氧化铝沉降槽赤泥分离过程的仿真与实验研究及参数优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
赤泥沉降分离是氧化铝生产工艺中十分关键的工序之一,对氧化铝产品的质量和产量有着重要影响。近年来铝土矿品位的不断降低,导致氧化铝生产中沉降分离工序问题频发,沉降槽的产能及其运行稳定性已经成为制约氧化铝生产的瓶颈之一。因此,全面深入地研究沉降槽及赤泥沉降分离过程,对目前沉降槽产能提升和沉降槽的优化设计具有重要指导意义。
     本文以实际生产中的高效深锥沉降槽为研究对象,从提升絮凝反应效率的角度出发,采用数值计算、实验研究和理论分析的研究方法,对沉降槽内固液两相流动、混合及分离过程进行了深入研究。本研究的主要工作与相关结论如下:
     (1)针对沉降槽赤泥分离过程在国内鲜有研究以及国外研究多属于保密性技术成果这一现状,本文建立了较为完善的可用于研究沉降槽内赤泥分离过程的三维稳态数值模型。利用所建立的数值模型对沉降分离过程进行较系统的模拟计算,通过与测试值的对比验证了计算模型的可靠性与正确性。
     (2)以改善中心桶内赤泥浓度场从而提升絮凝反应效率为出发点,提出了最优固含体积分数的评价指标以及沉降槽进料方式的改造和优化方案。利用本研究所建立的数值模型对优化方案进行数值模拟,并在此基础上对某氧化铝厂沉降槽进行工业改造,获得了理想的经济效益。数值计算结果表明:中心桶内的平均固含由改造前的71.8g·1-1降低到56.8g·1-1,最优絮凝固含的体积分数从改造前的7%提高到了24.3%,能极大促进桶内絮凝反应效率的提升。工业应用结果表明:在进料固含提升10g·1-1的前提下,改造后沉降槽的底流固含较改造前提高了2.4%,溢流浮游物降低了2%,絮凝剂消耗量降低了8.1%,一条生产线每年为生产企业节约成本163.5万元。
     (3)设计并搭建了沉降槽水模型实验平台,提出了有限个颗粒脉冲示踪法,并利用停留时间分布的理论实现了对中心桶内流体流动分布规律的定性和定量研究。实验结果表明:中心桶内同时存在混合流动、不参与主体流动的“死区”和流体“短路”现象,环形挡流板可以有效地减小“短路”现象的发生;中心桶尺寸对中心桶内流体的分布规律有着重要影响。流体的无因次平均停留时间随着中心桶高径比的增大而增加。
     (4)利用非理想流动模型及停留时间数字特征,提出了评价中心桶内物料流动规律的分析方法。以隔室模型为依据,提出了有效流动区域体积分数这一评价指标以评估中心桶内流场分布对絮凝剂与赤泥混合程度的影响。在稳态数值模型的基础上建立了沉降槽中心桶内矿浆混合过程的瞬态数值模型。利用本研究所提出的数值模型、评价方法以及评价指标对不同结构、工艺参数下中心桶内矿浆的流动分布进行计算并对结果进行深入的讨论和分析。仿真结果表明:中心桶内的矿浆流动属于大混合程度的流动,ADM模型参数Pe数介于0.21至3.21之间,TISM模型表明中心桶可近似为1.19至3.44个串联的全混流动釜;结构、工艺参数对中心桶内矿浆流动分布规律有着重要影响,当结构、工艺参数变化时,中心桶内的流动区域之间存在相互转化的关系。
     (5)利用正交试验理论,以有效流动区域体积分数为优化指标,采用数值模拟的方法对影响中心桶内矿浆流动分布规律的5个因素进行了优化研究,得到如下结论:中心桶高度(D)和进料流量(A)对评价指标有着高度显著影响,进料管位置(C)对评价指标有着显著影响,中心桶直径(B)有较为显著的影响,而挡流板位置(E)无显著影响:工艺参数最佳组合为A5B1C5D1E1,对其进行数值模拟的结果表明,中心桶内有效流动区域的体积分数ζeff达到90%,较基准工况提高23%,能明显改善中心桶内的流场环境,促进絮凝反应效率的提升
     (6)建立了沉降槽内赤泥颗粒压缩沉积过程的一维稳态快速预测数学模型。利用Matlab编程实现了稳态下沉降槽内赤泥通量预测的数值计算,并结合测试数据验证了数学模型的可靠性和正确性。利用这一预测模型并结合传统的矿浆物性参数的测定方法,可以快速地对沉降槽的生产性能进行预测计算,从而为沉降槽的设计、控制及沉降过程的数字化提供了技术依据。
Red mud separation is one of the most important procedures in Alumina refinery industry, and it has significant impact on the quality and the yield of alumina products.Problems were frequently occurred in the solid-liquid separation process due to the degradation of the bauxite's grade in recent years, which make thickeners'capacity and stability becoming the bottleneck in alumina refinery industry. Therefore,a comprehensive study of the thickener and red mud separation process will provide great benefit for improving capacity, optimization as well as predictive design of the thickener.
