群桩—承台联合基础的力学特性及其在大开间结构中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为满足软土地区大开间建筑物对基础的需要,低承台小群桩的桩基型式得到了广泛的发展和应用。但目前采用共同作用原理设计的低承台小群桩主要考虑满足承载力的要求,而对承台沉降、尤其是各群桩承台的不均匀沉降考虑尚显不足。对群桩-承台桩基与上部结构共同作用的研究较少。
     论文通过收集前人资料、理论分析以及数值模拟系统研究了桩、地基土、承台和上部结构相互作用机理和受力特性,并在此基础上探讨了锅底形沉降对建筑物结构梁、柱应力的影响以及群桩-承台效应下减小建筑物不均匀沉降的方法。
     论文将桩基础计算的弹性理论法的桩位移方程加以改进,使其计算精度有所提高,并将其应用于桩-土-承台-上部结构共同作用研究,用DIGITAL VISUAL FORTRAN语言编写了计算程序,研究了高承台小群桩、低承台小群桩的荷载-沉降特征,并提出了用带台单桩等代低承台小群桩的方法。
     高承台小群桩的基桩承载力小于单桩,沉降量大于单桩,而低承台小群桩的基桩承载力大于单桩,沉降量小于高承台小群桩而大于单桩。低承台小群桩的基桩承载力随桩长、桩距、桩径、桩数的增加而增加,但同时也对应有较大的沉降量。
     研究中用弹性有限元方法编制了大开间建筑物结构分析程序,在计算中同时考虑建筑物的分步施工和结构刚度逐步形成的过程,与群台桩基础在考虑桩-土-承台-上部结构共同作用下的沉降计算相耦合,计算对比了考虑与不考虑群桩-承台效应情况下的沉降量变化和结构内力变化。计算结果显示,考虑群桩-承台效应和桩-土-承台-上部结构共同作用情况下,建筑物将产生锅底形沉降。程序同时计算了考虑群桩-承台效应和桩-土-承台-上部结构共同作用时建筑物的梁、柱内力,并与不考虑柱底沉降时的计算结果进行了对比,发现角、边部位柱的内力、弯矩增加,中部柱的内力减小,而且边跨梁中最大拉应力增大很多,说明建筑物群桩-承台基础产生锅底形沉降时,边跨梁的次应力可能使梁中总应力超过结构强度产生开裂。
     建筑物的荷载有约30%在结构完工以后才施加,若按承载力确定各柱下低承台小群桩的设计,在后期荷载的作用下,大开间建筑物仍会产生较大的沉降与不均匀沉降。
     要解决建筑物锅底形沉降问题,不仅要考虑到荷载不同引起的沉降差异,还要考虑群桩-承台效应引起的沉降差异。为尽可能减少锅底形沉降,可采取了减少角、边部位桩基的桩、土刚度比,使角、边部位承台在自身荷载下的沉降量略大于中部承台;或是增加中部承台承载力,减少沉降量;或是“预留沉降”,在预计沉降量较小的承台与立柱接头部位采用结构措施,按照荷载完全施加后可能出现的沉降差,预留部分沉降。总之,在设计中需要有“以沉降控制进行设计”的理念,尽可能的减少群桩-承台基础的不均匀沉降。
To meet the development demand of large-span building and building build in soft clay area, small group of piles with low-cap foundation have gotten extensive development and application. But at present the small group of piles with low-cap foundation designed with interaction principle are mainly considered to meet the capacity, not satisfy the cap settlement, especially uneven settlement requirements. The study on joint-action of piles-soils-caps-structure is not enough now.
     By collecting information, theory analysis and numerical simulation, this paper systematically studies the interaction mechanism and suffering force characteristics of piles-soils-caps-structure. And on the basis discusses the stress influences of beams,columns caused by pan bottom shape settlement. The methods of decrease uneven settlement on the influences of joint-action of group caps of piles are discussed also.
