长效防腐涂层及其耐磨减阻性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢结构表面的防腐蚀耐磨涂料通常由防腐蚀底漆、过渡中间漆和功能性面漆等组成,形成防腐耐磨涂层体系。本论文在查阅大量文献资料、开展理论分析与实验研究的基础上,针对研制涂层的物理机械、耐介质、防腐蚀、耐老化、防霉菌、抗磨损、减流阻和抗空泡腐蚀等性能要求,研究配套的涂料体系,进行性能评价与考核,取得了一定研究成果。
     底漆研究以涂层湿膜附着力破坏理论为基础,将有机涂层的粘接破坏这一极其复杂的热动力学过程进行优化和典型化,探讨了磷酸盐的防锈机理,研究了一种用于替代含铅、铬及镉等重金属的防锈底漆。该底漆由改性复合无毒防锈颜料、高性能环氧树脂、无苯溶剂、助剂和新型固化剂等组成,具有干燥速度快,物理机械性能好和耐蚀性能优良等特点。
     无溶剂耐磨中间涂层采用丁腈橡胶增韧改性的低分子量环氧树脂为主要成膜物,添加经表面改性处理的片状颜料、活性稀释剂、防沉剂及其它助剂等与固化剂混合后制成。评价了涂层的抗渗透、耐盐雾、耐湿热、耐老化、耐介质和耐磨耗性能,筛选出了综合性能优异的无溶剂涂料产品,比较了不同涂层的抗蚀和耐磨性能。研制的无溶剂涂层的耐磨耗性能比环氧面漆和聚氨酯面漆的耐磨耗性能提高了20%-50%。
     对比分析了不同厂家氟碳树脂的室外耐候性和室内紫外加速老化(QUV)性能,筛选出性能优异的耐候性氟碳树脂,与耐候性颜填料、研制的防霉剂、分散剂、助剂和固化剂等制成常温固化氟碳涂料。评价了涂层的耐候、防霉、耐盐雾和耐化学介质等性能。研制涂层的耐霉菌等级为0级(即无霉菌生长),耐QUV老化5000h保光率≥90%,户外暴露48个月涂层性能无明显变化。
     针对常温固化氟碳涂料,尤其是无光或半光氟碳涂料耐沾污性能较差等问题,分别研制疏水化添加剂和亲水化添加剂,用于改善涂料的抗沾污性能。研制的两种添加剂均能将无光涂层(60°光泽≤10°)的清洁率提高到75%以上,其中亲水添加剂的抗沾污性能更好,且不影响涂层的重涂性。
     研究了低表面能涂层表面能、紫外光照时间与涂层摩擦系数的关系,发现低表面能涂层在紫外光照射下表面能会升高,随之最大静摩擦系数也会增大;滑动摩擦系数变化不大。可能原因是涂层表面平整度对滑动摩擦系数的影响程度要超过涂层表面能对其的影响。
     利用研制的专用流阻测试设备,比较分析不同品种与表面形貌涂层的减水流阻效果,进行了理论解释。研制的低表面能涂层减阻效果达到20%以上。
     针对涂层的防空泡腐蚀要求,研制了高强度粘接底层、高韧性过渡中间层和抗空泡腐蚀弹性体面层的涂层体系,评价了不同涂层的抗空蚀性能。弹性体涂层在保证粘接强度的基础上,具有比硬质合金更好的抗空蚀效果;探讨了满足大型薄壁件抗空蚀要求的涂层体系设计方案,硬质合金与弹性体涂层配合使用,形成的复合涂层具有更优异的抗空蚀效果。
     研制了一种无溶剂厚浆双组份反应固化型苯氧基树脂改性环氧树脂涂料,探讨了苯氧基树脂对涂料性能的影响。研究成功管内壁有机厚涂层离心自流平涂覆工艺,设计并制造了专用的管内壁有机厚涂层离心自流平涂覆机及相应工装,实现了研制涂料在大型圆管内壁的精密控制涂装,单道次涂装的涂层厚度可达2mm,涂层尺寸精度、形位公差和表面粗糙度均可达到精密机械加工零件水平。针对天然气管道输送要求,计算了涂覆商用环氧涂料和采用离心自流平工艺涂覆研制涂料的内涂管道与无内涂管道相比的减阻效果。结果表明,研制的新型管内壁涂层具有比商用管内壁环氧涂层更优异的减阻性能。
A covering system possessing wear resistance and corrosion resistance on steel structure surface is usually made up of different coatings with relevant functions, such as anti-corrosion primer, intermediate coating and functional finish, etc. On the basis of a great deal of document data, theory analyses and experimental work, the dissertation studied on a set of matching coating system catering to different requirements of coatings'properties, such as physical and mechanical properties, tolerance of chemical mediator, corrosion prevention, anti-aging, anti-mildew, wear resistance, drag reduction and anti-cavitations. Evaluation and assessment of the performances of the matching coating show that some research results have been achieved.