     For the purposes of promoting the flocculation reaction rate, a high rate converging base thickener on an industry scale was chosen as the research object, and the solid-liquid separation process inside the thickener was investigated through numerical calculation, experimental study as well as theoretical analysis techniques respectively. The main detailed work and findings of this research were expatiated hereunder:(1)The domestic researches of separation thickener and red mud separation process was rare and relevant publications was lack of details due to confidential issue.Therefore a three-dimensional numerical model was established which can be applied to investigate the red mud separation process of the thickener.The model was validated through the on-site data.
     (2) For the purpose of improving the red mud concentration distribution and the flocculation reaction rate, the best volume fraction of solid concentration was proposed as the evaluation indicator and a novel self-dilute inlet pipe was also created and optimized based on the self-defined evaluation factor using the numerical simulation technique. The optimized self-dilute inlet pipe was introduced to a alumina refinery enterprise.The numerical simulation results indicated that the feedwell's average solid concentration was decreased from71.8g·1to56.8g·1, and the best flocculation volume fraction was increased from7%to21% after introducing the self-dilute inlet pipe.The self-dilute inlet pipe can dramatically improve the flocculation reaction rate in the feedwell.The on-site modification result reported that the solid concentration of the underflow was increased by2.4%while the amount of overflow's float and the flocculants dose was decreased by2%and8.1%respectively1.635million Yuan can be saved from the capital cost of the enterprise annually.
     (3) An experimental thickener model was established. Tracer-Respond as well as Finite Granules Trace Method was proposed and used to investigate the flow patterns of the feedwell qualitatively and quantitatively. The swirling flow, dead zones and "short circuit" were detected during the experiment, and the buff ring can minimize the "short circuit"'s occurrence dramatically. The feedwell's aspect ratio have significant effect on its flow patterns.The dimensionless mean residence time was increased along with the feedwell's aspect ratio increase.
     (4) A transient numerical model was established which can be used to investigate the mixing process of bauxite slurry. The effective flow regime volume fraction ζeff was introduced as the evaluation criteria, non-ideal flow models,non-linear regression and residence time distribution's moments were combined as the analysis method to investigate the flow distribution of the feedwell under different structural and process parameters.The simulation results indicated that the feed flows inside the feedwell belong to highly dispersed flow scheme.Under such condition, the AMD model parameter Pe is between0.21to3.21, and the feed flow inside the feedwell can be depicted as1.19—3.44mixing tanks connected in series.The structural and process parameters have dominate influence on feed flow's distribution of the feedwell. The dead zone and plug flow will convert into each other when altering the feedwell's diameter and the buff ring's position; Feedwell's height and the feed inlet rate can lead a conversion between the dead zone and the mixing flow of the feedwell;Inlet pipe's position can also lead a conversion between the dead zone,plug flow and mixing flow in the feedwell.
     (5)According to the orthogonal experimental design and the evaluation criteria ζeff, five factors which influence the feed flow's distribution of the feedwell were simulated and optimized. Among which, the feedwell height (D) and the inlet feed rate(A) are most significant factor, while the inlet pipe's position(C) is significant and the feedwell's diameter(B) is less significant, the buff ring's position gives no significant impact. The optimum factor scheme is A5B1C5D1E1, and the simulation results show that the ζeff can be increased up to90%compared that of the base case's67%.The optimum scheme can provide a better flow environment and promote the flocculation reaction rate.