     The elastic theory suggested by polous is improved in the work to make it more accuracy. The improved formula is used to study the joint-action of piles-soils-caps-structure. The load-settlement behavior of the small group of piles with high-cap and low-cap is study by the program which be written using FORTRAN software platform language firstly. Then a method is presented to replace low-cap piles group by a equivalent single pile with a low-cap.
     The pile bearing capacity of piles with high-cap which settlement is bigger than the single pile's is less. The pile bearing capacity of piles with low-cap is bigger than the single pile's, the settlement of piles with low-cap is less than the high-cap's and bigger than the single pile's. As pile length increases, pile spacing increases, pile diameter increases or pile number increases, the pile bearing capacity of piles with low-cap increases, but associated with bigger settlements.
     A computer program using elastic finite element is made to calculate the inner stress and point displacement of the large-span building. The constructing step and the progress of rigidity increasing can be considered. The program can also work together with the program calculating joint-action of piles-soils-caps, so as to realize the joint-action of piles-soils-caps-structure. The foundation settlement and the structure stress are determined by the programs and contrasted with the result of regardless the joint-action. From the conclude, it can be found that the foundation settlement has a shape similar with the pan bottom. The result of structure stress contrasting shows that the pillar stress increase at the location of corners and fringes, but the pillar stress decrease at the inner place while considering the joint-action. For the structure beams, the joint-action let the biggest stress increasing. The result illustrates that the main reason causing cracks in some beams is the subordinate stress caused by the settlement. The other reason may be in the design which did not consider the safety enough or the quality of the construction is not very good.
     About 30% load continue to increase after the building structure finish. If piles with low-cap designed according to bearing capacity, large settlement and uneven settlement will be cause by the later load on large-span building.
