近百年来长江口浮游植物群落变化的沉积记录研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过现场调查,利用光合色素组成信息探讨了东海31°N纬度断面上浮游植物群落组成结构。通过分析长江口及东海海域水体颗粒有机碳的组成特征及沉积物中有机碳、氮及其稳定同位素组成、生物硅、绿素、光合色素等标志物,讨论了调查海区沉积物中有机碳的来源、保存情况及影响因素;结合~(137)Cs定年揭示了20世纪40年代初至90年代末近60年来长江口赤潮多发区古生产力及其浮游生物群落结构的变化。
     2007年夏季光合色素表征的东海海域31°N纬度断面浮游植物群落结构组成表现为:近岸营养盐丰富海域(N/P>16,表现为潜在的P限制海区),浮游植物生物量较高,主要以硅藻为主,其次为隐藻。同时还有少量的绿藻、定鞭藻、甲藻、蓝细菌等,未检测出原绿球藻和金藻。外陆架海域,营养盐绝对浓度低且表现出明显的氮限制,浮游植物生物量低,上层海水中主要以蓝细菌为主,其次为金藻、定鞭藻、绿藻和原绿球藻,而硅藻很少。蓝细菌在水柱过程中多发生降解作用而很少沉降到海底,硅藻则在底层海水中存在由近岸向外陆架的侧向输运过程。东海颗粒有机碳(POC)分析结果表明由于受到悬浮泥沙量的影响,浓度变化范围大,且表现出近岸高、远岸低的特征。表层海水POC主要为海洋生物来源,底层颗粒有机碳中碎屑有机碳对POC有较大贡献,尤其在近岸海域。
     沉积物有机碳(TOC)、生物硅(BSi)、绿素(chlorin)等对海区古生产力的指示有显著差异。研究海域TOC含量为0.10%~0.72%,由于长江口近岸海域和杭州湾受陆源输入影响较大,因此有机碳含量总体表现为近岸高,远岸低的特征。BSi主要表现为硅藻的生产力,浓度变化为0.05%~0.30%,表现出近岸海域硅藻生产力高,而向外海降低的趋势。绿素表征总浮游植物生产力,浓度范围为0.03μg/g~7.71μg/g,高值分布在122.5°E~123.5°E范围内,与长江口外高生产力区相对应。有机碳同位素(δ~(13)Corg)、氮同位素(δ~(15)N)及有机质C/N比值分析表明研究海区使用δ~(13)Corg信息来表征有机质来源更为合适,研究海区δ~(13)Corg值为-24.45‰~-20.48‰,表明其有机质为陆源和海源的混合来源。δ~(15)N则更多的显示出生物地球化学过程改造的信息,在东海外陆架海区由于受固氮作用的影响,δ~(15)N偏轻,而近岸海域沉积物δ~(15)N信息则是受到营养盐过剩、有机质选择性降解以及脱氮等过程的综合改造结果。调查海区C/N比值在5.27~11.29间变化,一定程度上可反映有机质来源,但受到沉积物中吸附的无机氮以及有机质选择性降解等因素的干扰。
     长江口外赤潮多发区沉积物柱状样G1柱沉积速率为1.55±0.03 cm/a,年代最早可追溯到20世纪40年代初期。δ~(13)Corg为-19.50‰~-26.15‰,Corg/N为4.03~19.4,沉积有机质为混合来源。δ~(15)N为2.23‰~6.39‰,生物地球化学过程对δ~(150N改造影响了物源信号,在60~80年代时间段存在低值,与该时段环境中营养盐持续输入,氮盐过剩及固氮作用增强等相对应。古生产力替代指标TOC、BSi及绿素的研究表明50年代初海区生产力较低。在50年代至80年代期间,海源输入比重加大,且硅藻生产力大幅提高,与此阶段长江口营养盐浓度迅速增加相应。沉积物中浮游植物色素组成信息还表明在该时段绿藻、蓝藻等生产力也有增加。80年代后,BSi显示硅藻生产力降低。色素信息则表明青绿藻、隐藻或甲藻等藻类生物量增加。这与海区氮盐持续增加,但Si、P等则呈降低趋势,N/P、P/Si值迅速增大密切相关。营养盐结构的变化对海区浮游植物群落组成比率有显著影响。有机碳同位素数据表明此阶段陆源有机碳的贡献增强。
Particulate organic carbon and photosynthesis pigments were investigated to know the characteristics of organic carbon and the structure of the phytoplankton communities in Changjiang Estuary and East China Sea.Then the paleoproductivity and the changing environment conditions in the past 60 years were discussed based on the studies of some proxies such as organic carbon and nitrogen with their stable isotopes,biological silicon,chlorin and photosynthesis pigments of surface sediments and a sediment core.