     (6)Based on the red mud's settling and thickening mechanism, a one-dimensional mathematical model was established to depict the red mud's thickening-compression process.The calculation of predictive solid flux of the thickener was realized by Matlab programming, and the model was validated through on-site data. Combined with traditional feed material properties characterization techniques,thickener's capacity can be predicted rapidly, which will benefit the control, design and the digitization for the thickening process of the thickener.
引文
[1]成天宇.浅谈我国氧化铝、电解铝生产技术之现状[J].中国科技博览,2011,30:323.
    [2]何桂香,蒋学先.我国铝冶金的现状与可持续发展对策[J].金属材料与冶金工程,2012,40(4):55-58.
    [3]W富尔达,H金诗伯.氧化铝和铝[M].北京:冶金工业出版社,1960.
    [4]贺慧彤,王祝堂.中国铝工业的发展现状及其展望[J].轻合金加工技术,2010,38(4):1-4.
    [5]李旺兴.氧化铝生产理论与工艺[M].长沙:中南大学出版社,2011.
    [6]河南省石油和化学工业协会.氧化铝及烧碱发展前景分析[J],江苏氯碱,2012,6:3-8.
    [7]李旺兴.中国铝工业中长期发展战略的研究与思考[J].轻金属2009,11:9-14.
    [8]张铁志,王莹.浅谈氧化铝的生产与发展趋势的探讨[J].中国石油和化工标准与质量,2012,3:56.
    [9]赵清杰,杨巧芳,张艳芳.氧化铝生产技术的发展方向及相关研究的基础[J].中国稀土学报,2012,30(8):982-985.
    [10]侯炳毅.氧化铝生产方法简介[J].金属世界,2004,1:12-15.
    [11]毕诗文,于海燕.氧化铝生产工艺[M].北京:化学工业出版社,2006.
    [12]王捷.氧化铝生产工艺学[M].北京:冶金工业出版社,2006.
    [13]刘兴亮,姚昌仁.烧结法氧化铝工艺技术创兴的途径[J].轻金属,2000,14(5):24-26
    [14]马爱纯,李旺兴.混联法氧化铝生产中熟料窑节能降耗的研究[J].冶金能源,2003 22(7):7-12.
    [15]李瑞冰,张廷安,李景江等.利用电厂粉煤灰酸法生产氧化铝[J].中国电力,2013 46(2):40-45.
    [16]吴艳,翟玉春,李来时等.新酸碱联合法以粉煤灰制备高纯氧化铝和超细二氧化硅[J].轻金属,2007,9:24-27.
    [17]袁海滨,冯月斌,杨斌等.养护绿在碳热还原-氯化法炼铝过程中的行为[J].中国有色金属学报,2010,20(4):777-783
    [18]H叶列明等.氧化铝生产过程与设备[M].北京:冶金工业出版社,1987.
    [19]Sato C, Shibue Y, Arakawa N, et al. Flocculation and thickening of red mud[J]. Light metals.1984,14(3)197-210.
    [20]杨重愚.氧化铝生产工艺学[M].长沙:中南工业大学出版社,1992.
    [21]杨守志.固液分离[M].北京:冶金工业出版社,2003.
    [22]Dahlistrom D A. Fundamentals of solid-liquid separation[M]. Littleton, CO,USA:Soc if mining engineers of AIME,1986.
    [23]AA阿格拉懦夫斯基等.氧化铝生产手册[M].北京:冶金工业出版社,1973.
    [24]Purchas D, Wakeman R T. Solid/liquid separation and equipment scaleup (2nd edition)[M]. London, UK:London upland press,1986.
    [25]时钧,家鼎,国琛.化学工程手册第二版(下卷)[M].北京:化学工业出版社,1996.
    [26]Zhang R H, Westerman P W. Solid-liquid separation of animal manure for odor control and nutrient management[J]. Applied engineering in agriculture,1997 13(5):657-664.
    [27]吴若琼,刘今.氧化铝工业絮凝沉降技术的进展[J].轻金属,1994,7:17-20.