     To solve the pan bottom shape settlement, not only different load, but also joint-action of group caps of piles must be considered in the pile design. As much as possible to reduce pan bottom shape settlement, the stiffness ratio of pile to soil at the location of corners and fringes can be de decreased firstly. The method makes the pile cap settlement at the location of corners and fringes larger than the inners'. Secondly, the bearing capacity can be increased and the settlement can be decreased at the inner cap. Thirdly, "settlement reservation" measures can be taken to, structural measures may be taken at the joint of cap and pillar which have less settlement by prediction according to the settlement difference after the load completely imposeing. In summary, the idea of "design by settlement controlling" need be carried out in the pile design in order to reduce the uneven settlement as much as possible.
引文
[1]朱百里.补偿性摩擦桩基础-法兰克福展览大楼.岩土工程师[J],1990(3)
    [2]陈凡,徐天平,陈久照,关立军.基桩质量检测技术[M].北京:中国建筑工业出版社,2003
    [3]宰金眠,王旭东.群桩与承台共同作用分析的简化数值方法[A],第六届全国土力学及基础工程学术会议论文集,上海:同济大学出版社,1991:401-404
    [4]黄绍铭,王迪民等.减少沉降量桩基的设计与初步实践[A].第六届全国土力学及基础工程学术会议论文集,上海:同济大学出版社,1991:405-410
    [5]何颐华,金宝森等.高层建筑箱基加满堂摩擦群桩研究[A].第五届全国土力学及基础工程学术会议论文选集,北京:中国建筑工业出版社,1990:407-412
    [6]施云华,熊大阅.双层地基土高层建筑物地基分析-介绍三个不同基础形式的高层建筑实例[M].中国船舶工业总公司勘察研究院,1987
    [7]贾宗元,魏汝男.软土地基桩土共同作用监测实例分析[A].第五届全国土力学及基础工程学术会议论文选集,北京:中国建筑工业出版社,1990:433-437
    [8]刘金砺,袁振隆.群桩承台土反力性状和有关设计问题[A].第五届全国土力学及基础工程学术会议论文选集,北京:中国建筑工业出版社,1990:393-399
    [9]F. Durbain. Numerical inversion of Laplace transforms:an efficient improvement to Dunbar and Abates method [J], The computer journal,1973,17(4):371~376
    [10]文特科恩,方晓阳主编,钱鸿给等译.基础工程手册[M],1983
    [11]Zeevaert, L., Foundation Design and Behavior of Tower Lotion American in Mexico City. Geotechnique,1957,17(1):115
    [12]Hooper. J. A. Observations on the Behavior of a piled raft foundation on London Clay. Proc. Insth. Civ. Engrs,1973,55(2)
    [13]J. Palka, T. Naborczyk. Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering",1977,1译文见《地基与基础译文集3》“桩与承台共同的承载力”,中国建筑工业出版社,1980:176-686
    [14]终世祥.亚粘土中群桩的承载能力及变形特性的模型试验[A],第三届全国土力学及基础工程学术会议论文选集,北京:中国建筑工业出版社,1981:374-384
    [15]Fredriksson, A.&Roson. R. Foundation on Creep Piles:Design Parameters, Graphical Force System As Well As an Analysis of Test Pile Results. Proc. the 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco.1985.1(4):2235~2238
    [16]卢世深,林亚超译.桩基础的计算和分析[M].北京:人民交通出版社,1987:72-125
    [17]楼晓明,刘建航,洪毓康.两个相邻高层建筑桩箱基础的共同作用分析[J].土木工程学报,2002,35(2):55-60
    [18]宰金眠,宰金璋.高层建筑基础分析与设计.北京:中国建筑工业出版社,1993
    [19]倪新华.筏基-桩群-土体共同作用的数值分析:[博士学位论文],上海:同济大学,1990
    [20]刘利民,舒翔,熊巨华.桩基工程的理论进展与工程实践[M].北京:中国建材工业出版社,2002
    [21]刘祖德.桩基设计中的若干问题[A].第五届桩基工程全国学术会议论文集,2002
    [22]R. W. Cooke et al., Jacked Piles in London Clay-Interaction and A Group Behavior under Working Condition[J], J. Geotechnique,1980,30(2)
    [23]Polous. H.G and Davis. E.H., Pile Foundation Analysis and Design[M]. New York:Whey,1980
    [24]Chow Y. K. and Thevendran V., Optimization on Pile Group [J]. Computers and Geotechnics,1987,4(1):42-58
    [25]董建国,赵锡宏.高层建筑地基基础——共同作用理论与实践[M].上海:同济大学出版社,1997:279-300
