孔隙规则排列Al_2O_3基多孔陶瓷及三维连通Al_2O_3/树脂复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔陶瓷具有密度低、比表面积大、渗透率高、以及耐高温和化学腐蚀的性能,被广泛用作过滤、分离、隔热、吸声、催化剂载体、化学传感器和生物陶瓷等元件材料。如果多孔陶瓷的孔隙呈反蛋白石结构规则排列,将具有许多独特的优越性,如选择性过滤和分离,良好的渗透性能和较高的力学性能。环氧树脂因具有优良的物理和粘结性能、高的电绝缘性能和良好的耐药品性能而引起人们广泛的研究兴趣,它主要用于保护性涂层、涂料、粘结剂、电子封装和浇铸件等。近年来,当在环氧树脂基体中加入适量的填充物可以明显提高其使用性能,使环氧树脂复合材料的研究得到广泛的发展。
     本文采用一种新颖的方法制备了孔壁致密、孔隙规则排列的Al2O3和Al2O3-ZrO2多孔陶瓷材料。该种方法是将植物种子(小米)或发泡聚苯乙烯(EPS)小球排列成有序的模板,通过离心成型技术在模板间隙内填充陶瓷浆料,生坯经干燥、烧结后得到所需要的多孔复型结构。该种方法可以避免常用的有机海绵在分解过程中形成的孔洞和缺陷,烧结产物具有均匀致密的孔壁组织和良好的力学性能。本文系统地研究了A1203和Al2O3-ZrO2陶瓷浆料的制备过程,分析了单相和复相体系离心成型时的分离行为,探讨了离心成型工艺参数对生坯和烧结产物各种性能的影响,建立了实验参数和Al2O3-ZrO2多孔陶瓷压缩强度的预测模型。本文还以离心成型所制备的孔隙规则排列的A1203多孔陶瓷为骨架,制备了三维连通Al2O3/树脂新型复合材料,并研究了此种复合材料的力学性能、高温尺寸稳定性和耐磨性。
     在Al2O3多孔陶瓷的制备过程中,通过调整pH值和分散剂的含量可以制备分散性和稳定性良好的高固相含量(50vol%)的A1203浆料。该种浆料在10-180s-1的剪切速度范围内,呈现剪切变稀的特性,其流变模型为:η=3.451+967.9295γ-0.415。50vol%固相含量的Al2O3浆料流动性和稳定性良好,在离心成型过程中无明显颗粒沉降差异导致的质量分离现象。在2860g离心加速度下,离心所得的生坯孔壁均匀,密度较高(63.4%)1500℃烧结2h后,获得孔壁均匀致密(98.9%)、孔隙规则排列、具有反蛋白石结构的A1203多孔陶瓷。SEM观察表明,A1203多孔陶瓷的顶部和底部晶粒尺寸分布均匀。当作用在EPS模板顶部的附加载荷从7.3N增加到19.6N时,A1203多孔陶瓷的孔隙度从71.8%增加到83.2%,压缩强度由3.85MPa降到1.78MPa,可以经受6-8次1100℃—室温的热震。以小米为模板,采用50vol%固相含量的浆料,在2860g加速度下离心所得的Al2O3多孔陶瓷的孔隙度为66.5%,压缩强度为5.06MPa,可以经受5次1100℃—室温的热震。
     在Al2O3-ZrO2多孔陶瓷的制备过程中,通过改变pH值和分散剂的含量,制备出固相含量为50vol%,分散性和稳定性良好的Al2O3-ZrO2浆料。该浆料在10~180s-1剪切速度范围内,呈现剪切变稀的特性,其流变模型为:η=3.022+1101.4γ-0.4229。采用固相含量为50vol%的Al2O3-ZrO2浆料,离心成型过程中不发生明显的由于Al2O3和ZrO2颗粒尺寸、密度差异所带来的分离的现象。在2860g离心时,离心后样品顶部和底部的孔壁呈现均匀的生坯密度(61.5%)。1550℃烧结2h后,获得孔壁均匀致密(99.1%)、具有反蛋白石结构的Al2O3-ZrO2多孔陶瓷,其顶部和底部孔壁中ZrO2颗粒分布均匀,无明显差异。当EPS模板顶部的附加载荷从7.3N增加到19.6N时,烧结产物的孔隙度从71.5%增加到83%,压缩强度由4.51MPa降到2.07MPa,最高可以经受8-11次1100℃—室温的热震。
     利用自适应学习速率动量梯度下降反向传播算法建立了预测Al2O3-ZrO2多孔陶瓷压缩强度的BP神经网络模型,该模型能具有较好的学习精度、学习速度,其预测误差在实际应用允许的范围之内。通过神经网络的方法可以减少实验工作量和提高工作效率,在材料性能预测方面具有较大的优越性。
     采用孔隙规则排列的A1203多孔陶瓷为骨架,制备出三维连通Al2O3/环氧树脂复合材料,与环氧树脂、A1203颗粒/环氧树脂复合材料相比,具有更优越的室温和高温综合力学性能。在室温时,抗弯强度、抗弯模量、抗压强度和抗压模量分别为116MPa、3.6GPa、170MPa、2.4GPa。该种材料具有良好的高温尺寸稳定性,在180℃尚未发现变形。在120℃压缩时,其抗压强度、抗压模量分别为48MPa、0.9GPa。该新型复合材料具有良好的耐磨性,其摩擦系数和磨损量较低。同时摩擦系数稳定性较好,随着载荷、滑行速度和滑行时间的变化不大。
Ceramic foams have been widely used in catalyst carriers, hot gas collectors, molten metal filters, thermal insulators, bio-ceramics, chemical sensors and separation membranes because they have unique three-dimensional skeleton structure, high porosity, low density, high thermal stability and resistance to chemical attack. If the pores can be orderly arrayed with reverse opal structure, porous ceramic will have a lot of unique advantages such as selective filtration and separation, good permeability and high mechanical properties. The increasing interest in epoxy resin has been associated mainly with their specific properties, such as excellent mechanical and adhesive properties, high electronic insulation and good chemical resistance. These characteristics make epoxy resin useful in an array of applications including protective coatings, paints, adhesives, electronics encapsulation and various cast products. Recently, with the expected improvement in properties from the incorporation of fillers into epoxy resin, research into epoxy composites has become a fast expanding field.