    [28]Coe H S, Clevenger G H. Method for determining the capacities of smile-setting [J]. Transactions of the ASME,1916,55:356-384.
    [29]Kynch G.J. A theory of sedimentation[J]. Transactions of the Faraday Society, 1951,14(3):166-176.
    [30]Talmage W P, Fitch E B. Determining thinkener unit areas[J]. Industrial and Engineering Chemistry,1955,47(1):38-41.
    [31]Eklund L G, Jernqvist A. Experimental study of the dynamics of a vertical continuous thickener[J]. Chemical Engineering Science,1975,30(5):597-605.
    [32]Fitch B. Kynch theory and compression zones[J]. AIChE Journal,1983,29(6): 940-947.
    [33]康永,邓常烈.根据静态沉降-沉积曲线确定浓缩机面积方法的研究[J].中国矿业,1995,4(3)77-80.
    [34]徐新阳,罗茜.固液分离设备技术发展趋势[J].化工设备与防腐蚀,2002,5(4):244-246.
    [35]刘莉娜,孙克萍.氧化铝工业中沉降分离设备的技术进步[J].中国稀土学报,2008,26(8):970-972.
    [36]孙体昌.固液分离[M].长沙:中南大学出版社,2011.
    [37]陈述文,仝克闻,马振声等.高效浓密机的应用现状及前景[J].冶金矿山设计与建设,1997,1(1):48-51.
    [38]张哲新,尹周澜,温金德等.高效沉降槽在烧结法氧化铝生产中的应用[J]. 山东冶金,2005 27(5):20-23.
    [39]Eklund L G, Jernqvist A. Experimental study of the dynamics of a vertical continuous thickener[J]. Chemical Engineering Science,1975,30(5):597-605.
    [40]Wood L.J.A, Turner S.D, Laros T.J, et al. Self diluting feedwell for thickener dilution U.S. Patent 5,389,250[P].1995-2-14.
    [41]Outec. Introducing'next generation'feedwells[R]. Australia, Outotec,2013.
    [42]Fawell P D, Farrow J B, Heath A R, et al.20 Years of AMRA P266 " Improving Thickener Technology":How Has It Changed The Understanding Of Thickener Performance [C] Vina del Mar, Chile. Paste 2009. Perth: Australian Centre for Geomechanics,2009:87-95.
    [43]Kumaresan T, Thakre S, Basu B, et al. Performance improvement of alumina digestors [C]. Seventh International Conference on CFD in the Minerals and Process Industries, Melbourne:CSIRO,2009,1-6.
    [44]White R B, Sutalo I D, Nguyen T. Fluid flow in thickener feedwell models [J]. Minerals Engineering,2003,16:145-150.
    [45]Garrido P, Burgos R, Concha F, et al. Software for the design and simulation of gravity thickeners [J]. Minerals Engineering,2003,16:85-92.
    [46]Burgos R, Concha F. Further development of software for the design and simulation of industrial thickeners [J]. Chemical Engineering Journal,2005,111: 135-144.
    [47]Heath A R, Bahri PA, Fawell PD, et al. Polymer Flocculation of Calcite: Relating the Aggregate Size to the Settling Rate[J]. Fluid mechanics and transport phenomena,2006,52(4):1284-1293.
    [48]Kahane R B, Schwarz M P, Johnston R M. Residue Thickener Modelling at Worsley Alumina [J]. Inter Conf on CFD in Mineral &Metal Processing and Power Generation,1997,3:109-117.
    [49]Owen A T, Nguyen T V, Fawell P D. The effect of flocculants solution transport and addition conditions on feedwell performance in gravity thickeners [J]. International Journal of Mineral Processing,2009,93:115-127.
    [50]Peloquin G, Baxter H, Simard G, et al. Improving red mud flocculation at Aughinish alumina limited [J]. Proceedings of the 6th International Alumina Quality Workshop,2002,3(1):288-293.
    [51]White J, Paradis R. Thickeningmud stacking technology-an environmental approach to residue management[C] R.J. Jewell, A.B. Fourier. Paste 2010. Perth Australian Centre for Geomechanics,2010.3-21.
