier discharge. Plasma Chemistry and Plasma Processing, 2004.
    24(1): p. 57-72.
    34. Li, M.W., Y.L. Tian, and G.H. Xu, Characteristics of carbon dioxide reforming of methane via alternating current (AC) corona plasma reactions. Energy and Fuels, 2007. 21(4): p. 2335-2339.
    35. Indarto, A., et al., Gliding arc plasma processing of CO2 conversion. Journal of Hazardous Materials, 2007. 146(1-2): p. 309-315.
    36. Indarto, A., et al., Conversion of CO2 by gliding Arc plasma. Environmental Engineering Science, 2006. 23(6): p. 1033-1043.
    37. Dey, G.R., et al., Dielectric Barrier Discharge Initiated Gas-Phase Decomposition of CO2 to CO and C6–C9 Alkanes to C1–C3 Hydrocarbons on Glass, Molecular Sieve 10X and TiO2/ZnO Surfaces. Plasma Chem Plasma Process, 2007. 27: p. 669-678.
    38. Yamamoto, A., S. Mori, and M. Suzuki, Scale-up or numbering-up of a micro plasma reactor for the carbon dioxide decomposition. Thin Solid Films, 2007. 515(9): p. 4296-4300.
    39. Buser, R.G. and J.J. Sullivan, Initial processes in CO2 glow discharges. J. Appl. Phys., 1970. 41(2): p. 472-479.
    40. Brock, S.L., et al., Factors Influencing the Decomposition of CO2 in AC Fan-Type Plasma Reactors: Frequency, Waveform, and Concentration Effects. Journal of Catalysis, 1999. 184: p. 123-133.
    41. Wang, J.-Y., et al., CO2 Decomposition Using Glow Discharge Plasmas. Journal of Catalysis, 1999. 185: p. 152-159.
    42. Brock, S.L., et al., Plasma Decomposition of CO2 in the Presence of Metal Catalysts. Journal of Catalysis, 1998. 180(2): p. 225-233.
    43. Wen, Y. and X. Jiang, Decomposition of CO2 Using Pulsed Corona Discharges Combined with Catalyst. Plasma Chemistry and Plasma Processing, 2001. 21(4): p. 665.
    44.白敏冬and白希尧,超高压脉冲电晕放电分解CO2气体研究.中国科学:B辑, 1995. 40(3): p. 240-242.
    45. Morvová, M., DC corona discharges in CO2/air and CO/air mixtures for various electrode materiala. J. Phys. D: Appl.Phys., 1998. 31(15): p. 1865-1874.
    46. Maezono, I. and J. Chang, Reduction of CO2 from combustion gases by DC corona torches. IEEE Trans. Ind. Appl., 1990. 26(4): p. 651-655.
    47. Jogan, K., A. Mizuno, and T. Yamamoto, The effect of residengce time on the CO2 reduction from combustion flue gases by an AC feeoelectric packed bed reactor. IEEE Trans. Ind. Appl., 1993. 29(5): p. 876-881.
    48. Janda, M., et al., Study of plasma induced chemistry by DC discharges in CO2/N2/H2O mixtures above a water surface. Origins of Life and Evolution of Biospheres, 2008. 38(1): p. 23-35.
    49. Hayashi, N., T. Yamakawa, and S. Baba, Effect of additive gases on synthesis of organic compounds from carbon dioxide using non-thermal plasma produced by atmospheric surfacedischarges. Vacuum, 2006. 80(11-12): p. 1299-1304.
    50. Nersisyan, G. and W.G. Graham, Characterization of a dielectric barrier discharge operating in an open reactor with flowing helium. Plasma Sources Sci. Technol. , 2004. 13: p. 582-587.
    51.国家自然科学基金委员会,等离子体物理学. 1994,北京:科学出版社.
    52. Yurgelenas, Y.V. and H.E. Wagner, A computational model of a barrier discharge in air at atmospheric pressure: The role of residual surface charges in microdischarge formation. Journal of Physics D: Applied Physics, 2006. 39(18): p. 4031-4043.