     Porous Al2O3 and Al2O3-ZrO2 ceramics with dense cell struts and ordered pore structure were fabricated by a novel process which can be described as forming a close-packed template with plant seeds (millet) or epispastic polystyrene spheres, filling the interstitial spaces with ceramic slurries by centrifugal slip casting, and removing the template to obtain a porous inverse replica. This novel process has the particular advantage that defects (holes and cracks) that often exist in the cell struts for the commonly used organic sponge pyrolysis method can be avoided, inducing homogenous and dense cell struts and good mechanical properties of sintered products. In this paper, preparation process of Al2O3 and Al2O3-ZrO2 slurries, segregation phenomenon in mono-phase and multi-phase systems during centrifugal slip casting and effect of centrifugal experimental parameters on properties of green compacts and sintered products were studied. A BP neural network model for predicting compressive strength of porous Al2O3-ZrO2 ceramics was built. 3D interpenetrated Al2O3/epoxy composites were fabricated using the ordered porous Al2O3 ceramics as the frame. Mechanical properties, high temperature dimension stability and friction characteristics of the composites were investigated.
     In the process of fabricating porous Al2O3 ceramic, highly dispersed and stable Al2O3 suspensions with 50vol% solid content were prepared by adjusting pH values and the amount of the dispersant. In the shear rate range of 10~180 s-1, the slurry has shear thinning characteristic, with a rheological model expressed asη= 3.451+967.9295γ-0.415. No obvious mass segregation due to sedimentation difference of the initial Al2O3 particles was observed in the slurry with 50 vol% solid loading because of its good fluidity and stability The cell wall of green compacts centrifuged at acceleration of 2860 g has high and uniform density of 63.4 %. After sintering at 1500℃, a reverse opal structured Al2O3 porous ceramic with uniform and high wall density (98.9 %TD) and ordered pore array was produced. SEM observation showed that the Al2O3 grains distribute homogeneously in both the top and the bottom of the sintered products. When changing the load applied on the EPS templates from 7.3 N to 19.6 N, porosity of the porous Al2O3 ceramics increased from 71.8% to 83.2% and the compressive strength decreased from 3.85 MPa to 1.78 MPa. The porous alumina ceramics can resist 6-8 times repeated thermal shock from 1100℃to room temperature. Choosing millet as the templates, the porosity and compressive strength of the porous Al2O3 ceramics are 66.5% and 5.06 MPa, respectively, and the porous ceramics can resist 5 repeated thermal shock from 1100℃to room temperature.
     In the process of fabricating porous Al2O3-ZrO2 ceramic, highly dispersed and stable Al2O3-ZrO2 slurries with 50vol% solid content were prepared by adjusting pH values and the amount of the dispersant. In the shear rate range of 10~180 s-1, the slurry of Al2O3-ZrO2 has a shear thinning characteristic and its rheological model can be expressed asη= 3.451+967.9295γ-0.415. Mass and phase segregation due to the sedimentation difference of Al2O3 and ZrO2 particles was hindered in the slurries with 50 vol% solid loading. The cell wall of green compacts centrifuged at acceleration of 2860 g had high and uniform density of 61.5%. After sintering at 1550℃, a reverse opal structured Al2O3-ZrO2 porous ceramic with high and uniform wall density (99.1 %TD) and homogenous ZrO2 particle distribution at both the top and the bottom was produced. When changing the load applied on the EPS spheres from 7.3 N to 19.6 N during packing, the porosity of the porous Al2O3-ZrO2 ceramics increased from 71.5% to 83% and the compressive strength decreased from 4.51 MPa to 2.07 MPa. The Al2O3-ZrO2 porous ceramic can resist 8-11 times repeated thermal shock from 1100℃to room temperature.