    [52]Moharangam K, Nguyen T V, Stephens D W. Evaluation of two-equation turbulence models in a laboratory-scale thickener feedwell[C]. Seventh International Conference on CFD in the Minerals and Process Industries, Melbourne:CSIRO,2009,1-7.
    [53]Heath A. Thickener feedwells by CFD-a case of more is more [J]. Outotec, 2009,9-12.
    [54]Rudman M, Simic K, Paterson D A, et al. Raking in gravity thickeners [J]. International Journal of Mineral Processing,2008,86:114-130.
    [55]Rudman M, Paterson D A, Simic K. Efficiency of raking in gravity thickeners [J]. International Journal of Mineral Processing,2010,95:30-39.
    [56]Frost R. C, Halliday J, Dee A S. Continuous consolidation of sludge in large-scale gravity thickeners [J]. Water science and technology,1993,28(5):77-86.
    [57]Szalai L, Rrebs P, Rodi W. Simulation of flow in circular clarifiers with and without swirl [J]. J. Hydraul. Eng,1994,120:4-21.
    [58]Sutalo I D, Paterson D A, Rudman M. Flow visualization and computational prediction in thickener rake models [J]. Minerals Engineering,2003,16:93-102.
    [59]Smoluchowski A R, Peter T L K. Combined population balance and CFD modeling of particle aggregation by polymeric flocculants[C]. Third International Conference on CFD in the Minerals and Process Industries. Melbourne CSIRO,2003,339-344.
    [60]Lick W, Lick J. Aggregation and disaggregation of fine-grained lake sediments [J]. J Great Lakes Res,2008,14(4):14-523.
    [61]Nguyen T, Heath A, WITT P. Population balance-CFD modelling of fluid flow, solids distribution and flocculation in thickener feedwells [C]. Fifth International Conference on CFD in the Process Industries. Melbourne CSIRO, 2006.1-6.
    [62]Nopens I, Biggs C A, Clercq B D, et al. Modelling the activated sludge flocculation process combining laser light diffraction particle sizing and population balance modelling (PBM) [J]. Water Science & Technology,2002, 45(6):41-49.
    [63]Buscall R, White L R. The consolidation of concentrated suspensions[J]. Chem. Soc Faraday Trans,1987,83,873-891.
    [64]Kretser R G, Usher S P, Scales PJ, et al. Rapid measurement of dewatering design and simulation of gravity thickeners[J]. Minerals Engineering,2003, 16:85-92.
    [65]Lester D R, Usher S P, Scales P J. Estimation of the hindered settling function R(f) from batch settling tests[J]. Applied Chemical Engineering Journal,2005, 51(4):1158-1168.
    [66]Burger R, Evje S, Hvistendahl K K, et al. Numerical methods for the simulation of the settling of flocculated suspensions[J]. Chemical Engineering Journal, 2000,80:91-104.
    [67]Burger R F, Concha. Mathematical model and numerical simulation of the settling of flocculated suspensions[J], International journal of multiphase flow, 2001,24:1005-1023.
    [68]Burger R, Karlsen K, H Risebro, N H. Numerical methods for the simulation of continuous sedimentation in ideal clarifier-thickener units[J]. International journal of mineral processing,2004,73:209-228.
    [69]Martin A D. Optimization of clarifier-thickeners processing stable suspensions for turn-up/turn-down[J]. Water research,2004,38:1568-1578.
    [70]Green M D, Landman K A, Kretser R G, et al. Pressure filtration technique for complete characterization of consolidating suspensions[J]. Ind. Eng. Chem. Res, 1998,37(10):4152-4156.
    [71]王鸿雁,李明福,门新强.拜耳法赤泥沉降槽的技术改造[J].分析研究,2005,6:9-11.
    [72]钱志强,陈宪智.沉降槽加环形导流板的研究[J].轻金属,1997,3:10-12.
    [73]龚斌,董放战,李涛.氧化铝生产中絮凝剂应用的探讨[J].矿产保护与利用,2005,3:49-51.
    [74]陈锋,刘炳迪,王磊等.含对甲基苯基侧链基团的氧肟酸赤泥沉降剂的合成与性能[J].中国有色金属学报,2012,11(22):3270-3276.