    53. Panousis, E., et al., Numerical modelling of an atmospheric pressure dielectric barrier discharge in nitrogen: Electrical and kinetic description. Journal of Physics D: Applied Physics, 2007. 40(14): p. 4168-4180.
    54. Georghiou, G.E., et al., Numerical modelling of atmospheric pressure gas discharges leading to plasma production. Journal of Physics D: Applied Physics, 2005. 38(20).
    55. Fang, Z., et al., Factors influencing the existence of the homogeneous dielectric barrier discharge in air at atmospheric pressure. J. Phys. D: Appl. Phys. , 2007. 40: p. 1401-1407.
    56. Jozef, R. and M.S. Daniel, The transition from a filamentary dielectric barrier discharge to a diffuse barrier discharge in air at atmospheric pressure. Journal of Physics D: Applied Physics, 2005. 38(4): p. 547-554.
    57. Rat, V., Two-Temperature Transport Coefficients in Argon/Hydrogen Plasma:I:Elastic Processes and Collision Integrals. Plasma Chem. and Plasma Proc., 2002. 22(4): p. 453-473.
    58. Sieck, L.W., J.T. Herron, and D.S. Green., Chemical Kinetics Database and Predictive Schemes for Humid Air Plasma Chemistry. Part I:Positive Ion–Molecule Reactions. Plasma Chemistry and Plasma Processing, 2000. 20(2): p. 235-258.
    59. Herron, J.T. and D.S. Green, Chemical Kinetics Database and Predictive Schemes for Nonthermal Humid Air Plasma Chemistry. Part II. Neutral Species Reactions. Plasma Chemistry and Plasma Processing, 2001. 21(3): p. 459-481.
    60. Y.Sakai, Database in low temperature plasma modeling. Appl. surface sci., 2002. 192: p. 327-338.
    61. Sjoberg, M., et al., Experimental study and numerical modeling of a dielectric barrier discharge in hybrid air-dielectric insulation. Journal of Electrostatics, 2003. 59: p. 87-113.
    62. Wendt, R. and H. Lange., The density and decay of metastable Xe(3P2) and resonance Xe(3P1) atoms in a single filament of a dielectric barrier discharge. J. Phys. D:Appl. Phys. , 1998. 31: p. 3368-3372.
    63. Hilbert, C., I. Gaurand, and O. Motret, [OH(X)] measurements by resonant absorption spectroscopy in a pulsed dielectric barrier discharge. J. Appl. Phys., 1999. 85: p. 7070-7075.
    64. Lukas, C. and M. Spaan, Dielectric barrier discharges with steep voltage rise:mapping of atomic nitrogen in single filaments measured by laser-induced fluorescence spectroscopy. Plasma Sources Sci. Technol., 2001. 10: p. 445-450.
    65. Kozlov, K.V., et al., Spatio-temporally resolved spectroscopic diagnostics of the barrier discharge in air at atmospheric pressure. J. Phys. D:Appl. Phys., 2001: p. 3164-3176.
    66. Kunze, K., et al., Diode laser-aided diagnostics of a low-pressure dielectric barrier discharge applied in element-selective detection of molecular species. Spectrochimica Acta B, 2002. 57: p. 137-146.
    67. Motret, O., et al., Rotational temperature measurements in atmospheric pulsed dielectric barrier discharge - gas temperature and molecular fraction effects. Journal of Physics D: Applied Physics, 2000(12): p. 1493-1498.
    68. Spaan, M., et al., Dielectric barrier discharges with steep voltage rise:laser absorption spectroscopy of NO concentrations and temperatures. Plasma Sources Sci. Technol., 2000. 9: p. 146-151.
    69. Bibinov, N.K., A.A. Fateev, and K. Wiesemann, Variations of the gas temperature in He/N2 barrier discharges. Plasma Sources Sci. Technol., 2001. 10: p. 579-588.