     A BP neural network model for predicting the compressive strength of porous Al2O3-ZrO2 ceramic was built by the gradient descent arithmetic with momentum and adaptive learning rate. The model is high in learning rate and accuracy and the predicted results agree with the actual data within reasonable experimental error. The BP neural network method is superiors in predicting materials properties with less experimental data and high efficiency and preciseness.
     3D interpenetrated Al2O3/epoxy composites were fabricated using the ordered Al2O3 porous ceramic as the frame. Compared with epoxy resin and Al2O3-particle/epoxy composites, the 3D interpenetrated Al2O3/epoxy composites have better room temperature and high temperature mechanical properties. At room temperature, flexural strength, flexural modulus, compressive strength and compressive modulus of the composite are 116 MPa,3.6 GPa,170 MPa and 2.4 GPa, respectively. The composites have good dimensional stability at high temperature and no deformation can be observed at 180℃. Its compressive strength and modulus are 48 MPa and 0.9 GPa, respectively at 120℃. The new composites have good wear resistance, low friction coefficient and wear mass loss. The composites have stable friction coefficient with the change of load, sliding velocity and sliding time.
引文
[1]刘富德,陈森凤,张书政.多孔陶瓷材料的发展状况[J],材料导报,2000,14(6):33-34.
    [2]Paolo C, Enrico B. Macro- and micro-cellular porous ceramics from preceramic polymers [J], Composites Science and Technology,2003,63(16):2353-2359.
    [3]Tang F Q, Hiroshi F, Tetsuo U, et al. Preparation of porous materials with controlled pore size and porosity [J], Journal of the European Ceramic Society,2004,24(2): 341-344.
    [4]Yokota T, Takahata Y, Katsuyama T, et al. A new technique for preparing ceramics for catalyst support exhibiting high porosity and high heat resistance [J], Catalysis Today, 2001,69(1):11-15.
    [5]She J H, Ohji T, Kanzaki S. Oxidation bonding of porous silicon carbide ceramics with synergistic performance [J], Journal of the European Ceramic Society,2004,24(2): 331-334.
    [6]徐如人,庞文琴.无机合成与制备化学[M],北京:高等教育出版社,2003,36-37.
    [7]王耀明,蔡伟庆.多孔陶瓷过滤材料[J],江苏陶瓷,2003,36(1):19-23.
    [8]钦征骑.新型陶瓷材料手册[M],南京:江苏科学技术出版社,1995,29-32.
    [9]陈磊,陈达谦.多孔陶瓷及其发展[J],现代技术陶瓷,2002,10(3):7-11.
    [10]宋君样,刘华,寇志奇,等.刚玉-莫来石-碳化硅质过滤器的开发[J],耐火材料,1997,31(3):156-158.
    [11]郑仕远,陈键,潘伟.湿化学方法合成及应用[J],材料导报,2000,14(9):25-27.
    [12]徐东升,郭国森,桂琳琳.超临界干燥和普通干燥方法对多孔硅的结构及性质的影响[J],科学通报,1999,44(21):2272-2276.
    [13]Schwartzalder K, Somers A V. Method of manufacturing porous ceramic [P], US Patent: 3090094,1963.
    [14]张昂.我国车用催化剂载体的现状及发展[J],陶瓷,2001,(4):15-17.
    [15]Viedt J. Method of manufacturing porous ceramic [P], US Patent:3090094,1963.
    [16]Wood L L, Messina P, Frisch K. Method of preparing porous ceramic structures by firing a polyurethane foam that is impregnated with organic material [P], US Patent: 3833386,1974.
    [17]王连星.泡沫陶瓷的研究进展[J],耐火材料,1997,31(1):55-58.
    [18]李亚君.氧化铝及氧化铝-钛酸铝复合多孔陶瓷的复合多孔陶瓷的制备与研究[D],唐山:河北理工大学,2006.
    [19]Lyckfeldt O, Ferreira J M, Katsuyama T, et al. Processing of porous ceramics by starch consolidation [J], Journal of the European Ceramic Society,1988,8(18):131-140.
    [20]Nanko M, Ishizaki K, Fujikawa T. Porous ceramic filters produced by Hot Isostatic Pressing [J], Journal of the American Ceramic Society,1994,77(9):2437-2442.
    [21]韩永生,李建保,魏强民.多孔陶瓷材料应用及制备的研究进展[J],材料导报,2002,16(3):26-29.
    [22]鞠银燕,宋士华,陈晓峰.多孔陶瓷的制备、应用及其研究进展[J],硅酸盐通报,2007,26(5):970-974。
    [23]江听,尹美珍.多孔陶瓷材料的制备技术及应用[J],现代技术陶瓷,2002,(1):15-19.
    [24]朱时珍,赵振波,刘庆国.多孔陶瓷材料的制备技术[J],材料科学与工程,1996,14(3):33-39.
    [25]张宇民,刘殿魁,韩杰才,等.多孔陶瓷材料制备工艺研究进展[J],兵器材料科学与工程,2002,25(2):62-67.