     Based on the theory for adhesion strength failure of wet film the extremely complicated thermodynamic process of organic coatings'bonding failure was typified and optimized in the dissertation. The antirust mechanism of phosphate is discussed in detail. Based on the above theoretic work a new kind of anti-corrosive primer was developed to replace those traditional primers consisting of heavy metals, such as lead, chromium and cadmium. This kind of primer consists of epoxy resin with high performances, non-benzene solvent, auxiliary materials, new type curing agents and inert fillers, such as zinc phosphate, aluminum tripolyphosphate, zinc oxide as well as composite antirust pigment, iron oxide red and mica powder. It is nontoxic and characterized by fast drying speed, good mechanical property, excellent salted water resistance, high resistance against boiling water and long life when tested by salt spray test, etc.
     Anti-wear intermediate coatings were prepared with a developed solvent-free anti-wear paint. The paint was concocted by using low molecular weight epoxy resin toughened with butadiene acrylonitrile rubber as main film-former, surface modified flake pigments as additives, reactive diluents and anti-settling agents as viscosity-and-homogeneous degree modifier, curing agent as well as other auxiliary materials. A solvent-free paint product with the best comprehensive properties was screened through testing coatings'performances, such as anti-permeability, resistance against salt spray, resistance against heat and humidity, tolerance of chemical mediator, anti-aging and wear resistance. Results show that wear resistance and corrosion resistance of the developed solvent-free coating are 20%~50% higher than that of epoxy or polyurethane top finishes.
     A kind of fluorocarbon resin with the best outdoor weather ability and the longest life when tested by QUV are selected by comparing and analyzing with other different fluorocarbon resin producers. It was used as main film-former and together with weather-resistant fillers, self-made antifungal agents, dispersants, anti-settling agents, anti-foaming agents, flatting agents, smooth agents and curing agents for preparing a new kind of air-drying fluorocarbon coating. Performance tests were carried out to evaluate weather ability, anti-fungal ability, resistance against salt spray and tolerance of chemical mediator of the coating. Results show that its fungus-resistant degree is zero, i.e. no moulds growth, life is 5000h when tested by QUV, gloss retention is above 90% and other properties has not changed obviously after 48-month outdoor exposure.
     Hydrophobic and hydrophilic additives were respectively developed to solve the regular problems of poor dirt resistance for traditional air-drying fluorocarbon coatings, especially for matt or semi-matt ones. The two kind of additives developed can both increase the cleaning rate of matt fluorocarbon coatings by 75%. Hydrophilic additives' dirt resistance is better. And recoat ability of fluorocarbon coatings modified with the both additives is not affected.
     The varieties of low surface energy coatings'friction coefficient with surface energy and UV-light irradiation time were investigated. Results show that the surface energy of such coatings increased when exposed under UV-light, so did their static friction coefficient. Nevertheless, their dynamic friction coefficient had not changed obviously under the same condition. The possible reason of that might be that the influence of coatings'smoothness on their dynamic friction coefficient was higher than that of coatings'surface energy.
     The flow reduction effects of coatings with different varieties and surface topography were compared each other with specially self-made flow resistance test equipment. And theoretical analyses were given to explain the cause of these different effects. Flow resistance tests proved that flow reduction rate of the low surface energy coatings prepared reached above 20%.
     According to the requirements of cavitation erosion resistance for coatings, a new coating system made up of a bottom layer with high binding strength, an intermediate layer with high toughness and an elastomeric top finish with good cavitation erosion resistance was developed. Its cavitation erosion resistance was compared with that of other coatings including organic coatings and cemented carbide coatings and high-strength steel. Under the condition of fine binding strength, the coating system developed had better cavitation erosion resistance than cemented carbide coating. To meet large thin wall parts'requirements of cavitation erosion resistance, a design scheme of a composite coating system made up of a thermal spraying cemented carbide coating as bottom coat and an elastomeric organic top finish was discussed. The discuss result shows that such composite coating system may have better cavitation erosion resistance than both single elastomeric organic coating system and single thermal spraying cemented carbide coating system.
     A new kind of two-component solvent-free thick paste curing reaction epoxy coating material modified with phenoxy resin was developed, and the effects of the phenoxy resin on coating material's performance were investigated. A new centrifuging and self-leveling technique for the application of organic thick coating to inner wall of pipes has been successfully developed. A set of special paint coating equipment for preparing thick organic coatings on the inner wall of pipes with centrifuging and self-leveling technique and corresponding tooling and jigs were designed and manufactured. A precision control for the application of developed coating to inner wall of large pipes became true. The thickness of the coating obtained by only one application could reach 2mm, and its dimensional precision, geometric tolerance and surface roughness could reach a high level of precision machining.
     For the requirements of natural gas pipeline transportation, effects of drag reduction of the developed coating prepared on inner wall of gas pipeline were calculated and compared to that of coating-free pipeline and the commercial epoxy coatings prepared on inner wall of gas pipelines. Results show that the effects of drag reduction of the developed coating are better than that of the commercial epoxy coatings for their application to gas pipeline.