    [75]尹德明.沉降槽槽体的有限元分析[J].轻金属,2010,12:14-16.
    [76]王季.赤泥沉降槽内液固分离运动计算机数值仿真初探[J].有色矿冶,2006,22(6):22-24.
    [77]梅炽.有色冶金炉窑仿真与优化[M].北京:冶金工业出版社,2001.
    [78]Spalding D B. Basic tow-phase flow modeling in reactor safety and performance[C]. EPRI Workshop Proceedings, Los Angeles,US,1980 2:171-184.
    [79]周力行.湍流气粒两相流动与燃烧的理论与数值模拟[M].北京:科学出版社,1994.
    [80]Marzio P, Enrico N, Thomas J, DNS study of turbulent transport at low Prandtl numbers in a channel flow [J]. Journal of Fluid Mechanics,2002 (458):419-441.
    [81]Wissink J G. DNS of separating low Reynolds number flow in a turbine cascade with incoming wakes [J]. International Journal of Heat and Fluid Flow,2003, 24(4):626-635.
    [82]Rollet M P, Laurence D, Ferziger J. LES and RANS of turbulent flow in tube bundles [J]. International Journal of Heat and Fluid Flow,1999,20(3):241-254.
    [83]White R B, Sutalo I D, Nguyen T. Fluid flow in thickener feedwell models [J]. Minerals Engineering,2003,16:145-150.
    [84]Launder B E, Spalding D B. Lectures in mathematical models of turbulence [M]. Academic Press, London,1972.
    [85]Shih T H, Liou W W, Shabbir A. A new k-ε eddy viscosity model for high Reynolds number turbulent flows[J]. Computational Fluids,1995, 24(3):227-238.
    [86]Spicka P, Dias M M, Lopes J C B. Gas-liquid flow in a 2D column:Comparison between experimental data and CFD modelling[J]. Chemical Engineering Science,2001,56:6367~6383.
    [87]Ishii M. Thermo-Fluid Dynamics Theory of Two-Phase Flow[M]. Paris: Eyrolles,1975.
    [88]Moukalled F, Darwish M, Sekar B. A pressure-based algorithm for multi-phase flow at all speeds[J]. Journal of Computational Physics,2003,190:550~571.
    [89]Krishna R, Van Baten J M. Eulerian simulations of bubble columns operating at elevated pressures in the churn turbulent flow regime[J]. Chemical Engineering Science,2001,56:6249~6258.
    [90]Jayanta S, Sergio V, Shantanu R et al. Numerical simulation of gas-liquid dynamics in cylindrical bubble column reactors[J]. Chermical Engineering Science,1999,54:5071~5083.
    [91]Meier H F, Alves J J N, Mori M. Comparison between staggered and collocated grids in the finite-volume method performance for single and multi-phase flows[J]. Computers and Chemical Engineering,1999,23:247~262.
    [92]Tabacco D, Innarella C, Bruno C. Theoretical and Numerical Investigation on Flameless Combustion[J]. Combustion Science and Technology,2002,7:37-48.
    [93]王福军.计算流体动力学分析-CFD软件原理应用[M].北京:清华大学出版社,2004.
    [94]赵坚行.燃烧数值模拟[M].北京:科学出版社,2002.
    [95]Tu J Y, Fletcher C A. Fluid mechanics and transport phenomena numerical computation of turbulent gas-solid particle flow in a 90° bend[J]. AIChE J,1995, 41(10):2187-2197.
    [96]Manninen M, Taivassalo V, Kallio S. On the mixture model for multiphase flow[M]. VTT Publications 288, Technical Research Centre of Finland,1996.
    [97]Crowe C, Sommerfeld M, Tsuji Y. Multiphase flows with droplets and particles[J]. Boca Raton:CRC Press,1998.
    [98]米尔恩-汤姆森.理论流体力学[J].李裕立,晏名文译.北京:机械工业出版社,1984.
    [99]怀特.粘性流体动力学[M].魏中磊,甄思淼译.北京:机械工业出版社,1982.
    [100]Schiller L, Nauman A. A drag coefficient correlation[J]. VDI Zeits,1933, 77:318-320.