    [26]Pilar Sepulveda, Ortega F S, Innocentini M D, et al. Properties of highly porous hydroxyapatite obtained by the gelcasting of foams [J], Journal of the American Ceramic Society,2000,83(12):3021-3024.
    [27]Park J H, Sung J S, Katsuyama T, et al. Development of a new forming method (pressureless powder packing forming method) and its characteristics [J], Journal of Materials Science,1998,33(7):1907-1914.
    [28]Imhof A, Pine D J. Ordered macroporous materials by emulsion templating [J], Nature, 1997,389(6654):948-951.
    [29]Vevel O D, Jede T A, Lobo R F, et al. Porous silica via colloidal crystallization [J], Nature,1997,389(6650):447-448.
    [30]Holland B T, Blandford C F, Stein A. Synthesis of highly ordered there dimensional macroporous structures of amorphous or crystalline inorganic oxides, phosphates, and hybird composites[J], Chemistry of Materials,1999,11:795-805.
    [31]Zakhidov A A, Baughman R H, Iqbal Z, et al. Carbon structures with three-dimensional periodicity at optical wavelengths [J], Science 1998,282(5390):897-901.
    [32]Lim M H, Blanford C F, Stein A, et al. Synthesis of ordered microporous silicates with organosulfur surface groups and their applications as solid acid catalysts [J], Chemistry of Materials,1998,10(2):467-471.
    [33]Stein A. Sphere templating methods for periodic porous solids [J], Microporous and Mesoporous Materials,2001,44:227-239.
    [34]Maeda Y. Semiconducting P-FeSi2 towards optoelectronics and photonics [J], Thin Solid Films,2007,515(22):8118-8121.
    [35]Miao D, Zhai Y Y. On guided waves in 3-D photonic crystals [J], Journal of Mathematical Analysis and Applications,2008,339(2):1015-1023.
    [36]Lai Y L, Chiu C C. Fabrication of photonic crystals for infrared applications [J], Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,313-314: 497-499.
    [37]Shi J, Hsiao V K S, Walker T R, et al. Humidity sensing based on nanoporous polymeric photonic crystals [J], Sensors and Actuators B:Chemical,2008,129(1): 391-396.
    [38]Kurdi, M E, David S, Checoury X., et al. Two-dimensional photonic crystals with pure germanium-on-insulator [J], Optics Communications,2008,281(4):846-850.
    [39]Pan G S, Kesavamoorthy K, Asher R A. Nanosecond switchable polymerized crystalline colloidal array bragg diffracting materials [J], Journal of the American Chemistry Society,1998,120(26):6525-6530.
    [40]Blandford C F, Schroden R C, Al-Daous M, et al. Tuning solvent-dependent color changes of three-dimensionally ordered macroporous (3DOM) materials through compositional and geometric modifications [J], Advanced Materials,2001,13(1): 26-29.
    [41]Wang C H, Geng A F, Guo Y H, et al. Three-dimensionally ordered macroporous Ti1-xTaxO2+x/2 (x=0.025,0.05, and 0.075) nanoparticles:preparation and enhanced photocatalytic activity [J], Materials Letters,2006,60(21-22):2711-2714.
    [42]Kurihara S, Moritsugu M, Kubo S, et al. Photoswitching properties of photonic band gap material containing azo-polymer liquid crystal [J], European Polymer Journal,2007, 43(12):4951-4960.
    [43]Zhou R L, Chen X S, Wu, Y R, et al. Strong optical transport of a square-lattice photonic crystal due to the self-collimation effect and negative refraction effect [J], Solid State Communications,2007,144(7-8):282-287.
    [44]Du G Q, Wang Z S, Li H Q, et al. Optical properties of subwavelength metallic-dielectric multilayers [J], Physics Letters A,2008,372(5):730-734.
    [45]Ermolenko M V, Tikhomirov S A, Stankevich V V, et al. Ultrafast nonlinear absorption and reflection of ZnS/ZnSe periodic nanostructures [J], Photonics and Nanostructures-
    [46]Fundamentals and Applications,2007,5(2-3):101-105.
    [47]Jiang W, Gu L L, Chen X N, et al. Photonic crystal waveguide modulators for silicon photonics:device physics and some recent progress [J], Solid-State Electronics,2007, 51(10):1278-1286.
    [48]Povey I M, Bardosova M, Chalvet F, et al. Atomic layer deposition for the fabrication of 3D photonic crystals structures:growth of Al2O3 and VO2 photonic crystal systems [J], Surface and Coatings Technology,2007,201(22-23):9345-9348.
    [49]Matsushita S, Fujiwara R, Shimomura M. Calculation of photonic energy bands of self-assembled-type TiO2 photonic crystals as dye-sensitized solar battery [J], Colloids and Surfaces A: Physicochemical and Engineering Aspects,2008,313-314:617-620.
    [50]Zhu N, Liu Z H, Guo R, et al. A method of easy fabrication of 2D light-induced nonlinear photonic lattices in self-defocusing LiNbO3:Fe crystal [J], Optical Materials, 2007,30(4):527-531.