    70. Oda, T. and T. Takahashi, Decomposition of flurocarbon gaseous contaminants by surface discharge induced plasma chemical processing. IEEE Trans. Ind. Applicat., 1993. 29: p. 787-792.
    71. Ono, R. and T. Oda, Measurement of hydroxyl radicals in a pulse corona discharge. J. Electrostatics, 2002. 55: p. 333-342.
    72. Petrov, G.M., et al., Kinetic pathways to visible emission from a moly--oxide--argon discharge bulb. Journal of Applied Physics, 2004. 95(10): p. 5284-5294.
    73. Braginskiy, O.V., et al., Singlet oxygen generation in O2 flow excited by RF discharge: I.Homogeneous discharge mode. Journal of Physics D: Applied Physics, 2005. 38(19): p. 3609-3625.
    74. Touzeau, M., et al., Spectroscopic temperature measurements in oxygen discharges. Journal of Physics D: Applied Physics, 1991. 24(1): p. 41-47.
    75. Luque, J., et al., Gas temperature measurement in CH4 /CO2 dielectric-barrier discharges by optical emission spectroscopy. Journal of Applied Physics, 2003. 93(8): p. 4432-4438.
    76. Biloiu, C., et al., An alternative method for gas temperature determination in nitrogen plasmas: Fits of the bands of the first positive system (B3Πg-A3Σu+). Journal of Applied Physics, 2007. 101(7): p. 073303.
    77. Pellerin, S., et al., A spectroscopic diagnostic method using UV OH band spectrum. Journal of Physics D: Applied Physics, 1996. 29(3): p. 726-739.
    78. Charles de, I., UV OH spectrum used as a molecular pyrometer. Journal of Physics D: Applied Physics, 2000(14): p. 1697-1704.
    79. Gherardi, N., et al., Transition from glow silent discharge to micro-discharges in nitrogen gas. Plasma Sources Science and Technology, 2000(3): p. 340.
    80. Cernogora, G., et al., Population of N2(A3Σu+) metastable states in a pure nitrogen glow discharge. Journal of Physics B: Atomic and Molecular Physics, 1981. 14(16): p. 2977-2987.
    81. Moore, C.E., Selcted Table of Atomic Spectra. 1976, Washington, D.C.: Office of Standard Reference Data.
    82. Herzberg, G., Molecular Spectra and Molecular Structure. 1966, New York: Litton Educational Publishing Inc.
    83. Slanger, T.G. and R.A. Copeland, Energetic oxygen in the upper atmosphere and the laboratory. Chemical reviews, 2003. 103(12): p. 4731-4766.
    84. Dieke, G.H. and H.D. Babcock, The Structure of the Atmospheric Absorption Bands of Oxygen. Proceedings of the National Academy of Sciences of the United States of America, 1927. 13(9): p. 670-678.
    85. Bucholtz, A., et al., The dayglow of the O2 atmospheric band system. Planetary and Space Science, 1986. 34(11): p. 1031-1035.
    86. Witt, G., et al., A measurement of the O2(b1Σg+-X3Σg-) atmospheric band and the O I(1S) green line in the nightglow. Planetary and Space Science, 1979. 27(4): p. 341-350.
    87. Stam, D.M., et al., A fast method for simulating observations of polarized light emerging from the atmosphere applied to the oxygen-A band. Journal of Quantitative Spectroscopy & Radiative Transfer, 2000. 64(2): p. 131-149.
    88. Kokhanovsky, A.A., et al., The influence of broken cloudiness on cloud top height retrievals using nadir observations of backscattered solar radiation in the oxygen A-band. Journal of Quantitative Spectroscopy and Radiative Transfer, 2007. 103(3): p. 460-477.
    89. Herman, R.C., et al., Photographic Infra Red Emission Bands of O from the CO/O Flame. The Journal of Chemical Physics, 1949. 17(2): p. 220-221.