    [26]陈安.软粘土中桩土共同作用模型试验与机理研究:[博士学位论文].长沙:中南大学,2006:8-10
    [27]褚航.复合桩基共同作用分析:[博士学位论文].杭州:浙江大学,2003:4-6
    [28]Coyle,H.M.&Reese,L.C..Load Transfer For Axially Loaded Pile in Clay[A], Proc.ASCE,1966,(2),1-26
    [29]费勤发,张问清,赵锡宏.桩土共同作用的位移影响系数的计算[J].上海力学,1983,(5):42-46
    [30]李伟.桩筏基础基底土反力模型及筏板设计研究:[博士学位论文].上海:同济大学,2007:3-10
    [31]钟闻华.深长桩荷载传递特性与相互作用理论及应用研究:[博士学位论文].南京:东南大学,2005:65-72
    [32]汪文彬.基于单桩荷载试验推算群桩基础沉降的研究:[博士学位论文].上 海:同济大学,2006:5-19
    [33]《桩基工程手册》编写委员会.桩基工程手册[M].北京:中国建筑工业出版社,1997
    [34]林天健,熊厚金,王利群.桩基础设计指南[M].北京:中国建筑出版社,1999
    [35]赵明华,徐学燕.基础工程[M].北京:高等教育出版社,2003:82-100
    [36]刘金砺,黄强.竖向荷载下群桩变形性状及沉降计算[J].岩土工程学报,1995,17(6):1-13
    [37]陈仁朋,凌道盛,陈云敏.群桩基础沉降计算中的几个问题.土木工程学报,2003,36(10):89-94
    [38]刘金砺.竖向荷载下的群桩效应和群桩基础概念设计若干问题.土木工程学报,2004,37(1):78-83
    [39]Randolph M. F, Wroth C. P., An Analysis of The Vertical Deformation of Pile Groups[J]. Geotechnique,1979,29 (4):423~439
    [40]Randolph,M.F., Design of Piled Foundations[R]. Cambridge Univ.Eng. Dept.Res. Rep.Soils.TR143,1983
    [41]Randolph,M.F., Design Methods for Pile Groups and Pile Rafts[R],S.O.A.Report, 13ICSMFE,New Delhi.1994,5:61~82
    [42]Randolph,M.F.&Dolwin,J., Design of Driven Piles in Sand[J]. Geotechnique, 1994,44(3):427~448
    [43]Randolph,M.F.&Clancy,J., Efficient Design of Piled Rafts. Research report No.G:1069 of department of civil and resource engineering geomechanics group in the university of western Australia,1993
    [44]Chow,Y.K., Iterative Analysis of Pile-soil-pile Interaction[J]. Geotechnique, 1987,37(3):321~333
    [45]Hong,D.C.,Chow,Y.K.and Yong,K.Y., Method for The Analysis of Large Vertically Loaded Pile Groups[J]. Int.J.Numer.Anal.Meth. Geomech., 1999,23:243~262
    [46]Caputo,V.and Viggiani,C., Pile Foundation Analysis:A Simple Approach to Non Llinearity Effects. Rivista Italiana di Feotecnica.1984,18(2):32~51
    [47]Mandolin,A.and Viggian,C., Settlement of Pile Foundations[J]. Geotechnique, 1997,47(4):791~816
    [48]Cooke,R.W. Piled Raft Foundation on Stiff Clays-a Contribution to Design Philosophy [J]. Geotechnique,1986,36(2):169~203
    [49]刘杰,张可能.刚性承台下柔性群桩和桩周土荷载传递规律研究.土木工程
    学报,2004,37(7):82-87
    [50]Chow,Y.K., Discrete element analysis of settlement of pile groups[J]. Computers & Structures,1986,24(1):157~166
    [51]Chow,Y.K., Axial and lateral response of pile groups embedded in non-homogeneous soils[J].Int.J.Numer.Analyt.Mech.Geomech.,1987,11:621~638
    [52]Pastsakom Kitiyodom, Tatsunori Matsumoto. A simplified analysis method for piles raft foundations in non-homogenous. Int.J. Numer.Anal.Meth.Geomech. 2003,27:85~109
    [53]Shen,W.Y.and Yong,K.Y., A variational approach for vertical deformation analysis of pile group[J]. International journal for numerical and analytical methods in geomechanics,1997,21:741~752