    [51]Liu Y P, Yan Z J, Lan W, et al. Fabrication and optical properties of 3D composite photonic crystals of core-shell structures [J], Applied Surface Science,2007,253(21): 8571-8574.
    [52]孙鸿涛,姚熹,武明堂,等.加造孔剂制造多孔陶瓷湿度传感器[J],材料研究学报,1988,2(6):61-65.
    [53]吴皆正,易石阳,欧阳琨.可控微米级多孔陶瓷的研制[J],硅酸盐通报,1993,(3):4-9.
    [54]樊栓狮,史小龙,李春华,等.超细孔二氧化硅膜的制备研究[J],无机材料学报,1995,10(1):90-94.
    [55]彭长琪,任国浩,彭华.用粉石英烧制多孔陶瓷的实验研究[J],武汉工业大学学报,1995,17(2):28-31.
    [56]吴国安.Sol-gel法制备TiO2多孔陶瓷膜[J],华中理工大学学报,1996,24(8):109-112.
    [57]刘杏芹,杨萍华.多孔Al2O3陶瓷的制备及其研究[J],中国科学技术大学学报,1997,27(2):181-185.
    [58]徐振平,郭敏.一种孔径分布能控制的多孔陶瓷[J],硅酸盐通报,1996,(4):49-51.
    [59]曾庭英,邱勇,杜金环,等.纳米级微孔SiO2玻璃球的研制[J],功能材料,1997,28(3):275-277.
    [60]曾庭英,刘剑波,邱勇,等.纳米级微孔SiO2玻璃体材的研制[J],功能材料,1997,28(3):272-2744.
    [61]曾庭英,刘剑波,邱勇,等.纳米级微孔SiO2玻璃粉末的研制[J],功能材料,1997,28(3):268-271.
    [62]孙宏伟,谢灼利,郑冲.微孔α-Al2O3陶瓷膜管的制备与性能[J],无机材料学报,1998,13(5):198-202.
    [63]王连星,党桂彬.系列孔径多孔陶瓷的研制[J],功能材料,1997,28(2):186-191.
    [64]奚红霞,黄仲涛.用Sol-gel技术制备γ-Al2O3中孔膜[J],华南理工大学学报(自 然科学版),1997,25(3):129-132.
    [65]王莉玮,王子忱,赵敬哲,等.PEG法合成多孔高比表面积Si02[J],功能材料,1998,29(4):397-399.
    [66]龚森蔚,江东亮,谭寿洪.孔径可控轻基磷灰石复相陶瓷中破璃相的作用[J],材料导报,1998,12(4):31-34.
    [67]方国家,刘祖黎,姚凯伦.纳米微孔SiO2薄膜的Sol-gel制备及气孔率控制[J],功能材料,1999,30(2):190-192.
    [68]姚秀敏,谭寿洪,江东亮.多孔羟基磷灰石陶瓷的制备[J],无机材料学报,2000,15(3):465-472.
    [69]韦奇,王大伟,张术根.溶胶—凝胶法制备Al2O3-SiO2复合膜的微观结构[J],硅酸盐通报,2001,29(4):392-396.
    [70]曹小刚,田杰漠.多孔氧化铝陶瓷的凝胶注模成型[J],功能材料,2001,32(5):523-524.
    [71]唐竹兴,王树海,陈达谦,等.注凝成型微孔梯度陶瓷材料制备新工艺的研究(Ⅰ)[J],硅酸盐通报,2001,(2):23-29.
    [72]唐竹兴,王树海,陈达谦,等.注凝成型微孔梯度陶瓷材料制备新工艺的研究(Ⅱ)[J],硅酸盐通报,2001,(3):8-13.
    [73]唐竹兴,王树海,陈达谦,等.注凝成型微孔梯度陶瓷材料制备新工艺的研究(Ⅲ)[J],硅酸盐通报,2001,(5):11-15.
    [74]张锐,高镰,程国峰,等.注浆成型SiC多孔陶瓷的工艺和性能研究[J],无机材料学报,2002,17(4):725-730.
    [75]陆平.过滤器用氧化铝多孔陶瓷[J],河北陶瓷,2001,29(1):16-18.
    [76]田杰漠,李信勇,张勇,等.浸浆法制备生物多孔陶瓷[J],功能材料,2002,33(6):656-657.
    [77]赵俊亮,付涛,徐可为.有机泡沫浸溃法制备多孔经基磷灰石复相陶瓷[J],中国陶瓷,2003,39(1):4-7.
    [78]朱新文,江东亮,谭寿洪.碳化硅网眼多孔陶瓷的制备[J],无机材料学报,2000,15(6):1055-1060.
    [79]朱新文,江东亮,谭寿洪.网眼多孔陶瓷浸渍成型工艺的研究[J],无机材料学报,2001,16(6):1144-1149.
    [80]朱新文,江东亮,谭寿洪.孔结构可控的网眼多孔陶瓷的制备[J],无机材料学报,2001,16(5):79-84.
    [81]朱新文,江东亮,谭寿洪.真空脱气处理对网眼多孔陶瓷力学性能的改善[J],无机材料学报,2001,16(5):889-895.