    90. George, A.H. and S.H. Helen, Spectroscopic Investigation of the Carbon Monoxide Oxygen Reaction. The Journal of Chemical Physics, 1949. 17(10): p. 982-987.
    91. Cheah, S.-L., Y.-P. Lee, and J.F. Ogilvie, Wavenumbers, strengths, widths and shifts with pressure of lines in four bands of gaseous 16O2 in the systems a1and b1. Journal of Quantitative Spectroscopy and Radiative Transfer, 2000. 64(5): p. 467-482.
    92. Xi-Ming, Z. and P. Yi-Kang, Determining the electron temperature in inductively coupled nitrogen plasmas by optical emission spectroscopy with molecular. Physics of Plasmas, 2005. 12(10): p. 103501.
    93. Pearse, R.W.B. and A.G. Gaydon, The indentification of molecular spectra. 4th ed. 1976, London: Chapman and Hall.
    94. Gudmundsson, J.T. and E.G. Thorsteinsson, Oxygen discharges diluted with argon: Dissociation processes. Plasma Sources Science and Technology, 2007. 16(2): p. 399-412.
    95. Cohen, N. and K.R. Westberg, Chemical Kinetic Data Sheets for High-Temperature Chemical Reactions. Journal of Physical and Chemical Reference Data, 1983. 12(3): p. 531-590.
    96. Ionin, A.A., et al., Physics and engineering of singlet delta oxygen production in low-temperature plasma. Journal of Physics D: Applied Physics, 2007. 40(2): p. R25-R61.
    97. Vasiljeva, A.N., et al., On the possibility of O2(a1Δg) production by a non-self-sustained discharge for oxygen-iodine laser pumping. Journal of Physics D: Applied Physics, 2004. 37(17): p. 2455-2468.
    98. Atkinson, R., et al., Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry: Supplement VI. IUPAC Subcommittee on Gas Kinetic Data Evaluation for AtmosphericChemistry. Journal of Physical and Chemical Reference Data, 1997. 26(6): p. 1329-1499.
    99. Clark, I.D. and R.P. Wayne, The reaction of O2(1Δg) with atomic nitrogen and with atomic oxygen. Chemical Physics Letters, 1969. 3(6): p. 405-407.
    100. Gordiets, B.F., et al., Kinetic model of a low-pressure N2/O2 flowing glow discharge. Plasma Science, IEEE Transactions on, 1995. 23(4): p. 750-768.
    101. Schofield, K., Critically evaluated rate constants for gaseous reactions of several electronically excited species. Journal of Physical and Chemical Reference Data, 1979. 8(3): p. 723-798.
    102. Kenner, R.D. and E.A. Ogryzlo, Rate constant for the deactivation of O2 (A3Σu+) by N2. Chemical Physics Letters, 1983. 103(3): p. 209-212.
    103. Cosby, P.C., Electron-impact dissociation of oxygen. The Journal of Chemical Physics, 1993. 98(12): p. 9560-9569.
    104. Johnson, P.V., et al., Low energy differential and integral electron-impact cross sections for the 2s2p4 3P→2p33s 3So excitation in atomic. Journal of Physics B: Atomic, Molecular and Optical Physics, 2003. 36(21): p. 4289-4299.
    105. Zatsarinny, O. and S.S. Tayal, Low-energy electron collisions with atomic oxygen: R-matrix calculation with non-orthogonal orbitals. Journal of Physics B: Atomic, Molecular and Optical Physics, 2001. 34(7): p. 1299-1319.
    106.吴建华and袁建民,慢电子与氧原子之间相互作用-光分解和散射的研究.计算物理, 2004. 21(4): p. 299-304.
    107. Brandenburg, R., et al., Diffuse barrier discharges in nitrogen with small admixtures of oxygen: discharge mechanism and transition to the filamentary. Journal of Physics D: Applied Physics, 2005. 38(13): p. 2187-2197.
