地铁隧道非降水法施工引起的地表沉降的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地面沉降是区域性地面标高降低的一种环境地质现象,具有持续时间长、影响范围广和防治难度大等特点。地面沉降主要由开采地下水资源,工程基础施工及地下空间的开发利用引起。
     城市地铁暗挖隧道工程是在岩土体内部进行的,无论其埋深大小,开挖施工将不可避免地会扰动地下岩土体,使其失去原有的平衡状态,而向新的平衡状态转化。在此过程中,隧道开挖使围岩产生卸荷临空面引发收敛变形,进而造成地表下沉;同时,扰动及地下水的流失会使土体重新固结,引起整个地层的固结沉降。这一系列的沉降变形发展到一定的程度,将影响地面建筑物的安全和地下管线的正常使用。因此,长期以来城市地铁隧道施工引起的地表沉降问题一直都是人们关注和研究的重要课题。
     关于地表沉降的研究需要解决两个主要问题:提出先进的有效控制沉降的施工方法及计算并预测地铁隧道施工引发的地表沉降量。
     采用浅埋暗挖法施工地铁隧道,以往普遍采用全线降水法,此法能保证在地铁隧道施工过程中实现“无水”施工,但是,在我国南方富水软土地层中,再采用这种方法就会在隧道未开挖之前,由于降水井抽水引发大范围的地表沉降,而且这部分沉降在总沉降中所占的比例高达70—80%,因此,在这样的地层施工地铁隧道,控制沉降的关键在于减小隧道开挖对地层的扰动和控制地下水的流失。深圳地铁大~科区间隧道恰在富水软土地层中施工,且地下管线与地面建筑物的存在要求沉降必须得到有效控制,针对这一问题创新性地提出了以控制地下水流失为主要目标的非降水施工方法。本文在此工法实施前采用了三维有限元数值模拟和离心机模型试验方法进行对比研究,证明该法可行。根据实际施工情况及现场监测的数据显示,非降水施工方法科学合理取得了成功。
     本论文在研究过程中,采用三维显示有限差分分析软件FLAC~(3D),考虑流固耦合效应,建立地铁施工过程的渗流—变形—沉降耦合模型,对渗流、变形,开挖及沉降进行仿真模拟,系统分析研究了降水法施工及非降水法施工全过程对地表下沉的影响,通过对比分析确定在富水软土地区施工地铁隧道,地层失水是造成地表沉降的控制性因素且非降水施工方法控制沉降的高效性。采用离心模型试验重点研究了SK3+355和SK3+395断面的地表沉降规律,通过对非降水施工法及降水施工法对比分析,得出非降水施工法为最佳方法的结论。数值模拟和离心模型实验研究成果与现场监测基本一致,以水平旋喷桩为技术核心的以控制地下水流失为目标的非降水施工法,可减小施工对地层的扰动、减小施工过程中的地下水流失,是在富水软土地层采用浅埋暗挖法施工时的最佳施工方法。
     目前的地表沉降计算与预测多采用Peck系列的经验公式,该系列公式认为地表的变形主要取决于土层和地下水位条件,而隧道的埋深、隧道的直径、支
Land subsidence, the characteristic of which beng of long duration, in a wide area of influence and hard to take prevention and curation, is an environmental geologic phenomenon which appears as the fall of the elevation of local ground surface. Settlement of ground is mainly induced by exploitation of groundwater, construction of foundation and utilization of underground space.
    Tunnels in city subway project are constructed in the interior of rockmass. Driving of the tunnel will inevitably disturb the surrounding rock no matter how small the buried depth of the tunnel is. During the process of tunneling, the mechanical equilibrium state of the adjacent formation will change continuously. And also excavation will induce deformation of the adjacent rock towards the free face known as convergence deformation which causes settling of ground simultaneously. On the other hand, disturb of soil and discharge of underwater will induce consolidation settlement of ground as well. The increasing land subsidence will do harm to the building on the ground and the pipeline under the ground unless some measures are taken to restrict it. So, the problem of settlement of ground caused by construction of tunnel in city subway project is always an important research direction.
    There are two main problem regarding land subsidence that must be solved in this thesis. One is to propose the construction method by which the settlement of ground can be controlled efficiently. The other is to calculate the land subsidence induced by subway tunnel construction.