    [101]岑可法,樊建人.工程气固多相流动的理论及计算[M].杭州:浙江大学出版社,1990.
    [102]Ishii M, Zuber N. Drag Coefficient and Relative Velocity in Bubbly, Droplet or Particulate Flows[J]. AIChE J,1979,25(5):843-855.
    [103]Ihme F, Schmidt-Traub H, Brauer H. Theoretical studies on. mass transfer at and flow past spheres[J]. Chemical Engineering Technology,1972,44(5):306-313.
    [104]M. Syamlal. The Particle-Particle Drag Term in a Multiparticle Model of Fluidization[N]. National Technical Information Service, Springfield, VA, 1987. DOE/MC/21353-2373, NTIS/DE87006500.
    [105]Gidaspow D. Multiphase flow and fluidisation[M]. London:Academic Press, 1994.
    [106]周萍,周乃君,蒋爱华,等.传递过程原理及其数值仿真[M].长沙:中南大学出版社,2006.
    [107]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001.
    [108]Peric M, Kessler R, Scheuerer G. Comparison of finite volume numerical methods with staggered and collocated grids[J]. Comput Fluids,1988,16: 389-403.
    [109]Rhie C M, Chow W L. A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation[J]. AIAA J,1983,21:1525-1552.
    [110]Liovic P, Rudman M, Liow JL. Numerical modeling of free surface flows in metallurgical vessels[C]. Second International Conference on CFD in the Minerals and Process Industries, CSIRO, Melbourne, Australia,1999.
    [111]MICHAELS A S, BOLGER J C. Sediment volumes of flocculated Kaolin Suspensions[J], Ind. Eng. Chem. Fundamentals,1962, 1(1):24-33.
    [112]房丽茹.赤泥絮凝颗粒致密性的研究[D].沈阳:沈阳理工大学,2008.
    [113]陆宏圻.射流泵技术的理论及应用[M].第一版.北京:水利电力出版社,1989.
    [114]Gosline J E, Obrien M P. The Water Jet Pump[J]. University of California Publications in Engineering,1934,3(3):167-190.
    [115]Gunningham R G. Jet Pump Theory and Performance with Fluids of High Viscosity[J]. Transactions of the ASME,1957,79:1807-1820.
    [116]Brown K E, Petrie H. The technology of Artificial Lift Methods[M]. Penn well Publishing,1977.
    [117]Petrie M L, Wilson P M, Smart E E. Jet Pumping Oil Wells[J]. World Oil,1984, 197(7):101-108.
    [118]廖沙,沉降槽中射流泵和给料筒的实验研究[D].长沙:中南大学,2013.
    [119]Richard S, Jonathan W N. Approach toward similar behavior of a swirling jet flow[C]. AIAA Aerospace Science Meeting Including the New Horizons Forum and Aerospace Exposition,2009, Orlando, USA,159-170.
    [120]莫乃榕.工程流体力学[M].武汉:华中科技大学出版社,2000.
    [121]Brombach H. Liquid-solid separation at vortex storm over flows[C]. In Gujer&Krejci(Eds), Proceedings of the 4th international conference on urban storm drainage,1987, Lausanne, France,1:103-108.
    [122]Haas C N, Joffe J, Heath M S, Continuous flow residence time distribution function characterization [J]. Environmental Engineering,1997,123(2): 107-114.
    [123]Macmullin R B, Weber M, The theory of short-circuiting in continuous-flow mixing vessels in series and the kinetics of chemical reactions in such systems [J].Chemical Engineering,1935,31:409-458.
    [124]Nauman E B, Buflham B A, Mixing in continuous flow systems[M]. New York:Wiley,1988.
    [125]Beak H K, Park N S, Kim J H etal. Examination of three-dimensional flow characteristics in the distribution channel to the flocculation basin using computational fluid dynamics simulation [J]. Journal of Water Supply:Research and Technology,2005,54(6):349-354.
    [126]Higgins P R. The characterization of the hydrodynamic vortex separator using residence time analysis [D]. UK:Liverpool John Moores University,2006.