    108. Krishnakumar, E. and S.K. Srivastava, Cross-sections for electron impact ionization of O2. International Journal of Mass Spectrometry and Ion Processes, 1992. 113(1): p. 1-12.
    109. Heidner III, R.F., et al., Temperature dependence of O2(1Δ)+O2(1Δ) and I(2P1/2)+O2(1Δ) energy pooling. The Journal of Chemical Physics, 1981. 74(10): p. 5618-5626.
    110. Kenner, R.D. and E.A. Ogryzlo, Can. J. Chem., 1983. 61: p. 921.
    111. Kogelschatz, U., Dielectric-barrier discharges: Their History, Discharge Physics, and Industrial Applications. Plasma Chemistry and Plasma Processing, 2003. 23(1): p. 1-46.
    112. Brandenburg, R., et al., Diffuse barrier discharges in nitrogen with small admixtures of oxygen: discharge mechanism and transition to the filamentary regime. J. Phys. D: Appl. Phys. , 2005. 38(13): p. 2187-2197
    113. Piper, L.G., The excitation of N2(B3Πg, v=1-12) in the reaction between N2(A3Σu+) and N2(X, v≥5). The Journal of Chemical Physics, 1989. 91(2): p. 864-873.
    114. Thomas, J.M. and F. Kaufman, Rate constants of the reactions of metastable N2(A3Σu+) in v=0, 1, 2, and 3 with ground state O2 and O. The Journal of Chemical Physics, 1985. 83(6): p. 2900-2903.
    115. Garscadden, A. and R. Nagpal, Non-equilibrium electronic and vibrational kinetics in H2-N2 and H2 discharges. Plasma Sources Science and Technology, 1995. 4(2): p. 268-280.
    116. Piper, L.G., State-to-state N2(A3Σu+ ) energy-pooling reactions. I. The formation of N2(C3Πu) and the Herman infrared system. The Journal of Chemical Physics, 1988. 88(1): p. 231-239.
    117. Piper, L.G., State-to-state N2(A3Σu+) energy pooling reactions. II. The formation and quenching of N2(B3Πg, v=1-12). The Journal of Chemical Physics, 1988. 88(11): p. 6911-6921.
    118. Piper, L.G., State-to-state N2(A3Σu+ ) energy-pooling reactions. I. The formation of N2(C3Πu) and the Herman infrared system. The Journal of Chemical Physics, 1988. 88(1): p. 231-239.
    119. S P Brühl, et al., A study by emission spectroscopy of the active species in pulsed DC discharges. J. Phys. D: Appl. Phys., 1997. 30(21): p. 2917-2922.
    120. Lofthus, A. and P.H. Krupenie, The spectrum of molecular nitrogen. J Phys Chem Ref Data, 1977. 6(1): p. 113-307.
    121. Clark, W.G. and D.W. Setser, Energy transfer reactions of N2(A3Σu+). 5. Quenching by hydrogen halides, methyl halides, and other molecules. Journal of Physical Chemistry, 1980. 84(18): p. 2225-2233.
    122. Herman, R., Compt. Rend. Acad. Sci.Paris, 1951. 233: p. 738.
    123. Carroll, P.K. and N.D. Sayers, The Band Spectrum of Nitrogen: New Studies of the Triplet Systems. PROC. PHYS. SOC. , 1953. 66(1-A): p. 1138-1144.
    124. Partridge, H., et al., Theoretical study of the A' 5Σg+ and C"5Πui states of N2: Implications for the N2 afterglow. The Journal of Chemical Physics, 1988. 88(5): p. 3174-3186.
    125. Huber, K.P. and M. Vervloet, Rotational analysis of the Herman infrared bands of nitrogen. The Journal of Chemical Physics, 1988. 89(9): p. 5957-5959.
    126. Young, R.A. and R.D. Bower, Searching for the N2(A' 5Σg+) state. The Journal of Chemical Physics, 1990. 92(3): p. 1617-1619.