    Different construction method brings on different results of land subsidence for metro tunnels which are buried in soft soil with high water level in south of China. The most effective measures to restrict the settlement of ground are reducing disturbance of driving and diminishing the loss of ground water. Drainage method is the most universal techniques in the subway construction with shallow undermining method in our country. This method may provide a favorable condition which may insure the process of subway tunnel construction against water. However, to pump water by wells in drainage method may result in large-area subsidence of ground which may be 70-80 percentage of the total settlement of ground when tunneling in fluent plastic clay formation. Hence, both three dimensional numerical analysis method and centrifuge model test are used to study this problem. Non-drainage method characteristic by controlling the loss of ground water is developed. This method is also verified by the results of practical construction and field monitoring. This thesis adopts the FLAC~(3D) as compute tool which is a three dimensional
引文
[1] 郑铣鑫,武强等.关于城市地面沉降研究的几个前沿问题.地球学报,2002(3):279-282
    [2] 上海地质处.国外地面沉降论文选译.北京.地质出版社,团组织1978
    [3] AC Waltham. Ground Subsidence. Blackie & Son Limited, London, 1989
    [4] 张云,辞禹群.抽水地面沉降数学模型的研究现状与展望.中国地质灾害与防治学报,2002(6):1-6
    [5] 张维然,段正梁等.上海市地面沉降特征及对社会经济发展的危害.同济大学党报,2002(9),1129-1133
    [6] 严学新,龚士良等.上海城区建筑密度与地面沉降关系分析.水文地质工程地质,2002(6),21-25
    [7] 钱七虎.迎接我国城市地下空间开发高潮.岩土工程学报,1998(1):112-113
    [8] 钱七虎.岩土工程的第四次浪潮.地下空间,1999,19(4):267-272
    [9] 刘宝琛.急待深入研究的地铁建设中的岩土力学课题.铁道建筑技术,2000(3):1-3
    [10] 李显忠,姚爱年.城市地下空间资源可持续开发利用的思考.中国科技产业.2004(12):38-39
    [11] 刘天泉,钱七虎.城市地下岩土工程技术发展动向.煤炭科学技术,1999,27(1):1-5
    [12] 关宝树.隧道工程施工要点集.北京.人民交通出版社,2003年
    [13] 夏明耀,曾进伦.地下工程设计施工手册.北京.中国建筑工业出版社,1999年
    [14] 杨其新,王明年.地下工程施工与管理,成都:西南交通大学出版社,2005年
    [15] 李晓红.隧道新奥法及其测量技术.北京:科学出版计.2002年
    [16] 龚晓南,高有潮.深基坑工程设计施工手册.北京:中国建筑工业出版社.1998
    [17] 陶龙光,巴肇伦.城市地下工程.北京:科学出版社.1995
    [18] 顾国明,陆运.我国城市地下铁道施工技术综述.现代隧道技术.2005(10):6-12
    [19] 刘建明,尹皓等.深圳地铁工程施工期环境影响分析及对策.铁道劳动安全卫生与环保.2000(2):85-87
    [20] 徐加尼.浅议地铁施工对北京市环境的影响.现代隧道技术.2004(4):25-28
    [21] 施成华,彭立敏.浅埋隧道开挖对地表建筑物的影响.岩石力学与工程学报.2004(10):3310-3316
    [22] 西淳二,清木隆文.地铁施工方法的环境影响评价.城市轨道交通研究.2001(2):69-74
    [23] 勒之更,李巍.沈阳市地铁一号线项目施工期环境影响及对策研究.环境保护科学.2006(1):67-70
    [24] 阳军生,刘宝琛.城市隧道施工引起的地表移动及变形.北京:中国铁道出版社.2002年
    [25] Martos F., Concerning an approximate equation of subsidence trough and its time factors, Proc. of the International strata control congress, zeipzig, 1958
    [26] Peck R. B, Deep excavations and tunneling in soft ground, state of the Art Report. Proc. 7th Int. conf. On Soil Mechanics and Foundation, Mexico city, 1969, 225-290
    [27] M.P. O'Reilly, B.M. New, Settle ments above tunnels in the UK-their magnitude and prediction, Tunnelling' 82, 1982, 173-181
    [28] Barry M. New, M.P.O' Reilly, Tunnelling induced ground movements: predicting the magnitude and effects, in: James D Geddes eds., Proc. 4th International Conference on Ground Movements and Structures, Pemtech Press, London. 1992,671-697
    [29] O'Reilly M.P., Evaluating and predicting ground settlements caused by tunneling in London clay, Tunnelling' 88, 1988
    [30] O'Reilly M.P. et al, Long settlements over tunneling, an Ilyear at Grimsby, Tunnelling' 91, 1991
    [31] Attewell P.B., Yeates J. and Selby A.R., Soil Movements induced by tunneling and the effects on pipelines and structures, Blackie and Son, London, 1986
    [32] T. Kimura, R.J. Mair, centrifugal testing of model tunnels in soft clay, Proc. of 10th Int. Conf. Soil Mechanics & Foundation Engineering, Stockholm, Balkema, 1981.