    [127]Moumtez B, Ahmed B, Kamel T, Numerical investigation of the fluid flow in continuous casting tundish using analysis of RTD curves [J]. Journal of iron and steel research international,2009,16(2):22-29.
    [128]Higgins P R, Alkhaddar R M. Residence time distribution in hydrodynamic separators [J]. The journal of the Chartered Institute of Water and Environmental Management,1999,13(1):28-37.
    [129]Levenspiel O. Chemical Reaction Engineering[M]. third e d. Wiley, New York,1999.
    [130]John T A, Adeniyi L. Numerical and experimental studies of mixing characteristics in a T-junction microchannel using residence time distribution [J]. Chemical Engineering Science,2009,64:2242-2232.
    [131]Levenspiel O. Chemical Reaction Engineering[M]. third e d. Wiley, New York,1999.
    [132]曹士勇,钟宏.试验方案的设计与选择[J].山东陶瓷,2005,28(1):26-28.
    [133]刘洪波,陆刚,边宽江。集中实验设计方法的比较[J].安徽农业科学,2007,35(36):11738-11739.
    [134]Ranjit K R, A primer on the taguchi method[M]. New York:Van Nostrand Reinhold,1990.
    [135]王毓芳,肖诗唐.质量改进的策划与实施[M].北京:中国经济出版社,2005.
    [136]董敬莎,孙晓燕,牛博英.正交和均匀实验设计方法的比较[J].科技视界,201322:16-21.
    [137]顾晓鸣,陆群,沈伟.运用Exce1“随机数发生器”进行随机化分组[J].中国医院统计,2007,3:28-31.
    [138]郝拉娣,张娴,刘琳.科技论文中正交试验结果分析方法的使用[J].编辑学报,2007,5:21-23.
    [139]黄鹂.科技期刊论文中正交试验表编排存在问题及解决方案[J].编辑学报,2013,2:35-38.
    [140]成岳,夏光华.科学研究与工程试验设计方法[M].武汉:武汉理工大学,2005.
    [141]李志西,杜双奎.试验优化设计与统计分析[M].北京:科学出版社,2010.
    [142]范步高.正交试验方差分析的Excel通用计算与应用[J].中国医药工业杂志,2011,(10):19-24.
    [143]马成良,张海军,李素平.现代试验设计优化方法及应用[M].郑州:郑州大学出版社,2007.
    [144]Green M D. Characterization of suspensions in settling and compression[D]. Department of Chemical Engineering, The University of Melbourne, Melbourne, Australia,1997.
    [145]Green M D, Landman K A, Kretser R G et al. Pressure filtration technique for complete characterization of consolidating suspensions[J]. Ind. Eng. Chem. Res, 1998,37(10):4152-4156.
    [146]Burger R, Evje S, Karlsen K H. Numerical methods for the simulation of the settling of flocculated suspensions[J]. Journal of Chemical Engineering,2000, 80:91-104.
    [147]Lester D R. Colloidal suspension dewatering analysis[D]. Particulate Fluids Processing Centre, Department of Chemical andBiomolecular Engineering, The University of Melbourne, Melbourne,2002.
    [148]Martin A D. Validation of a new filtration technique for dewaterability characterization[J]. AIChEJ,2001,47:1561-1570.
    [149]Garrido P, Burgos R, Concha F. Software for the design and simulation of gravity thickeners[J]. Minerals Engineering,2003,16(2):85-92.
    [150]Landman K A, White L R, Buscall R. The continuous flow gravitythickener: steady state behaviour[J]. AIChEJ,1988,34(2):239-252.
    [151]Landman K A, White L R. Solid/liquid separation of flocculated suspensions[J]. Adv. Colloid Interf. Sci,1994,51:175-246.
    [152]Kretser R G, Scales P J, Boger D V. Compressive Rheology:An Overview Rheology[M]. London:British Society Press,2003.
    [153]Buscall R, McGowan I J, P D A Mills, Non-Newtonian Fluid Mechanics[M]. New York:Van Nostrand Reinhold,1987.
    [154]Zhou Z, Scales P J, Boger D V. Chemical and physical control ofthe rheology of concentrated metal oxide suspensions[J]. Chemical Engineering Science, 2001,56:2901-2920.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700