    127. ?imek, M., et al., Observation of the N2 Herman infrared system in pulsed positive streamer induced emission at atmospheric pressure. Journal of Physics D: Applied Physics, 2001. 34(21): p. 3185-3190.
    128. Pirali, O. and D.W. Tokaryk, Experimental determination of a spin-orbit interval in the C" 5Πui state of 14N2. The Journal of Chemical Physics, 2006. 124(8): p. 081102.
    129. Pirali, O. and D.W. Tokaryk, Optogalvanic spectroscopy of the N2 C" 5Πui - A' 5Σg+ electronic system of N2. The Journal of Chemical Physics, 2006. 125: p. 204308.
    130. Ullas, G. and S. Rai, Laser optogalvanic and emission spectrum of N2 in the 5400–6150 ? region. Pramana, 1991. 36(6): p. 647-656.
    131. Aho, K., et al., Observation of dominant emission of the Gaydon-Herman green system in dense nitrogen excited by energetic ions. Journal of physics. B. Atomic, molecular and optical physics 1994. 27(16): p. L525-L528
    132. Britun, N., et al., Determination of the vibrational, rotational and electron temperatures in N2 and Ar/N2 rf discharge. Journal of Physics D: Applied Physics, 2007(4): p. 1022.
    133. Akatsuka, H., Plasma diagnostics in plasma processing for nanotechnology and nanolevel chemistry. Science and Technology of Advanced Materials, 2004. 5(5-6): p. 651-655.
    134. Piper, L.G., The excitation of N(2P) by N2(A3Σu+, v'=0,1). The Journal of Chemical Physics, 1989. 90(12): p. 7087-7095.
    135. Gordiets, B., et al., Self-consistent kinetic model of low-pressure - flowing discharges: I. Volume processes. Plasma Sources Science and Technology, 1998(3): p. 363.
    136. Luque, J. and D.R. Crosley, Transition probabilities and electronic transition moments of the A2Σ+-X2Πand D2Σ+-X2Πsystems of nitric oxide. The Journal of Chemical Physics, 1999. 111(16): p. 7405-7415.
    137. Morrill, J.S. and W.M. Benesch, Role of N2 (A'5Σg+) in the enhancement of N2 B3Πg(v=10) populations in the afterglow. The Journal of Chemical Physics, 1994. 101(8): p. 6529-6537.
    138. Golde, M.F., Int. J. Chem. Kinet., 1988(20): p. 75-92.
    139. Piper, L.G., The excitation of O(1S) in the reaction between N2(A3Σu+) and O(3P). The Journal of Chemical Physics, 1982. 77(5): p. 2373-2377.
    140. Cao, D.Z. and D.W. Setser, Energy-transfer reaction of nitrogen (A3Σu+) to sulfur monoxide and other diatomic and polyatomic molecules. Journal of Physical Chemistry, 1988. 92(5): p. 1169-1178.
    141. Babayan, S.E., G. Ding, and R.F. Hicks, Determination of the nitrogen atom density in the afterglow of a nitrogen and helium, nonequilibrium, atmospheric pressure plasma. Plasma Chemistry and Plasma Processing, 2001. 21(4): p. 505-521.
    142. ?imek, M., Determination of N2(A3Σu+) metastable density produced by nitrogen streamers at atmospheric pressure: 1. Design of diagnostic. Plasma Sources Science and Technology, 2003. 12(3): p. 421-431.
    143. Young, R.A. and G.A.S. John, Experiments on N2(A3Σu+). II. Excitation of NO. The Journal of Chemical Physics, 1968. 48(2): p. 898-900.
    144. Dilecce, G., P.F. Ambrico, and S.D. Benedictis, N2(A3Σu+) density measurement in a dielectric barrier discharge in N2 and N2 with small O2 admixtures. Plasma Sources Science and Technology, 2007(3): p. 511.