    [33] Fujitak., Prediction of surface settlements caused by shield tunneling, Proc. of Int. Conf. On Soil Mechanics, Mexico City, 1982. 239-246
    [34] T. Nomoto, H. Mort, M. Matsumoto, Over view of ground movement during shield tunneling: Asurvey on Japanese shield sunneling, in: Fujita & Kusakabe eds., Proc. Underground Construction in Soft Ground, Balkema, Rotterdam, 1995.345-351
    [35] 刘建航,侯学渊.盾构法隧道.北京:中国铁道出版社,1991
    [36] Attewell, P.B. 1978. Ground movement and structures. Cardiff. Edited by J.D. Gedder. Pentish Press, London. PP.812-948
    [37] Attewell, EB. Engineering contract, site investigation and surface movement in tunneling works. In soft ground tunneling, A.A. Balkeman, 1981:5-12
    [38] W.J.Rankin. Ground movement resulting from urban tunneling: predictions and effects. Engineering Geology of Underground Movement, Geol. Soc. (London) Engineering Geology. Special. Publication. No. 5, 1988:79-92
    [39] Mair, R.J., Taylor, R.N. and Bracegirdle, A. Subsurface settlement profiles above tunnels in clay. Geotechnique, Vol.43.No.2, PP.315-320
    [40] T. Sugiyama, T. Hagiwara, T. Nomoto, M. Nomoto, Y. Ano, K.J.Mair, M.D. Bolton, K.Soga Observations of ground movements during tunnel construction by slurry shield method at the Docklands light railway Lewisham extemsion-East London, Soils and Foundations, 1999, 39(3):99-112
    [41] M. R. Hurrell. The empirical prediction of long-term surface settlements above shield-driven tunnels in soil. In Ground Movements and Structures: Proc. 3rd Int. Conf., Cardiff 1984, 161-170, London: Pentech Press
    [42] J. N. Shirlaw. Obserred and Calculated pore pressure and deformations induced by an earth pressure balance shield: Discussion. Canadian Geoteehnical Journal, 1995, 32:181-189
    [43] Mair. R.J., and Taylor, RoN.: Bored tunneling in the urban environment. Proc. 14th ICSMFE Balkema, Rotterdam, The Netherlamds. 1998, Vol. 4, 2353-2385
    [44] K.M.Lee, H.W.Ji, C.K.Shen, J.H.Liu, T.H.Bai. Ground response to the Construction of Shanghai metro tunnel-line 2. Soils and Foundations, 1999, 39(3):113-134
    [45] T.H.L. Palmer, D.J.Belshaw. Deformation and pore pressure in the vicinity of a precast, segmented, concret-lined tunnel in clay. Canadian Geotechnical Journal, 1980, 17:174-184
    [46] P.B.Attewell, A.R.Seiby. Tunnelling in compressible soils: large ground movements and structural implications. Tunnelling and underground space technology, 1989, 4(4), 481-487
    [47] T.B.Celestino, R.A.M.P.Gomes and A.A.Bortolucci. Errors in ground distortions due to sefflement through adjustment Tunnelling and Underground space Technology, Vol(15), No. 1, PP. 97-100, 2000