引文
[1]柯伟.中国腐蚀调查报告[M].北京:化学工业出版社,2003
    [2]谢友柏.摩擦学科学及工程应用现状与发展战略研究[M].北京:高等教育出版社,2009
    [3]修玉英,汪青,罗钟瑜,等.国内外增韧改性环氧树脂的研究进展[J].中国胶粘剂,2007,16(2):36-40
    [4]B Francisa, S Thomasb,J Joseb,et al.Hydroxyl terminated poly (ether ether ketone) with pendent methyl group toughened epoxy resin:miscibility, morphology and mechanical properties [J]. Polymer,2005,46 (26):12372~12385
    [5]R Thomasa, Y M Ding, Y L He, et al.Miscibility, morphology, thermal, and mechanical properties of a DGEBA based epoxy resin toughened with a liquid rubber [J]. Polymer,2008,49 (1):278~294
    [6]H K Jeremy.Phase separation influence on the performance of CTBN-toughened epoxy adhesives [J]. Polymer Engineering and Science,1999,39 (10):1837~1848
    [7]张健.液体橡胶增韧环氧树脂/咪唑体系的形态与力学性能[J].应用化学,2005,22(12):1333~1337
    [8]J Frohlich.Toughened epoxy hybrid nanocomposites containing both an organophilic layered silicate filler and a compatibilized liquid rubber [J]. Macromolecules,2003, 36 (19):7205~7211
    [9]X Q Zhang, M D Do, L Kurniawan, et al. Wheat gluten-based renewable and biodegradable polymer materials with enhanced hydrophobicity by using epoxidized soybean oil as a modifier [J]. Carbohydrate Research,2010,345 (15):2174~2182
    [10]S J Park, F L Jin, J R Lee.Thermal and mechanical properties of tetrafunctional epoxy resin toughened with epoxidized soybean oil [J]. Materials Science and Engineering A,2004,374 (15):109~114
    [11]I Y Gorbunova, N V Shustov, M L Kerber. Influence of thermoplastic modifiers on the properties and the process of curing of epoxy polymers [J]. Journal of Engineering Physics and Thermophysics,2003,76 (3):572~576
    [12]F L Jin, S J Park. Impact-strength improvement of epoxy resins reinforced with a biodegradable polymer [J]. Materials Science and Engineering:A,2008,478 (1):402~405
    [13]刘丹,贺高红,孙杰,等.溶胶凝胶法制备纳米SiO2环氧树脂杂化材料[J].热固性树脂,2008,23(4):19-21
    [14]Z B Huang, G Li, P Li, Y H Yu,et al. Preparation and properties of carbon fiber/epoxy composite toughened by electrospun polysulfone nanofibers [J]. Acta Materiae Compositae Sinica,2008,25 (5):25~32
    [15]G Yang, B Zheng. J P Yang,et al. Preparation and cryogenic mechanical properties of epoxy resins modified by poly (ethersulfone) [J]. Journal of Polymer Science Part A: Polymer Chemistry.2008,46 (2) 612~624
    [16]J Y Li, P Chen. Z M Ma. et al. Reaction kinetics and thermal properties of cyanate ester-cured epoxy resin with phenolphthalein poly (ether ketone) [J]. Journal of Applied Polymer Science.2009,111 (5) 2590~2596
    [17]N Hameeda, P A Sreekumarb, B Francisa, et al. Morphology, Dynamic mechanical properties and interphase fiber/matrix evaluation of unidirectional glass fiber/epoxy composites Original Research Article [J]. Composites Part A:Applied Science and Manufacturing,2007.38 (12):2422~2432
    [18]R M Perez, J K W Sandler. V Altstadta, et al. Novel phosphorus-modified polysulfone as a combined flame retardant and toughness modifier for epoxy resins [J]. Polymer,2007,48 (3).778~790
    [19J W J Gan, Y F Yu. X Y Liu. et al. Kinetics of phase separation at the early stage of spinodal decomposition in epoxy resin modified with PEI blends [J]. Colloid& Polymer Science,2009.287 (1):23~28
    [20]H Watanabe, T Kunitake. A large, freestanding,20nm thick nanomembrane based on an epoxy resin [J]. Advanced Materials,2007,19(7):909~912
    [21]M Naffakha, M Dumon. J F Gerarda. Study of a reactive epoxy—amine resin enabling in situ dissolution of thermoplastic films during resin transfer moulding for toughening composites [J]. Composites Science and Technology,2006,66 (10):1376~1384