    [82]朱新文,江东亮,谭寿洪.碳化硅网眼多孔陶瓷的微波吸收特性[J],无机材料学 报,2002,17(6):1152-1156.
    [83]Zhu X W, Jiang D L, Tan S H. Preparation of silicon carbide reticulated porous ceramics [J], Materials Science and Engineering A,2002,323(1-2):232-238.
    [84]朱新文.一种高强度网眼多孔陶瓷的制造方法[P],中国专利:CNl287989,2001.
    [85]钱军民,王继平,金志浩.木材陶瓷和Si粉原位反应烧结制备多孔SiC的研究[J],硅酸盐学报,2003,31(7):635-640.
    [86]蒲锡鹏,邱发贵,刘学建,等.两次离心挂浆工艺制备网眼多孔陶瓷[J],无机材料学报,2005,20(6):1431-1437.
    [87]张雯,王红洁,张勇,等.酚醛树脂裂解法增强高气孔率多孔氮化硅陶瓷[J],硅酸盐通报,2005,(1):25-28.
    [88]王浩,李效东,金东杓.三维有序多孔图案化SiC陶瓷的制备[J],物理化学学报,2006,22(5):528-531.
    [89]沈勇,邬泉周,李玉光.三维规则排列的大孔Si02材料的制备及表征[J],催化学报,2002,23(2):179-181.
    [90]沈勇,邬泉周,李玉光.溶胶凝胶法制备三维规则排列的大孔TiO2材料[J],中山大学学报(自然科学版),2002,41(3):45-47.
    [91]沈勇,邬泉周,李玉光.三维规则排列的大孔钛硅混合氧化物的制备与表征[J],无机材料学报,2003,18(2):401-406.
    [92]邬泉周,沈勇,李玉光.三维有序大孔Al2O3制备的新方法及表征[J],物理化学学报,2003,19(8):737-741.
    [93]杨卫亚,郑经堂,张艳妹,等.模板法制备三维有序大孔Ce02[J],中国稀土学报,2006,24(S.2):128-131.
    [94]沈勇,邬泉周,李玉光.氧氯化锆直接热分解制备三维有序大孔氧化锆[J],物理化学学报,2006,22(9):1121-1125.
    [95]杨涵崧,朱永长,李慕勤,等.多孔陶瓷材料的研究现状与进展[J],佳木斯大学学报(自然科学版),2005,23(1):88-91.
    [96]李湘洲,刘昊宇.多孔陶瓷的研究现状与应用陶瓷[J],陶瓷,2005,(5):47-49.
    [97]付伟峰,唐竹兴,王计选.挤出成型多孔陶瓷的性能及应用[J],现代技术陶瓷,2007,(1):16-19.
    [98]蒲锡鹏,张大凤,贾丽萍.用于多孔陶瓷制备的有机模板处理工艺[J],材料导报,2007,21(5):241-243.
    [99]曾令可,胡动力,税安泽.多孔陶瓷制备新工艺及其进展[J],中国陶瓷,2007,43(4):3-6.
    [100]王圣威,金宗哲,黄丽容.多孔陶瓷材料的制备及应用研究进展[J],硅酸盐通报,2006,25,(4):124-128.
    [101]梁永仁,罗艳妮,杨志懋,等.多孔陶瓷及其制备方法研究进展[J],绝缘材料,2006,39(2):60-64.
    [102]Yang J F. Fabrication of low-shrinkage porous silicon nitride ceramics by addition of a small amount of carbon [J], Journal of the American Ceramic Society,2001,84(7): 1639-1641.
    [103]吴建峰.多孔磷酸三钙生物陶瓷的研究[J],陶瓷学报,1999,(2):104-107.
    [104]薛友祥.饮用水净化高性能微孔陶瓷滤芯[J],现代陶瓷技术,1999,(3):10-13.
    [105]段曦东.多孔陶瓷的制备、性能及应用[J],陶瓷研究,1999,14(3):12-17.
    [106]Fukasawa T, Ando M. Synthesis of porous ceramics with complex pore structure by freeze-dry processing [J], Journal of the American Ceramic Society,2001,84(1): 230-232.
    [107]韩永生,李建保,魏强民.多孔陶瓷材料应用及制备的研究进展[J],材料导报,2002,16(3):26-29.
    [108]Mezhanov A G. Worldwide evolution and present status of SHS as a branch of modern R&D (On the 30th anniversary of SHS) [J], International Journal of Self-Propagating High-Temperature Synthesis,1997,16(2):119-163.
    [109]罗钊明,王慧,刘平安,等.多孔陶瓷材料的制备及性能研究[J],陶瓷,2006(3):14-17.
    [110]刘培生.多孔固体结构和性能[M],北京:清华大学出版社,2002,152-203.
    [111]Innocentiti M D M, Salvini V R, Pandolfelli V C. The permeability of ceramic foams [J], American Ceramic Society Bulletin,1999,78(9):78-84.
    [112]Innocentiti M D M, Salvini V R, Pandolfelli V C. Permeability of porous ceramic considering the klinkenberg and inertial effects [J], Journal of the American Ceramic Society,2001,84(5):941-944.