    [48] Sagaseta, C.Analysis of undrained soil deformation due to ground loss. Geotechnique, London, England, 1987, 37, 301-320
    [49] Sagaseta, C. Discussion on: Sagaseta, C.: Analysis of un-drained soil deformation due to ground loss. Author's reply to B. Schmidt. Geotechnique, 1988, 38(4):647-649
    [50] Sagaseta, C., Moya, J.F., and Oteo, C. Estimation of ground subsidence over urban tunnels. In Proceeding of the 2nd conference on Ground Movement and structures, Cardiff, 1980, PP. 331-344
    [51] Verruijt, A., and Booker, J.R. Surface settlements due to deformation of a tunnel in an elastic half plane. Geotechnique, London England, 1996.46(4), 753-756
    [52] 李桂花.盾构法施工引起的地表沉降估算方法.同济大学学报,1984,12(2):20-22
    [53] Cording, E.J., and Hansmire, W.H.Displacement around soft ground tunnels-General Report: Session Ⅳ, Tunnels in soil. Proc., 5th Pan American Conf. On Soil Mech. And Found. Engrg. Buenos Aires, 1975, PP571-632
    [54] Attewell, P.B. and Woodman, J.P. predicting the dynamics of ground settlement and its derivatives caused by tunneling in soil. Ground Engineering, 1982, 15(8):13-20 and 36
    [55] Ata, A.A. Ground settlements induced by slurry shield tunneling in stratified soils. Proc, North American Tunneling'96. ed. L Ozdemir, 1996. Vol.1 .PP43-50
    [56] Y.S. Fang, S.J.Lin, J.L.Lin. Time and settlement in EPB shield tunneling. Tunnels & Tunnelling, 1993, 11:27-28
    [57] 张海波.地铁隧道盾构法施工对周围环境影响的数值模拟。河海大学博士学位论文,2005
    [58] 席锦州.砾质粘性土地层地铁开控引起地表沉降的数值模拟研究.西南交通大学硕士学位论文.2005
    [59] 刘波,陶龙光,等.地铁隧道施工引起地层变形的反分析预测系统.中国矿业大学学报,2004 33(3),277—282
    [60] 张弥,潘杰梁.预测盾构开挖引起的地面沉降的专家系统.地铁与轻轨.1995(3)
    [61] 中铁四局集团有限公司,西南交通大学.富水地层修建地铁车站和浅埋大跨度群洞隧道的非降水施工技术研究.2003
    [62] 黄正家.地铁区间隧道软弱富水地层浅埋暗挖法施工监测量测与分析.西南交通大学硕士学位论文.2003
    [63] 刘成宇.(?)力学.中国铁道出版社.2000
    [64] Texzaghi, K., Consultonts, Clionts and Contractors, Journal of Boston Society of Civil Engineers. Vol. 45, No.1, 1958
    [65] E.W. Brand & R.P.Brenner. Soft Clay engineering. Elserier Scientific Publishing Company, Amsterdam, 1981
    [66] 黄文熙.土的工程性质.水利电力出版社.1983
    [67] 折学森.软土地基沉降计算.人民交通出版社.1999
    [68] 李培超,孔祥言,等.饱和多孔介质流固耦合渗流的数学模型
    [69] Simons. N.E. The stress path method of settlement analysis applied to London clay stress-strain beharior of soils. G.T. Foulis & Co. ltd. 1971.
    [70] D'Appolonia, D.J., T.W. lambe and H.G.poulos. Evaluation of pore pressures beneath and embamkment. Proc, SSEC, NO. SM6. 1971
    [71] Lambe, T.W. Methods of estimating settlement. Proc. ASCE, JSMFD, Vol. 90, No. SMS, 1964
    [72] Biot, M.A., General theory of three-dimensional consolidation. J. of Applied physics, Vol. 12, 155, 1941
    [73] Schiffman, R.L., Chert. A.T-F and Jordan, J.C.. An analysis of consolidation theories. Proc. ASCE, JSMFD, Vol. 95, SM. 1, 1969