    [22]F D Chung, R L Pei, M Y Jui.Comparative studies for the effect of intercalating agent on the physical properties of epoxy resin-clay based nanocomposite materials [J]. European Polymer Journal,2008,44 (8):2439~2447
    [23]J H Hann, W H Su, L C Chia, et al. Low dielectric epoxy resins from dicyclopentadiene-containing poly (phenylene oxide) novolac cured with dicyclopentadiene containing epoxy [J]. Reactive and Functional Polymers,2008,68 (8):1185~1193
    [24]W Chena, H B Lub, S R Nutta. The influence of functionalized MWCNT reinforcement on the thermomechanical properties and morphology of epoxy nanocomposites [J]. Composites Science and Technology,2008,68 (12):2535~2542
    [25]B. Suresha, Siddaramaiah, Kishore.etc. Investigations on the influence of graphite filler on dry sliding wear and abrasive wear behaviour of carbon fabric reinforced epoxy composites [J]. Wear,2009:1405~1414
    [26]S C Tjong. Y Z Meng. Structural-mechanical relationship of epoxy compatibilized polyamide 6/polycarbonate blends [J]. Materials Research Bulletin,2004,39 (11):1791~1801
    [27]A K Jin, G S Dong, J K Tae, et al. Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites [J]. Carbon,2006,44 (10):1898~ 1905
    [28]K C Chang, H F Lin, C Y Lin. Effect of amino-modified silica nanoparticles on the corrosion protection properties of epoxy resin-silica hybrid materials [J]. Journal of Nanoscience and Nanotechnology,2008,8 (6):3040~3049 (10)
    [29]N. Mohan,S. Natarajan,S. Kumaresh Babu.Sliding Wear behavior of graphite filled glass-epoxy composites at elevated temperatures [J]. Polymer-Plastics Technology and Engineering,2011,50 (3):251~259
    [30]J P Gao, C Q Zhang, X C He.etc.Smart Materials materials of Cured cured Epoxy epoxy Polymer polymer Modified modified by 6F-PEEK with Shape shape Memory memory Effecteffect[J]. Advanced Materials Research,152:152~153
    [31]李蕾,陈建峰,邹海魁,等.纳米碳酸钙作为环氧树脂增韧材料的研究[J].北京化工大学学报,2005,32(2):1-4
    [32]K Keiko, Y L Wei. Structure and properties of epoxy modified with rigid particles [J]. Journal of Polymer Science,1993,25 (2):185~195
    [33]K Ishizu. Application of a series of novel curing agent and toughing modified for epoxy resin [J]. Progress in Polymer Science,1998,23 (8):1383~1408
    [34]S S Rahatekar, K K K Koziol, J A Elliott, et al. Optical microstructure and viscosity enhancement for an epoxy resin matrix containing multiwall carbon nanotubes [J]. Journal of Rheology,2006,50 (5):599~611
    [35]H Y Chena, O Jacobsb, W Wua, et al. Effect of dispersion method on tribological properties of carbon nanotube reinforced epoxy resin composites [J]. Polymer Testing, 2007,26 (3):351~360
    [36]王绪文.环氧树脂增韧的研究进展[J].中国胶粘剂,2006,15(2):46
    [37]J Q Shen. Y F Zhang, J D Qiu, et al. Core-shell particles with an acrylate polyurethane core as tougheners for epoxy resins [J]. Journal of Materials Science, 2004,39 (20):6383~6384
    [38]J Frohlich, H Kautz, R Thomann.et al.reactive core/shell type hyperbranched block copolyethers as new liquid rubbers for epoxy toughening[J].Polymer.2004,45:2155~ 2164
    [39]张凯,黄渝鸿,郝晓东,等.环氧树脂改性技术研究进展[J].化学推进剂与高分子材料,2004,2(1):12~14
    [40]姚燕,孟祥玲.环氧树脂用固化剂的研究进展[J].现代涂料与涂装,2007,10(4)37-40
    [41]虞兆年.无毒防锈颜料[J],上海涂料,2004,42(1):39-40
    [42]骆明.新一代磷酸锌系防锈颜料——磷酸铝锌的合成和应用[J].化工技术与开发,2004,33(6):8~10
    [43]M Bethencourt, F J Botana, M J Cano, M Marcos. High protective,environmental friendly and short-time developed conversion coatings for aluminium alloys [J]. Applied Surface Science,2002,189 (1):162~173
    [44]P Kalenda, A Kalendovaa. V Stenglb, et al. Properties of surface-treated mica in anticorrosive coatings [J]. Progress in Organic Coatings,2004,49 (2):137~145