    [113]Makoto Nanko, Kozo Ishizaki, Takao Fujikawa. Porous ceramic filters produced by hot isostatic pressing [J], Journal of the American Ceramic Society,1994,77(9): 2437-2442.
    [114]Salvini V R, Pandolfelli V C. Optimazing permeability, mechanical strength of ceramic foams [J], American Ceramic Society Bulletin,2000,78(5):49-54.
    [115]罗森诺W M.传热学基础手册[M],科学出版社,1992:304-341.
    [116]Ya L E, Shapiro M. Gas pressure and temperature dependence of thermal conductivity of porous ceramic materials:part I, refractories and ceramics with porosity below 30% [J], Journal of the American Ceramic Society,1992,75(12):3425-3439.
    [117]朱新文,江东亮,谭寿洪.多孔陶瓷的制备、性能及应用:(Ⅱ)多孔陶瓷的结构、性能及应用[J],陶瓷学报,2003,24(2):85-91.
    [118]Huisman W, Graule T, Gauckler L J. Alumina of high reliability by centrifugal casting [J], Journal of theEuropean Ceramic Society,1995,15:811-821.
    [119]Shunzo T, Yasuo Y, Hidenori K, et al. Cutting performance of high alumina ceramic tools formed by a high speed centrifugal compaction process [J], Journal of Materials Processing Technology,1996,66:431-434.
    [120]戚建强,欧阳世翕,黄勇.离心技术在陶瓷材料制备中的应用[J],中国陶瓷,2006,42(10):27-31.
    [121]冯胜山,陈巨乔.泡沫陶瓷过滤器的研究现状和发展趋势[J],耐火材料,2002,36(4):235-239.
    [122]于景媛,李强,李晓东,等.离心成型结合模板法制备孔径均匀的多孔氧化铝陶瓷[J],功能材料,2007,38(3):397-399.
    [123]朱新文,江东亮,谭寿洪.孔结构可控的网眼多孔陶瓷的制备[J],无机材料学报,2002,17(1):79-85.
    [124]陈宗淇,王光信,徐桂英.胶体与界面化学[M],北京:高等教育出版社,2001,325-333.
    [125]Hiemenz P C.胶体与表面化学原理[M],北京:北京大学出版社,1986,504-508.
    [126]Hlen K V, Lewandowski H, Narres H, et al. Adsorption of polyelectrolytes onto oxides-the influence of ionic strength, molar mass, and Ca2+ ions [J], Colloids and Surfaces A:Physicochemical and Engineering Aspects,2000,163:45-53.
    [127]Guo L C, Zhang Y, Nozoun U, et al. Adsorption effects on the rheological properties of aqueous alumina suspensions with polyelectrolyte. Journal of the American Ceramic Society,1998,81(3):549-556.
    [128]李登好,郭露村.α-Al2O3-H2O-聚丙烯酸悬浮体流变性研究[J],硅酸盐学报,2003,32(1):80-84.
    [129]周丽敏,郭露村.分散剂对超细α-Al2O3浆料流变性的影响[J],硅酸盐学报,2003,31(11):75-79.
    [130]Banres H A, Huton J F, Walters K.流变学导引[M],北京:中国石化出版社,1992,15-31.
    [131]Biesheuvel P B, Verweij H. Calculation of the composition profile of a functionally graded materials produced by centrifugal casting [J], Journal of the American Ceramic Society,2000,83(4):743-749.
    [132]Han Y S, Li J B, Wei Q M, et al. The effect of sintering temperatures on alumina foam strength [J], Ceramics International,2002,28:755-759.
    [133]Salmovich E B, Lange F F. Densification of large pores:Ⅰ Experiments [J], Journal of the American Ceramic Society,1992,75(9):2498-2508.
    [134]Ashby M F, Medallist R F. Mechanical properties of cellular solids [J], Metallurgical Transactions A (Physical Metallurgy and Materials Science),1983,14A(9):1755-1769.
    [135]Maiti S K, Ashby M F, GibsonL J. Deformation and energy absorption diagrams for cellular solids [J], Acta Metallurgica, 1984,32(11):1963-1975.
    [136]Yamada Y, Shimojima K, Mabuchi M, et al.Compressive deformation behavior of Al2O3foam [J], Materials Science and Engineering A (Structural Materials:Properties, Microstructure and Processing),2000,277(1-2):213-217.
    [137]卢子兴,赵明洁.泡沫塑料力学胜能研究进展[J],力学与实践,1998,20:1-9.
    [138]Moreira E A, Innocentini M D M, Coury J R. Permeability of ceramic foams to compressible and incompressible flow [J], Journal of the Eureopen Ceramic Society, 2004,24(10-11):3209-3218.
    [139]魏云静.泡沫碳化硅陶瓷的制备工艺与性能研究[D],西安:西安科技大学,2004.
    [140]李玉海,于芳,巩甘雷,等.ZrO2/Al2O3复相泡沫陶瓷过滤器制备工艺研究[J],铸造,2007,56(10):1103-1106.