    [74] Mikasa, M.. The consolidation of soft clay, A new consolication theory and its application. Lananean soc Civil Eng 1965
    [75] 窦益等.自重应力作用下饱和粘土的固结变形特性.岩土工程学报,1992年第14卷(6)
    [76] 谢新宇等.软基一维大变形固结分析.岩土力学与工程的理论与实践.浙江大学出版社,1992
    [77] 魏汝龙.软粘土工程的理论与实践.海峡两岸土力学及基础工程学术研讨会论文集,1994
    [78] Barden, L., Consolidation of conpacted and unsaturated clays Geoteehnique Vol. 15, No3.3. 1965
    [79] Davis, E.H. and Poulos, H.G. The use of elastic theory for settlement prediction under three-dimensional conditions. Geotechnique Vol. 18, No. 1,1968
    [80] Shempton, A.W. and L. Bjerum. A contribution to the settlement analysis of foundations on clay. Geotechnique, Vol. 7, No. 4, P. 168, 1957
    [81] 顾慰慈.渗流计算原理及应用.北京:中国建材工业出版社,2000
    [82] Itasca Consulting Group, Inc. FLAC User's Manual, 1996
    [83] 邓颖人,龚晓南.岩土塑性力学基础.北京:中国建筑工业出版社.1989
    [84] 谢康和,周健.岩土工程有限元分析理论与应用.北京:科学出版社,2002
    [85] 朱百里,沈珠江.计算土力学.上海科学技术出版社,1990
    [86] Carter, J.P., J.R. Booker, and E.H. Davis, Finite Deformation of an Elasto-Piastic soil, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 1, PP. 25-43. 1977
    [87] Liakopoulos, A.C., Transient Flow Through Unasturated Porous Media, D. Eng. Dissertation, University of California, Berkeley, 1965
    [88] Schrefler, B.A., and L. Simon; A Unified Approach to the Analysis of Saturated-Unasturated Elastoplastic Porous Media, Numerical Methods in Geomechanics, Vol. 1, PP. 205-212, 1988
    [89] Gibson, R.E., R.L. Schiffman, and S.L. Pu, plane strain and Axially Symmetric Consolidation of a clay Layer on a smoth Impervious Base, Quarterly Journal of Mechanics and Applied Mathematics, Vol. 23, Pt. 4, PP. 505-520, 1970
    [90] Hart. M.E., Groundwater and Seepage, McGraw-Hill, New York, 1962
    [91] Pagano, L., Steadly State and Transient Unconfined Seepage Analyses for Earthfill Dams, ABAQUS User's Conference, Milan, PP. 557-585, 1997
    [92] Dimaggio, EL. and Sandier, I.S. Material Model for Granular Soils. J. Eng. Mech. Piv. ASCE 97)EMS), PP. 935~949, 1971
    [93] Yoon, J.W., Yang, D.Y. and Chang, K., Elasto-plastic finite element method based on incremental deformation theory and continuum based shell elements for planar amisotropic sheet materials, Comp. Methods Appl. Mech. Eng., 174, 23(1999)
    [94] Morman, K.N., Jr., and Nagtegaal, J.C., Finite Element Analysis of Small Amplitude Vibrations in Pre-Stressed Nonlinear Viscoelastic Solids. Int. J. Num. Meth, Engng, 1983
    [95] Chaboche, J.L., Constitutrie Equations for Cyclic Plasticity and Cyclic Viscoplasticity, International Journal of Plasticity, Vol. 4, PP. 247-302, 1989