    [45]M Zubielewicz. Protective properties of organic phosphate-pigmented coatings on phosphated steel substrates [J]. Progress in Organic Coatings,2005,53 (4):276~285
    [46]R Romagnolil, B Amo. High performance anticorrosive epoxy paints pigmented with zinc molybdenum phosphate [J]. Surface Coatings International Part B:Coatings Transactions,2000,83 (1):27~31
    [47]T Balakrishnan. Development and characterization of silicone/phosphorus modified epoxy materials and their application as anticorrosion and antifouling coatings [J]. Progress in Organic Coatings.2006,55(3):207-217
    [48]邓光辉,胡炜,孙果宋,等.防腐蚀颜料有效成分三聚磷酸铝含量测定的研究[J].无机盐工业,2009,41(12):58~60
    [49]蔡芸.高性能防锈颜料三聚磷酸铝[J].中国涂料,2007,22(5):19-21
    [50]蔡冬梅,奉小明,冯舸.无污染三聚磷酸铝防锈颜料的应用[J].长沙大学学报,2004,18(2):34~36
    [51]汪华,杨筱秋、袁爱群.三聚磷酸铝在9701汽车底盘漆中的应用研究[J].涂料工业,1998(11):10~12
    [52]方健君,马胜军,沈海鹰.改性磷酸锌的防腐性能研究[J].涂料工业,2009,39(10):57~60
    [53]马志英.复合亚磷酸锌钙防锈颜料的合成[J].天水师范学院学报,2010,30(2)77-78
    [54]董水金,张凌之.业磷酸钙无毒防锈涂料防锈机理的研究[J].四川大学学报(自然科学版),2001,38(6):867-870
    [55]沈素峰.钼酸盐系列缓蚀剂在含5g/L Cl-溶液中对Q235钢的缓蚀作用[J].腐蚀科学与防护技术,2009,21(2):179-181
    [56]冉文斌,马凤云,刘景梅.钼酸盐缓蚀剂在A20碳钢表面成膜行为研究[J].当代化工,2010,39(5):501~505
    [57]郭清泉,陈焕钦.防腐涂料用颜填料发展前景[J].涂料工业,2003,33(12):35-36
    [58]B D Amo, R Romagnoli, V F Vetere. Performance of zinc molybdenum phosphate in anticorrosive paints by accelerated and electrochemical tests [J]. Journal of Applied Electrochemistry,1999, (12):1401~1407
    [59]Veleval, J Chin, B D Amo. Corrosion electrochemical behavior of epoxy anticorrosive paints based on zinc molybdenum phosphate and zinc oxide [J]. Progress in Organic Coatings,1999, (4):211~216
    [60]周文娟,许立坤等.缓蚀剂对硅烷锌铝涂层性能的影响[J].腐蚀科学与防护技术,2008,20(4):292~294
    [61]郑振,李宁,黎德育.钼酸盐取代铬酸盐钝化工艺的现状[C].2007年全国电子电镀学术年会暨绿色电子制造技术论坛论文集,杭州(2007年11月24-26日浙江大学)2007:301-308
    [62]朱骥良,吴申年.颜料工艺学[M].北京:化学工业出版社,2002:328
    [63]陈中华,唐英,余飞.环境友好型防腐蚀颜料在涂料中的应用及研究进展[J].材料研究与应用,2008,2(1):1-5
    [64]张贤明,田文全.环氧涂料生产实用技术问答[M].北京:化学工业出版社,2004:125
    [65]M David.Schubert, A Fazlul, Z V Mandana. et al. Structural characterization and chemistry of the industrially important zinc borate, Zn[B3O4 (OH)3] [J]. Chemistry of Materials,2003,15 (4)
    [66]刘述平.环保型无机阻燃剂硼酸锌概况[J].矿产综合利用,2003, (6):36-39
    [67]周琴,张富利,林秀峰.新型防腐蚀颜料交换硅胶的研究[J].腐蚀与防护,1998,19(4):166~169
    [68]周琴,张富利,林秀峰.稀土交换硅橡胶防腐蚀颜料的研究[J].腐蚀与防护,1999,20(8):352~354
    [69]杨克儿,张启昆.离子交换型无毒防锈颜料—钙交换硅胶.涂料工业,1994,(4):28-31
    [70]格雷斯中国有限公司技术服务SHIELDEX⑩无毒防锈颜料及其应用[J].上海涂料,2008,46(10):37~40
    [71]V I Pokhmurskyi, I Zinim, M Bliyil. Inhibition of corrosion by a mixture of nontoxic pigments inorganic coatings on galvanized steel [J]. Material Science, 2004.40 (3):383~390
    [72]杨振波,杨忠林,郭万生,等.鳞片状富锌涂层耐弛机理的研究[J].中国涂料,2006,21(1):19~22
    [73]曲志敏,黄金玲.鳞片状锌粉制备工艺的研究及现状[J].稀有金属快报,2005,24(2):8-10
    [74]金晓鸿,郑添水.鳞片状锌基环氧富锌底漆的研究[J].材料保护,1999.32(4)25-27
    [75]A Kalendova. Effects of particle sizes and shapes of zinc metal on the properties of anticorrosive coatings [J]. Progress in Organic Coatings.2003 (4):32~332
    [76]宋志荣,刘新,骆惠.冷却塔的重防腐蚀涂料与涂装[J].涂料工业,2008,38(7):32-35
    [77]李登军,刘在阳.玻璃鳞片涂料重防腐蚀机理及其应用[J].纤维复合材料,2000,6(2):45-47
    [78]黄洁,张松.环氧钢筋涂料的研制[J].涂料工业,2009,39(1):9-13
    [79]M Selvaraj. Stainless steel powder as a protective and decorative pigment for steel structures in organic coating industries [J]. Anti-Corrosion Methods and Materials. 1997,44 (1):13~19
    [80]J H Hollway. Why fluorine in coatings [J]. Surface Coatings International,1995. (2):50~51
    [81]E J Bartoszek, J L Perillon. Long life coatings with PVDF polymers [J]. Surface Coatings International.1995. (9):371~376
    [82]Y Masaaki. Curable flourocopolymer [P]. US Pat 4345057