    [54]Shen,W.Y.and C.I.Teh.Practical solution for group stiffness analysis of pile[J]. Journal of geotechnical and geo-environmental engineering,2002,128(8): 692~698
    [55]Shen,W.Y.and Yong,K.Y, A variational approach for the analysis of pile group-pile cap interaction[J]. Geotechnique,2000,50(4):349~357
    [56]Shen,W.Y.and Yong,K.Y, A variational approach for the analysis of rectangular rafts on an elastic half-space[J].Soils and Foundations,1999,39(6):25~32
    [57]Chow,Y.K and Shen,W.Y, Analysis of piled raft foundations using a variational approach[J]. The International Journal of Geomechanics,2001,1(2):129~147
    [58]王浩.桩端刺入变形与桩-土-承台共同作用的机理与分析方法研究:[博士学位论文].上海:同济大学,2003:7-11
    [59]杨克己等.基础-桩-土共同作用的性状与承载力研究[J].岩土工程学报,1988,10(1):30-38
    [60]阳吉宝.桩筏基础桩筏荷载分担的简便计算方法[J].建筑结构,1997,4:7-9
    [61]Poulos,H.G.., Piled raft foundations:design and application[J]. Geotechnique, 2001,51(2):95~113
    [62]杨敏.以控制沉降为设计目标的减少沉降桩基础之研究[A].以沉降量为控制指标的复合桩基设计研讨会论文集.上海市土木工程学会,1998:5-18
    [63]地基基础设计规范.上海市工程建设规范.上海,1999
    [64]宰金珉.桩土明确荷载分担的复合桩基及其设计方法[J].建筑结构学报,1995,16(4):66-74
    [65]邓志辉.基于桩端刺入变形分析的桩-土-承台共同作用研究:[硕士学位论文].上海:同济大学,2003:3-8
    [66]Rain,S. J., The analysis of flexible raft-pile systems[J].Geotechnique,1978,28 (1):65~83
    [67]洪毓康等.高层建筑下桩-箱基础共同作用研究[J].岩土工程学报,1997,19(2):62-68
    [68]杨敏等.考虑极限承载力下的桩筏基础相互作用分析[J].岩土工程学报,1998,20(5):82-86
    [69]吴永红等.桩土相互作用沉降计算理论与非线性修正方法[A].海峡两岸岩土工程/地工技术交流研讨会论文集,城市地下工程与环境保护大陆卷,史佩栋主编[C],北京:人民交通出版社,2002:243-247
    [70]杨嵘昌,宰金眠.广义剪切位移法分析桩-士-承台非线性共同作用原理[J].岩土工程学报,1994,16(6):103-116
    [71]Lee,C. Y., Pile groups settlement analysis by hybrid layer approach[J]. Journal of Geotechnical Engineering, ASCE,1993,119(6):984~997
    [72]Lee,K.M., Xiao,Z.R., A simplified nonlinear approach for pile group settlement analysis in multilayered soils[J]. Can Geotech J,2001,38:1063~1080
    [73]王旭东.群桩-土-承台结构共同作用的数值分析[J].岩土工程学报,1996,18(4):27-33
    [74]陈明中.群桩沉降计算理论及桩筏基础优化设计研究:[博士学位论文].杭州:浙江大学,2000
    [75]王志贤,高永贵.按桩-土共同工作确定单桩承载力,第五届全国土力学及基础工程学术会议论文选集,北京:中国建筑工业出版社,1990:400-406
    [76]刘祖德,林亚超.深钻孔桩轴向承载力确定[A].第三届全国土力学及基础工程学术会议论文选集,北京:中国建筑工业出版社:1981:338-345
    [77]Visic, A. S., Ultimate Loads and Settlements of Deep Foundation in Sand. Proc. Symp. On Bearing Capacity Settlement of Foundation, Duke University, N.C.,1967
    [78]Hunt, R. E., Geotechnical Engineering and Evaluation, McGraw Hill Book Company,1986:331~444
    [79]Fleming, W. C. F., Weltman, A. J., Randoiph, M. F. and Elson,W K., Piling Engineering, John Wiley and Sons,New york,1985
    [80]Tomlinson, M. J., The Adhesion of Piles Driving in Clay Soils, ICEMFE, 1957,4(12)2:66~71
    [81]Meyerhof, G.., Bearing Capacity and Settlement of Pile Foundations, ASCE, GT3, 1971,102:197~228
    [82]Vijayvergia, V M. and Focht,J.A, A New Way to Project the Capacity of Piles in Clay, Annual O.T.C., Houston,1972,4(12):865~874