    [96] Van Den Boogard, A.H., Implicit integration of the perzyna, viscoplastic material mode, INO Building and construction Research, The Netherlands, TNO-report, 95-NM-R711, 1999
    [97] 杨立强,张中杰等.FLAC基本原理及其在地学中的应用.地学前缘.2003年第10卷(1)
    [98] 龚纪文,崔建年等.FLAC数值模拟软件及其在地学中的应用.大地构造与成矿学.2002年第26卷(3)
    [99] 梁海波,李仲奎等.FLAC程序及其在我国水电工程中的应用.岩石力学与工程学报.1996年第15卷(3)
    [100] 王学滨,潘一山等.FLAC~(3D)在岩石变形局部化数值模拟中的应用.隧道工程技术大学学报.2001年第20卷(4)
    [101] 王泳嘉,刑纪波.离散单元法同拉格朗日法及其在岩土力学中的应用.岩土力学.1995年第16卷(2)
    [102] 李廷春,李术才等.厦门海底隧道的流固耦合分析.岩土工程学报.2004年第26卷(3)
    [103] 白冰,周健.土工离心模型试验技术的一些发展.本部探矿工程,2000(4)
    [104] 徐光明,章为民.离心模型中的粒径效应和边界效应研究.岩土工程学报,1996,18(3)
    [105] 袁文忠.相似理论与静力学模型试验.西南交通大学出版社,1998
    [106] 黄志全,王思敬.离心摸型试验技术在我国的应用概况.岩石力学与工程学报,1998,17(2)
    [107] 雷胜友.离心模型试验技术及其在中国的应用.西安公路交通大学学报.1998,18(4B)
    [108] 包承纲,饶锡保.土工离心模型的试验原理.长江科学院院报,1998,15(2)
    [109] 周小文,濮家骝等.隧洞拱冠砂土位移与破坏的离心模型试验研究.岩石力学,1999,20(2)
    [110] 周小文,濮家骝等.砂土中隧洞开挖稳定机理及松动土压力研究.长江科学院院报,1999,20(2)
    [111] 郭昭,王景铭等.土工离心模拟试验以应变分析.上海铁道大学学报(自然科学报),1997,18(4)
    [112] 李景林,王剑平等.离心模型试验模拟基坑干挖的一种新方法.南京水利科学研究院水利水运科学研究,2000(4)
    [113] 丁金粟,汤启明等.用渗水力模型研究饱和土地基载荷性状.岩土工程学报,1994,16(1)
    [114] 侯瑜京.离心模型试验模拟塑料排水板处理软基的试验研究.大坝观测与土工测试,1995,19(5)
    [115] 徐光明,章有为等.岸坡稳定的离心模型试验和有限元计算分析.南京水利科学研究院水利水运科学研究,1995(4)
    [116] 章有为,蔡正银等.加筋挡土墙的极限分析方法及离心模型试验验证.南京水利科学研究院水利水运科学研究,1995(1)
    [117] 李玫,包承纲等.梁柱式海洋平台基础与土相互作用的离心模型试验.岩土工程学报,1995.17(5)
    [118] 汪小刚.张建红等.用离心模型研究岩石边坡的倾斜破坏.岩土工程学报,1996,18(5)
    [119] 濮家骝.士工离心模型试验及其应用的发展趋势.岩土工程学报,1996,18(5)
    [120] 陈上明,张倬元等.某机场场道软基变形性状的离心模型试验.地质灾害与环境保护.1996,7(1)
    [121] 唐剑虹.士工离心模型试验在高土石坝中的应用.水电站设计,1996.12(1)
    [122] 章为民,唐剑虹等.瀑布沟坝基防渗墙离心模型试验.岩土工程学报,1997,19(2)
    [123] 蔡正银,章为民等.京九铁路加筋挡土墙离心模型试验.南京水利科学研究院水利水运科学研究,1997(2)
    [124] 杜建成,张利民.广钢站软基处理的离心模型试验研究.四川建筑,1997,17(3)
    [125] 杜延龄.土石坝离心模型试验研究,水利水电技术,1997,28(6)
    [126] 介玉新,李广信等.纤维加筋和素土边坡的离心模型试验研究.岩土工程学报.1998,20(4)
    [127] 张定.土工离心试验中饱和粘性土模型的拟合制作.铁道学报,1999.21(5)
    [128] 熊冰,胡小明.黄土路基湿化特性的离心模型研究.四川联合大学学报(工程科学版),1999,3(1)
    [129] 陈文,施建勇等.饱和粘土中静压桩挤压效应的离心模型试验研究.河海大学报,1999,27(6)
    [130] 介玉新,李广信.纤维加筋粘性土边坡的模型试验和计算分析.清华大学学报(自然科学版),1999,39(11)
    [131] 章为民,赖忠中等.加筋挡土墙离心模型试验研究.土木工程学报,2000,33(3)
    [132] 周顺华,刘建国等.水下边坡稳定性的离心模拟试验研究.铁道学报,2001,23(1)
    [133] 杜建成,张利民等.软土归一化本构关系的离心试验验证.四川大学学报(工程科学版).2001,33(1)
    [134] 章为民,日下郭治.砂性地层地震反应离心模型试验研究.岩土工程学报,2001,23(1)
    [135] 周小文,濮家骝.隧洞结构受力及变形特征的离心模型试验研究.清华大学学报(自然科学版),2001,41(8)
    [136] 章为民,窦宜.土工离心模拟技术的发展.南京水利科学研究院水利水运科学研究,1995(3)
    [137] 侯瑜京.LCJ-4-450 土工离心机在岩土工程中的应用.北京水利新技术开发应用,1998(5)
    [138] 殷昆亭,刘凤德.TH-50g-tongs土工离心机及其辅助系统,实验技术与管理.1998,15(1)
    [139] 刘招伟 城市地铁盾构法施工引起的地表沉降的研究 西南交通大学硕士学位论文 2002
    [140] 沈培良,张海波,等.上海地铁隧道盾构施工地面沉降分析.河海大学学报.2003,31(5)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700