    [83]管从胜,王威强.氟树脂涂料及应用[M].化学工业出版社,2004,第一版:1-7
    [84]T Best. Exterior durability evaluation of ambient cure fluoropolymers [C]. Fluorine in Coatings IV Conference Papers.Brussels:International Centre for Coatings Technology,5~7 March 2001 Paper 10
    [85]帕特里克·卡普勒.可硬化的含氟共聚物的制法及在油漆和涂料中的应用[P].中国专利,1046911A
    [86]T Poggio. Water-borne fluoroelastomeric coatings with high barrier properties [J]. Surface Coatings International.1995, (7):289-293
    [87]S Turri. Chemical approaches toward the definition of new high-solid and high-perfarmance fluorocoating [J]. Progress in Organic Coatings,1997,32 (1-4):205~213
    [88]F Robeert, J Brady. Properties which influence marine fouling resistance in polymer [J]. Progress in Organic Coatings,1999, (35):31~35
    [89]龚文化,曾黎明.氟碳涂料研究及发展趋势[J].化工新型材料,2003,31(7):5-9
    [90]M Vecellio. Application of the fluorocarbon resin [J]. Progress in Organic Coatings, 2005,40 (1-4):225~242
    [91]吕巧儿.氟碳树脂的应用探讨[J].化工新型材料,2001,29(10):11~13,26
    [92]郑海球.高耐候氟碳涂料[J].涂料工业.2003(3):35-37
    [93]L N Nikitin, M O Gallyamov, E E Said-Galiev, et al. Supercritical carbon dioxide:A reactive medium for chemical processes involving fluoropolymers [J]. Russian Journal of General Chemistry,2009,79 (3):578~588
    [94]任伟成.高耐候性涂料用氟树脂[J].有机氟工业,2004:4-12
    [95]管从胜,王威强.氟树脂涂料及应用[M].化学工业出版社,2004,第一版:17-23
    [96]T.Temtchenko.含氟聚醚基自洁型涂料[J].有机氟工业,2004(1):36-38
    [97]苗国祥.室温固化用三氟氯乙烯一乙烯基醚共聚物[C].第三届氟料发展战略及技术研讨会论文集2003:35-36
    [98]安静雯.室温固化氟涂料树脂Lumiflon的性能分析[J].有机氟工业,2000(2)15-17
    [99]C Tournut. P Kappler. Copolymers of vinylidene fluoride in coatings [J]. Surface Coatings International,1995, (3):99-103
    [100]管从胜,王威强.氟树脂涂料及应用[M].化学工业出版社,2004,第一版:28
    [101]安静雯.室温固化氟涂料树脂Lumiflon的性能分析[J].有机氟工业,2000(2)15-17
    [102]王永琦.含氟涂料组合物及其使用方法[P].中国专利,1073606C
    [103]王永琦.含氟涂料制法及其应用[P].中国专利,1145386A
    [104]王永琦.以四氟乙烯为主的共聚物含氟涂料及其制法[P].中国专利,1244556A.
    [105]T Poggio. Water-borne fluoroelastomeric coatings with high barrier properties [J]. Surface Coatings International,1995, (7):289~93
    [106]邓海球.常温固化型氟数脂涂料[J].涂料工业,1999(10):32-35
    [107]倪玉德.含氟聚合物及含氟涂料(Ⅱ)[J].现代涂料与涂装,2000(5):23-27.
    [108]国家涂料质量监督检验中心[R].检验报告No.TW99424Y3
    [109]G Moore. Water-borne crosslinkable fluorochemical coatings [J]. Surface Coating International,1995, (9):377~379
    [110]Z X Li, Y J Xing, J J Dai. Superhydrophobic surfaces prepared from water glass and non-fluorinated alkylsilane on cotton substrates [J]. Applied Surface Science,2008, 254 (7):2131~2135
    [111]王猛,施宪法,王静芝.水性含氟树脂涂料[J].有机氟工业,2002(2):3-8
    [112]A A Shatter, R E J Cochoy. Appl.Progress of new materials [J]. Polymer Sci,1998, 26:3965~3975
    [113]M Pianca, B M Tato, G Cirillo, et al. New polymer materials [J]. Polymer,1987,28: 224~230
    [114]G Moore. Water-borne crosslinkable fluorochemical coatings [J]. Surface Coating International.1995, (9):377~379
    [115]苗国祥.室温固化用三氟氯乙烯-乙烯基醚共聚物[C].第三届氟涂料发展战略及技术研讨会议论文选集.全国涂料工业信息中心,2002,33-36
    [116]徐龙贵,刘娅莉.氟树脂涂料的研究动向[J].电镀与涂饰,2001, (4):30-34
    [117]D R Anton. J Michael. Acrylic fluorocarbon polymer containing coating [P]. US Pat 5629372
    [118]S Kuwamura. Water-borne fluorinated polyolefines in coatings [J]. Surface Coatings International,1997, (11):525~528
    [119]李同信等.转相乳化法制备水性氟树脂涂料[C].第三届氟涂料发展战略及技术研讨会议论文选集.全国涂料工业信息中心,2002,62-65
    [120]张建新,李斌,兰军,等.各种单体对耐低温氟醚橡胶性能的影响[J].化工新型材料,2011,39(1):122-124
    [121]F Robeert, J Brady. Properties which influence marine fouling resistance in polymer [J]. Progress in Organic Coatings,1999.35 (1):31~35
    [122]S Turri, R Valsecchi, M Vigano,et al. Hydrophilic-oleophobic behaviour in thin films from fluoromodified nanoclays and polystyrene [J]. Polymer Bulletin,2009,63 (2):235~243