    [83]Tomlinson, M. J., Pile Design and Construction Practice, Viewpoint Publications, London,1977.中译本由朱世杰译,人民交通出版社,1984
    [84]Coyle, H. M. and Casteilo, R. R., New design Correlations for Piles in Sand, ASCE,107:965~986
    [85]Hans F. Winterkorn and方晓阳主编.基础工程手册(美国)[M].钱鸿给,叶书麟译.北京:中国建筑工业出版社,1983
    [86]刘金砺.桩基础设计与计算[M].北京:中国建筑工业出版社,1994
    [87]Massakiro Koike, Tamootsu Matsuui. Vertical Loading Tests of Large Bored Piles and Their Estimation:Proc,1st International Geotechnical Seminar on Deep Foundations on Bored and Auger Piles.1988
    [88]Yang M, Tham L q Cheung Y K.Model Test on the Interaction Between Tall Buildings. And Piled-raft Foundation.2nd National Structural Engineering Conference, Adelaide, Australia, Oct.1990
    [89]吴兴序.桩的端阻和侧阻相互作用及其工程应用价值[J].西南交通大学学报,1997,(3):68-72
    [90]李发明,陈竹昌,刘利民.桩侧阻力退化的几种情形[J].土工基础,1998,(3):32-35
    [91]刘金砺.桩基研究与应用若干进展浅析[J].施工技术,2000.(9):55-59
    [92]B. M. Lehane, R. J. Bond&R. Frank. Mechanisms of Shaft Friction in Sand and Instrumented Pile Tests. Ocean Engineering.1994(1)
    [93]杨敏.减少沉降桩基础的设计理论和工程应用[A].岩土工程青年专家学术论坛文集,北京:中国建筑工业出版社,1998:129-136
    [94]董建国,赵锡宏.箱(筏)基础沉降计算方法的探讨[A].地基基础新技术学术会议论文集(上).南京:中国建筑学会地基基础学术委员会,1989:304-309
    [95]董建国,赵锡宏.桩箱(筏)基础沉降计算新方法[J].岩土工程学报,1996(1):80-84
    [96]D.J.Naylor, J.A.Hooper. An Effective Stress Finite Element Analysis to Protect The Short and Long Term Behavior of a Pile-Raft Foundation on London Clay, On Settle Of Structures, Cambridge.1974
    [97]J. A. Hooper. Observations on the Behavior of A Pile-Raft Foundation on London Clay, Proc. Instn. Civil Engrs.1973,55(2)
    [98]Banerjee, P. K.,&Driscoll, P. M. Three-Dimensional Analysis of Rake Pile Groups,, Proc. Instn. Civ. Engrs.1976,61:653~671
    [99]茜平一,陈小平.桩筏基础设计的系统方法研究.水利学报[J],1995(10):35-46
    [100]高红生,茜平一.高层建筑桩筏基础设计计算方法[J].住宅科技,1995,(12):11-18
    [101]Banerjee, P.K.,&Davies, T. G. Analysis of Pile Groups Embedded in Gibson Soil. Int. Conf. S. M.& F. E. Tokyo,1977,1:381-386
    [102]Beredogo, Y.O. An Experiment Study of the Load Distribution in Pile Groups in Sand, Can Geot. Jnl.1966,3(3):145~166
    [103]Bender, C. H., Lyons, C. G..&Lowery, L. L. Applications of Wave-Equation Analysis to Off-shore Pile Foundation. Offshore Tech. Conf., Texas, paper OTC 1969.1:10~55
    [104]Balaam, N. P., Poulos, H.G,&Booker, J. R. Finite Element Analysis of the Effects of Installation on Pile Load-Settlement Behavior. Geot. Engrs. 1976.6(1):33~48
    [105]周国然,赵锡宏.桩-厚筏基础共同作用分析[A].见赵锡宏等著,高层建筑桩筏和桩箱基础设计理论[C].上海:同济大学出版社,1989:91-121
    [106]杨敏,丁万太,赵锡宏.高层建筑桩箱基础的沉降和整体倾斜[A].高层建筑桩筏和桩箱基础设计理论[C].上海:同济大学出版社,1989:195-211
    [107]Adams, J. I.&Hanna, T. H. Ground Movements Due to Pile driving. Conf. On behavior of Piles, Inst. Civ. Engrs., London.1970.