    145. Kossyi, I.A., et al., Plasma Sources Sci. Technol. , 1992(1): p. 207-20.
    146. Kossyi, I.A., et al., Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures. Plasma Sources Sci. Technol. , 1992(1): p. 207-20.
    147. Iannuzi, M.P., J.B. Jeffries, and F. Kaufman, Product Channels of the N2 (A) + O2 interaction. Chemical Physics Letters, 1982. 87(6): p. 570-574.
    148. Fraser, M.E. and L.G. Piper, Product branching ratios from the nitrogen (A3Σu+) + oxygen interaction. Journal of Physical Chemistry, 1989. 93(3): p. 1107-1111.
    149. Costel, B., et al., Determination of rotational and vibrational temperatures of a nitrogen helicon plasma. Review of Scientific Instruments, 2006. 77(10F): p. 117.
    150. Marinelli, W.J., et al., The stability of N2 (A' 5Σg+). The Journal of Chemical Physics, 1990. 92(3): p. 1796-1803.
    151. Oldman, R.J. and H.P. Broida, Effect of Oxygen and Hydrogen Atoms on the VibrationalDistribution of N2(B3Πg) in the Nitrogen Afterglow. The Journal of Chemical Physics, 1969. 51(5): p. 2254-2258.
    152. Risto Oikari, V. Hayrinen, and R. Hernberg, Influence of N–O chemistry on the radiative emission from a direct current nitrogen plasma jet. J. Phys. D: Appl. Phys. , 2002. 35: p. 1109–1116.
    153. Ono, R. and T. Oda, Nitrogen oxideγ-band emission from primary and secondary streamers in pulsed positive corona discharge. Journal of Applied Physics, 2005. 97(1): p. 013302-4.
    154. Simek, M., et al., Excitation of N2(C3Πu) and NO(A2Σ+) states in a pulsed positive corona discharge in N2, N2-O2 and -NO mixtures. J. Phys. D: Appl. Phys, 1998. 31: p. 2591-2602.
    155. Kovacs, I., Rotational Structure in the Spectra of Diatomic Molecules. 1969, London: Adam Hilger Ltd.
    156. Hartmann, G. and P.C. Johnson, Measurements of relative transition probabilities and the variation of the electronic transition moment for N2 C3Πu -B3Πg second positive system. J. Phys. B: At. Mol. Phys. , 1978. 11(9): p. 1597.
    157. Moon, S.Y., W. Choe, and B.K. Kang, A uniform glow discharge plasma source at atmospheric pressure. Applied Physics Letters, 2004. 84(2): p. 188-190.
    158. Endoh, M., M. Tsuji, and Y. Nishamura, CO2+(A-X and B-X) emissions resulting from the He(23S) +CO2 Penning ionization. J. Chem. Phys., 1982. 77(7): p. 4027.
    159. Johnson, M.A. and R.N. Zare, Resolution of the A/B photoionization branching ratio paradox for the 12CO2+ B(000) state. J. Chem. Phys., 1983. 80(6): p. 2407-2428.
    160. Tsuji, M., et al., Nascent rovibrational distribution of CO(A1Π) produced in the recombination of CO2+ with electrons. The Journal of Chemical Physics, 1995. 103(4): p. 1413-1421.
    161. Hokazono, H., et al., Theoretical operational life study of the closed-cycle transversely excited atmospheric CO2 laser. Journal of Applied Physics, 1991. 69(10): p. 6850-6868.
    162. N. Sadeghi, I.C., and J. Stoyanova, Excitation transfer from Kr(5s',3P0) and Kr(5s,3P2) atoms to 12CO and 13CO. J. Chem. Phys., 1995. 102(7): p. 2744-2759.
    163. Brugeat, S. and H. Coitout, Determination of electron density in a wall stabilized Ar–CO2 thermal plasma. Eur. Phys. J. D, 2004. 28: p. 101-107.