    [123]K Takahiro, I Kyuji. Termosetting powder coating composition [P]. WO99-57208
    [124]C D Henri, R Pierre. Nove benzimidazol tricyclic derivatives, their preparation method and pharmacentical compositions containing them [P]. WO99-03900
    [125]C Sagawa. The weatherability of new thermosetting fluorocarbon powder coatings [J]. Surface Coatings International,1995, (3):94~98
    [126]章云祥.赛氟隆ETFE及粉末涂料[J].涂料工业,1997(6):37-39
    [127]B Ameduri. Use of original fluoroacrylates as surface modifiers[C]. Fluorine in Coatings IV Conference Papers.Brussels:International Centre for Coatings Technology,5~7 March 2001, Paper 4
    [128]R Bongiovanni. Surface properties of acrylic coatings containing perfluoropolyether chains [C]. Fluorine in Coatings IV Conference Papers. Brussels:International Centre for Coatings Technology.5~7 March 2001, Paper14
    [129]M Messori. Poly[ε-capolactone]-poly[fluoroalkylene oxide]-poly[ε-capolactone] block copolymers as surface modifiers of poly[vinyl chloride] [C]. Fluorine in Coatings IV Conference Papers.Brussels:International Centre for Coatings Technology,5-7March 2001. Paper 11
    [130]A D Robert. Coating compositions of an acrylic fluorocarbon polymer and a fluorinated polyisocyanate [P]. US Pat 5705276
    [131]R D Auton.Coating compositions acrylic fluorocarbon polymer and a fluorinated polyisocyanate [P].US Pat 5597874
    [132]M Okubo, M Tahara. N Saeki,et al. Surface modification of fluorocarbon polymer films for improved adhesion using atmospheric-pressure nonthermal plasma graft-polymerization[J]. Thin Solid Films,2008,516 (19):6592-6597
    [133]Z Dobkowski. Thermooxidative degration of the polysiloxane-polytetrafluoro-ethylene coating system [C]. Fluorine in Coatings IV Conference Papers. Brussels:International Centre for Coatings Technology.5~7 March 2001, Paper24
    [134]高万振.低表面能涂层技术的发展与展望[J].中国表面工程,2004,4(7):49-50
    [135]刘秀生,高万振,郑芝国.低表面能涂层技术发展现状[J].表面工程资讯,2005,5(3):21-22
    [136]D W Bechert, G Hoppe. On the drag reduction of the shark skin[C].AIAA Shear Flow Control Conference,Colorado,Mar.1997 (12~14)
    [137]田军,徐锦芬,薛群基.粘性减阻技术及其运用[J].实验力学,1997,12(2)198-202
    [138]G Hetsroni, A Mosyak, E Pogrebnyak, et al. Fluid flow in micro-channels [J]. International Journal of Heat and Mass Transfer,2005,48 (10):1982~1998
    [139]陆卫中,李京,李晓东,等.管道内SLF减阻涂层技术[J].现代涂料与涂装,2002,2(1):11~12
    [140]张学俊,王丽娟.树脂涂层对原油输送管道的壁面减阻作用[J].石油炼制与化工,2001,3(3):57
    [141]M J Walsh. Turbulent boundary layer drag reduction using biblets [C]. American Institute of Aeronautics and Astronautics. Aerospace Sciences Meeting.20th, Orlando, AIAA-82-0169,1982
    [142]M J Walsh, A M Lindemann. Optimization and application of biblets for turbulent drag reduction [C]. American Institute of Aeronautics and Astronautics. Aerospace Sciences Meeting,22nd, Reno, AIAA-84-0347,1984
    [143]D W Bechert, M Bruse. Experiments on drag-reducing surfaces and their optimization with an adjustable geometry [J]. Fluid Mechanics,1997.338:59~87
    [144]P Luchini, A Pozzi. Computation of three-dimensional stokes flow over complicated surface using a boundary-independent grid and local corrections [C]. In:10th European Drag Reduction Meeting. Berlin.1997
    [145]杨弘炜,高歌.一种新型边界层控制技术应用于湍流减阻的实验研究[J].航空学报,1997,18(4):455~157
    [146]史小军,王树立,李恩田,等.王海秀.肋条在湍流减阻中的数值模拟[J].管道技术与设备,2008(1):8-10
    [147]J R Debisschop, F T M Nieuwstadt. Turbulent boundary layer in an adverse pressure gradient:effectiveness of riblets [J]. AIAA journal,1996,34:932~937
    [148]李育斌,乔志德,王志歧.运七飞机外表面沟纹膜减阻的实验研究[J].流体力学实验与测量,1995,9(3):21-26