    [108]Barker, W. R.&Reese, L. C. Loading-carrying Characteristics of Drilled Shafts Constructed with the Aid of Drilling Fluids. Res. Rep.Center for High. Res, Univ. of Texas,1970:89~90
    [109]Broms, B. B.& Silberman, J. O. Skin Fraction Resistance for Piles in Cohesion less Soils. Sols Soils,1964,10:33
    [110]Bromham, S. B.& Styles, J. R. An Analysis of Pile Loading Test in A Stiff Clay. Proc.1st. Aust.—N. Z. Conf Geomechs., Melbourne,1971,1:246~253
    [111]Booker, J. R.& Poulos, H. G Finite Element Analysis of Piles in Viscoelastic Soil. Proc.2nd Int. Conf. On Numerical Method in Geomechanics, Blacksburg, 1976.1:425~437
    [112]郭继武,黎钟主编.建筑结构设计实用手册[M].北京:高等教育出版社,1992
    [113]Bjerrum, L. Jonhannnesson, I. J.,&Eide, O. Reduction of Skin Fraction on Steel Pile to Rock Proc.7th. Int. Conf. S. M.& F. E.1969,2:27~34
    [114]Broms. B. B. Method of Calculating the Ultimate Bearing Capacity of Pile-A Summary. Sols-Soils,1966,18:21~32
    [115]Brown, P. T.& Wieson, T. J. The behavior of Uniformly Loaded Piled Strip Footings. Soils and Fndn.1975.15(4):13~21
    [116]Broms. B. B. Stability of Flexible Structure (Piles and Pile Groups). Proc.5th. Eur. Conf Soil Mech. Fndn. Engr. Madrid,1972,2:239~269
    [117]Chandler, R. J. the Shaft Fraction of Piles in Cohesive Soils in Terms of Effective Stress. Civ. Engr. And Pub. Wks. Rev.1968:48~51
    [118]Butterfield, R. and Banerjee, P K. The Elastic Analysis of Compressible Piles and Pile Groups.1971.Geot. Vol.21:no.1:43~60
    [119]Butterfield, R. and Banerjee, P K. The Problem of Pile Groups and Pile Cap Interaction. Geot.1971,21(2):135~142
    [120]Borland, J. B. Shaft Fraction of Piles in Clay-A Simple Fundamental Approach. Ground Engr.,1973,6(3):30~42
    [121]Borland, J. B., Butler, F. G,& Duniean, P, The Behavior and Design of Large-Diameter Bored Piles in Stiff Clay. Proc. Symp.4th Large Bored Piles, Inst. Civ. Engrs. London,1966:51~71
    [122]Coyle, H. M.& Sulaiman I. H. Skin Fraction for Steel Piles in Sand. J. S.M.F.D., ASCE,1967,93(6):261~278
    [123]D'Appolonia, E.& Hribar, J. A. Load Transfer in a Step-Taper Pile. J.S.M.F.D., ASCE,1963,89(6):57~77
    [124]D'Appolonia, E.& Lambe, T.W. Performance of Four Foundation on End-Bearing Piles. J.S.M.F.D., ASCE,1971,97(1):77~93
    [125]Davis. E. H, and Polous. H. G. The Analysis of Pile-Raft Systems. Aust. Geomechs. Jnl.1972,2(1):21~27
    [126]Desai, C. S., Johnson, L. D.,& Hargett, C. M. Analysis of Pile Supported Gravity Lock. Jnl. Geot. Engr. Divn., ASCE,1974,100(9):1009~1029
    [127]Desai, C. S., Numerical Design-Analysis of Piles in Sand. Jnl. Geot. Engr. Divn., ASCE,1974,100(6):613~635
    [128]Donaldson, G. W. The use of Small-Diameter Piles in Expansive Soil. Proc.4th. Reg. Conf. For Africa on Soil Mechs.& Fndn. Engr.1967.1:249
    [129]Doroshkevich, N. M.&Boim V P. In-situ Study of the Bearing Capacity of Driven Piles, in Expansive Soil. Proc.3rd Asian Conf. S. M.&F. E.1967:81~83