    164. Tsuji, M., et al., Decomposition of CO2 into CO and O in a Microwave-Excited Discharge Flow of CO2/He or CO2/Ar Mixtures. Chemistry Letters, 2001: p. 22.
    165. Luque, J., LIFBASE Software 2.0. 2005.
    166. Frisch, M.J., et al., Gaussian 03, Revision C.02,. 2004, Gaussian, Inc.,: Wallingford CT.
    167. Dennington II, R., et al., GaussView,Version 3.09,. 2003, Semichem, Inc.,: Shawnee Mission, KS.
    168.徐克尊,高等原子分子物理学. 2002,北京:科学出版社.
    169. Liu, R., et al., Density Functional Theory Study of Molecular Structures and Vibrational Spectra of 3,4- and 2,3-Pyridyne. 1996. p. 3430-3434.
    170. Hwang, D.Y. and A.M. Mebel, Ab initio study of spin-forbidden unimolecular decomposition of carbon dioxide. Chemical Physics, 2000. 256(2): p. 169-176.
    171.黄整,陈波, and王海松等, CO2热力学性质的量子化学计算.西南师范大学学报(自然科学版), 2005. 30(4): p. 677-681.
    172. Jalbout, A.F., High level ab initio and density functional theory calculations of the dissociation energies, ionization energies, geometrical variations, and vibrational modes of ground and excited CO2, CO2+, and CO22+. International Journal of Quantum Chemistry, 2002. 86(6): p. 541-568.
    173. Herzberg, G., Electronic Spectra and Electronic Structure of Polyatomic Molecules. 1966, Prinseton: Van Nostrand.
    174. Lie, G.C. and E. Clementi, Study of the electronic structure of molecules. XXI. Correlation energy corrections as a functional of the Hartree-Fock density and its application to the hydrides of the second row atoms. The Journal of Chemical Physics, 1974. 60(4): p. 1275-1287.
    175. Huber, K.P. and G. Herzberg, Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules. 1979, New York: Van Nostrand Reinhoid Company.
    176. Eland, J.H.D. and J. Berkowitz, Formation and predissociation of CO2+(C2Σg+), in J. Chem. Phys. ; Vol/Issue: 67:6. 1977: United States. p. Pages: 2782-2787.
    177. Jalbout, A.F., F. Nazari, and L. Turker, Gaussian-based computations in molecular science. Journal of Molecular Structure: THEOCHEM, 2004. 671(1-3): p. 1-21.
    178. Smith, B.J. and L. Radom, An evaluation of the performance of density functional theory, MP2,MP4, F4, G2(MP2) and G2 procedures in predicting gas-phase proton affinities. Chemical Physics Letters, 1994. 231(4-6): p. 345-351.
    179. Barreto, M.T., et al., Gaussian basis sets for CO2 molecule generated with the molecular improved generator coordinate Hartree–Fock method. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), 2005. 113(2): p. 69-72.
    180. Robert J. Buenker, Michael Honigmann, and H.-P. Liebermann, Theoretical study of the electronic structure of carbon dioxide:Bending potential curves and generalized oscillator strengths. JOURNAL OF CHEMICAL PHYSICS, 2000. 113(3): p. 1046-1054.
    181. England, W.B., et al., Ab initio vertical spectra and linear bent correlation diagrams for the valence states of CO2 and its singly charged ions. The Journal of Chemical Physics, 1976. 65(2): p. 684-691.
    182. Kollias, A.C. and W.A. Lester, Quantum Monte Carlo and electron localization function study of the electronic structure of CO2+. Journal of Molecular Structure: THEOCHEM, 2003. 634(1-3): p. 1-9.
    183. Shaw, D.A., et al., A study of vibronic coupling in excited neutral and ionic states of carbon dioxide. Chemical Physics, 2006. 324(2-3): p. 515-526.
    184. Greenwood, N.N. and A. Earnshaw, Chemistry of the Elements. Second Edition ed. 1997, Oxford: Reed Educational and Professional Publishing Ltd.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700