    [149]V M Kulik, B N Semenov. The measurement of dynamic properties of viscoelastic materials for turbulent dragreduction [M]. In:ChoiK-S, et al.Emerging Techniques in Drag Reduction.Mechanical Engineering Publications London,1996, 207
    [150]K S Choi. European drag-reduction research recent developments and current status [J]. Fluid Dynamics Research.2000, (26):325~335
    [151]K. S Choi, D M Orchard. Turbulence management using riblets for heat and momentum Transfer [J]. Experimental Thermal and Fluid Science,1997,15:109~ 124
    [152]M Christophe, M G White. Mungal.mechanics and prediction of turbulent drag reduction with polymer additives [J]. Annual Review of Fluid Mechanics,2008,40 (1):235~256
    [153]陈学生,陈在礼,陈维山.湍流减阻研究的进展与现状[J].高技术通讯,2000,12:91~95
    [154]杨晓东,任露泉.形体减阻类型、减阻机理与仿生[J].农业机械学报,2003,34(1):130~133
    [155]汪久根,张建忠.仿鱼鳞的减阻表面设计[J].润滑与密封,2005,9(5):19-20
    [156]B Anthony, A L Brennan. L H Gibson Wilson. Characterization of chemically and topographically modified siloxane elastomer for controlled cell growth [J]. Materials Research Society,711 (2002):1~6
    [157]M Glen, I Michael Newton. Neil J.Shirtcliffe. Immersed superhydrophobic surfaces:Gas exchange,slip and drag reduction properties [J]. Soft Matter,2010,26 (6):714~719
    [158]K S Choi, D M Orchard. Turbulence management using riblets for heat and momentum Transfer [J]. Experimental Thermal and Fluid Science,1997.15:109~124
    [159]W Funke. The role of adhesion in corrosion protection by organic coatings [J]. Journal of the oil and colour chemists'association,1985,68 (9):229~232
    [160]O Negele, W Funke. Internal stress and wet adhesion of organic coatings [J]. Progress in Organic Coatings,1996.28 (4):285~289
    [161]W Schwenk. Adhesion loss for organic coatings,causes and consequences for corrosion protection [M]. Corrosion Control by Organic Coatings. Ed H.Leidheiser Jr.1981:103~110
    [162]N S Sangaj, V C Malshe, Permeability of polymers in protective organic coatings [J], Progress in Organic Coatings,2004,50 (1):28~39
    [163]A Miszczyk. Electrochemical approach to evaluate the interlayer adhesion of organic coatings [J], Progress in Organic Coatings,2005.52 (4):298~305
    [164]J Flis, M Kanoza. Electrochemical and surface analytical study of vinyl-triethoxy silane films on iron after exposure to air [J]. Electrochimica Acta,2006,51 (11):2338~2345
    [165]W.Funke, Protection of metals by organic coatings against corrosion and relation to wet adhesion [C].16~28,7th Apccc (1991)
    [166]A Margolina, S H Wu. Percolation model for brittle tough transition in polymer blends [J]. Polymer,1988, (29):2170-2173
    [167]S H Wu, A Margolina. Reply to comments [J]. Polymer,1990. (31):972-974
    [168]孙家峰,周燕,李健,刘秀生,兰家勇.压差流阻测试装置研制及涂层减流阻作用研究[J].润滑与密封2006,7:120-122
    [169]InChemRezTM.Modified Phenoxy Resins PKHM-30 &-301 for Flexibility and Deep Draw Coatings[M].800 Cel-River Rock Hill, South Carolina 29730, Toll Free within U.S.(800) 331-7721
    [170]YJ Hiroshige, K Kawate. Adhesive composition and precursor thereof [P]. US Patent 6228500, May 8,2001
    [171]Paphen PKHM-30, Phenoxy specialties [M]. (?)2009, Special Chem S.A.
    [172]范英俊,孙韶华,薛记二.球墨铸铁管专用水泥涂衬机[J].铸造,2001,50(8):478~501
    [173]王朝晖,王朝霞.使用减阻剂提高管道节能效果[J].油气储运,1998,17(3):50~51
    [174]林竹,袁中立,翟建军.长输天然气内涂层减阻实验研究[J].天然气工业,2002,22(1):75~79
    [175]张文伟,王善珂,祝宝利.西气东输管道应用减阻内涂层的经济性分析[J].油气储运,2002,21(2):43-45,46
    [176]吴宏.西气东输管道工程介绍(上)[J].天然气工业,2003,23(6):117~122
    [177]流体动力学.维基百科[EB/OL].www.http://zh.wikipedia.org/wiki/流体动力学
    [178]苏欣,袁宗明,范小霞.天然气管道内涂层工艺计算[J].天然气工业,2005,25(10):113~116

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700