    [130]Ellison, R. D., D'Appolonia, E.& Thiers,G R. Load-Deformation Mechanism for Bored Piles. J.S.M.F.D, ASCE,1971,97(4):661~678
    [131]Eide, O., Bjercum, L.,&Landva, A. Short-Term and Long-Term Test Loading of a Fraction Pile in Clay. Proc.5th. Int. Conf. S. M.& F. E.1961,2:45
    [132]Endo, M., Minou,A., Kawasaki, K.,&Shibata, T. Negative Skin Fraction Acting on Steel Pipe Piles in Clay. Proc.7th. Int. Conf. S. M.& F. E.1969,2:93-98
    [133]Goble, C.G., Scanlan, R. H.,&Tomko, J. J., Dynamic Study on the Bearing Capacity of Piles[J]. High Res. Rec.1967,67
    [134]Fuller, F. M.& Hay, H. E. Pile Load Tests Including Quick-Load Test Method[J], Conventional Methods and Interpretation. High Res. Rec. 1970,333:74~86
    [135]Woodware, R.& Boitano. J., Pile Loading Test in Stiff Clay [A].5th. Int. Conf. S. M.& F.E.1961,2:171
    [136]Wroth, C. P, Carer, J. P.& Randolph, M. F., Stress Changes Around a Pile Driven into Cohesive Soil[J]. Conf. On Recent Devel in the Design and Constrn of Piles. Inst. Civ. Engrs., London,1979
    [137]Wiesner, T. J.& Brown, P T. Behavior of Piled Strip Footings Subjected to Concentrated Loads[J]. Civ. Engrs. Res. Rec. R275.Univ. of Aust,1975
    [138]Poulos, H. J. Load-Settlement Prediction for Piles and Piers[A]. J. S. M. F. D., ASCE.1972,198 (9):879~897
    [139]Witaker, T. G Cooke, R. W. An Investigation of the Shaft and Base Resistances of Large Bored Piles in London Clay[J]. Proc. Symp. on Large Bored Piles,1966:7-49
    [140]Van der Veen, C. Loading Test on an Unorthodox Concerts Cuff Pile[J]. Proc. 6th. Int. Conf. S. M.& F. E.1965,2:333~337
    [141]Tomlinson, M. J. Pile Design and Construction Practice[J], London. Viewpoint Publications,1977
    [142]Sherman, W. C. Instrumented Pile Tests in a Stiff Clay [J]. Proc.7th Int. Conf. S. M.& F.E.1969,2:227~232
    [143]Singh, A.&.Verma, R. K. Lateral Resistance of a Field Model of Pile Group in Sand and Its Comparison with a Laboratory Model[J]. Ind. Geot.1975,3(2): 113~127
    [144]茜平一,陈小平.高层建筑基础[M].武汉:武汉工业大学出版社,1997
    [145]蔡长庚.内击式沉管桩在高层建筑中的应用[J].工业设计与研究,1990
    [146]刘金砺,黄强,李华,胡文龙.软土中群桩承载性能的研究[A].第六届全国土 力学及基础工程学术会议论文集.上海:同济大学出版社,1991
    [147]陈竹昌.竖向荷载下考虑承台、桩共同分担荷载的问题[A].桩基设计技术研讨会报告,1990
    [148]茜平一,陈晓平,高红生.高层建筑带桩基础优化设计[J].土工基础,1994(1):21-24
    [149]中华人民共和国行业标准.建筑桩基技术规范(JGJ94-94).北京:中国建筑工业出版社,1995
    [150]李宝来.上海地区高层建筑桩基沉降计算方法研究[J].结构工程师,1992,(12):53-59
    [151]洪毓康,陈华强,陈冠发.高层建筑下短桩基础的原位测试研究[A].高大钊主编,软土地基理论与实践[C].北京:中国建筑工业出版社,1992:106-116
    [152]董建国,赵锡宏.高层建筑桩筏和桩箱基础沉降计算的简易理论法[M].上海,同济大学出版社,1989:179-194
    [153]赵春洪,赵锡宏.上部结构-筏-桩-地基共同作用分析的新方法[M].上海,同济大学出版社,1989:70-90
    [154]Poulos, H. G, The Influence of a Rigid Pile cap on the Settlement Behavior of an Axially-Loaded Pile[J]. Civ. Eng. Trans., Inst. Engrs. Aust.,1968,2:246~208
    [155]Poulos, H. G., Analysis of the Settlement of Pile Groups[J]. Geot.1968, 18:449~471
    [156]Poulos, H. G.& Matters, Displacement in a soil mass Due to the Pile Groups[J]. Aust. Geomechs. Jnl.1971.1(1):29~35

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700