    [141]戴斌煜,陈同彩,商景利,等.氧化镁、氧化铈复合部分稳定氧化锆泡沫陶瓷的显微结构[J],硅酸盐学报,2007,35(2):192-198.
    [142]Lee B T, Lee K H, Hiraga K. Stress-induced phase transformation of ZrO2 in ZrO2 (3mol%Y2O3)-25vol%Al2O3 composite studied by transmission electron microscopy [J], Scripta Materialia,1998,38(7):1101-1107.
    [143]饶平根,吴建青,叶建东,等.添加氧化锆对氧化铝陶瓷的性能的影响[J],兵器材料科学与工程,2006,29(2):13-16.
    [144]Farinas J C, Moreno R, Requena J, et al. Acid-basic stability of Y-TZP ceramics[J], Material Science and Engnineering A,1989,109:97-99.
    [145]焦宝祥,丘泰,沈春英,等.ZTA陶瓷注凝成型浆料流变性能的研究[J],材料,2004,(1):25-28.
    [146]王浚,高濂.高固含量Y-ZTP悬浮液的流变学特性[J],无机材料学报,1999,14(4):651-655.
    [147]Lockett M J, Al-Habbooby H M. Relative particle velocities in two species settling [J], Powder Technology,1974,10(1-2):67-71.
    [148]Masliyah J H. Hindered settling in a multi-species particles system [J], Chemical Engineering Science,1979,34(9):1166-1168.
    [149]Chang J C, Velamakanni B V, Lange F F, et al. Centrifugal consolidation Al2O3 and Al2O3/ZrO2 composite slurries vs interparticle potentials:particle packing and mass segregation [J], Journal of the American Ceramic Society,1991,74(9):2201-2204.
    [150]Wildberger, Martin A, Hichok, et al. Introduction to neural networks[J], Simulation Series,1989,20(4):227-232.
    [151]吴敏,桂卫华.现代鲁棒控制[M],湖南:中南工业大学出版社,1998,183-248.
    [152]杨行峻,郑君里.人工神经网络[M],高等教育出版社,1992,5-7.
    [153]张秀玲.神经网络自适应控制的研究进展及展望[J],工业仪表与自动化装置,2002,1:10-14.
    [154]吴建生,周优军,金龙.神经网络极其研究进展[J],广西师范学院学报(自然科学版),2005,22(1):92-97.
    [155]Ahmed M S, Anjum M F. Neural net based direct selftuning control of stochastic nonlinear plants [J], International Jouranl of Control,1997,66(1):85-104.
    [156]Martin T H, Howard B D, Mark H B.神经网络设计[M],机械工艺出版社,2002,197-258.
    [157]林亚萍,金继红.人工神经网络的研究进展及其在光谱分析中的应用[J],化学分析计量,2004,13(3):52-55.
    [158]Xiong Y H, Yang A M, Guo Y P, et al. Effect of fine-grained structure on mechanical properties of superalloys K3 and K4169 [J], Science and Technology of Advanced Materials,2001,2,-11.
    [159]范佳妮,王振雷,钱锋.BP人工神经网络隐层结构设计的研究进展[J],控制工程,2005,12(5):105-109.
    [160]鲁娟娟,陈红.BP神经网络的研究进展[J],控制工程,2006,13(5):449-456.
    [161]张文鸽,吴泽宁.BP神经网络的改进及应用[J],河南科学,2003,21(2):202-206.
    [162]金峤,方帅,阎石,等.BP网络模型的改进方法综述[J],沈阳建筑工程学院学报(自然科学版),2001,17(3):197-199.
    [163]王青海.BP神经网络算法的一种改进[J],青海大学学报(自然科学版),2004,22(3):82-84.
    [164]徐翔,黄道.一种前馈网络的新型混合算法[J],华东理工大学学报,2004,30(2):175-178.
    [165]白云起,薛丽梅,刘云夫.环氧树脂的改性研究进展[J],化学与黏合,2007,29(4):289-292.
    [166]陈平,刘胜平.环氧树脂[M],北京:化学工业出版社,1999,1-5.
    [167]李子东,李广宇,于敏.实用胶黏剂原料手册[M],北京:国防工业出版社,1999,1-5.
    [168]谷和平,蒋英,张竞,等.短切纤维增强环氧树脂力学性能研究[J],塑料工业,2007,35(12):20-22.
    [169]孙曼灵.环氧树脂应用原理与技术[M],北京:机械工业出版社,2002,5-13.
    [170]汤戈,王振家,马全友,等.纳米Al2O3粉末改善环氧树脂耐磨性的研究[J],热 固性树脂,2002,17(1):4-8.
    [171]储九荣.有机硅高聚物改性环氧树脂的方法与机理[J],高分子通报,1999(2):66-72.
    [172]赵峰,李方,姚康德.聚硅氧烷改性环氧树脂[J],热固性树脂,1999(1);27-31.
    [173]吴其晔,冯莺.高分子材料概论[M],北京:机械工业出版社,2004,133-142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700