     The results indicate that the primary production is high in the inshore water with high nutrient levels(N/P>16,displays as potential P limits sea area),and the phytoplankton communities derived by HPLC photosynthetic pigments dominated by diatom,next as the cryptophytes,chlorophytes,prymnesiophytes,dinoflagellate and cyanobacteria,but no chrysophytes and prochlorophytes in summer along the latitude of 31°N in East China Sea.While in the outside continental shelf sea area,with low nutrient levels and obvious nitrogen limitation,the primary production was low,and the phytoplankton was dominated by cyanobacteria in the surface water,next as the crysophyes,prymnesiophytes,chlorophytes and prochlorophytes.The diatom was few in the surface water while in the bottom there was some,indicated outward lateral transport.Most of cyanobacteria degraded during deposition in the water column and only a few can deposited in the sedimens.The concentrate of particulate organic carbon was high near the shore affected by the contents of suspended particles while it decreased outwards in the East China Sea.POC in surface layer sea water mainly originates from the marine organisms,while the detritus organic carbon contributes greatly in the bottom layer,especially in inshore water.
     The contents of total organic carbon(TOC),biological silicon(BSi) and chlorin were used as "proxies" for paleoproductivity.The contents of TOC ranged from 0.10 %to 0.72%in surface sediments with high values in the inner shore and low values off shore.The terrestrial inputs in the Changjiang Estuary and Hangzhou Bay affected the use of TOC as the proxy of paleoproductivity.BSi mainly performance for diatom's productive forces,and the contents ranged from 0.05%to 0.30%.Diatom productive displayed high in the inshore which reduced to the open sea.Chlorin attribute to marine phytoplankton productive forces,the contents is 0.03μg/g~7.71μg/g,the high value distributes in the area of 122.5°E~123.5°E,corresponds with the high productive forces area in the Changjiang Estuary.
     Studies of Organic carbon isotope(δ~(13)Corg),Nitrogen isotope(δ~(15)N) and the Corg/N ratio indicate thatδ~(13)Corg information was relatively appropriate for difference the originate of organic matters in study area.δ~(13)Corg ranged from -24.45‰to -20.48‰,indicates the mixing source of organic matter from terrestrial origin and marine organisms.δ~(15)N value demonstrates the information of biogeochemistry process transformation.δ~(15)N was light as a result of nitrogen fixation influence in the outshelf of East China Sea,but the inshore water depositδ~(15)N was the result of synthesis information of the nitrate surplus,selectivity degradation of organic matter and denitrification transformation process.Corg/N ratio was changed from 5.27 to 11.29 in study area,reflect the organic matter originates in certain degree,but affected by the absorbance of NH_4~+ as well as organic matter selectivity degradation.
     Stable organic carbon isotope,biogenic silicate and pigments were studied from a sedimentary core for discussing the variation of paleoproductivity and the environmental implications in the past decades in Changjiang Estuary.The sedimentary rate was 1.55±0.03 cm/a and the core had recorded the information from the beginning of 1940s to 1997.The sedimentary organic carbon was mixing originate derived from the signature ofδ~(13)Corg(-19.50‰~-26.15‰) and Corg/N values (4.03~19.4).The changing value ofδ~(13)Corg indicated that the riverine organic carbon increased after 1980s..δ~(15)N was 2.23‰~6.39‰,demonstrates the information of biogeochemistry process transformation.Lowδ~(15)N value in the middle of the core, corresponds with the time of 60s~80s was affected by the increasing nitrate inputs and increasing nitrogen fixation.The biogenic proxies present three stages of paleoproductivity changes:Before 1950s,Marine primary production was low,and it increased during 1950s-1980s with diatoms dominated,consistent with increasing of nutrients concentrations.Chlorophytes and cyanobacteria were increased either in this stage.Then the production decreased Later than 1980s.In this stage,the diatom production decreased while the production of other phytoplankton communities such as prasinophytes,crysophytes or dinoflagellate increased.It was affected by continually inputs of high nitrate,but Si,P and so on assume reduce the tendency,and it results high N/P,P/Si nutrients ratios in changjiang Estuary.
引文
Altabet M. A., Francois R. Sedimentary nitrogen isotope isotope ratio as a recorder for surface ocean nitrate utilization. Global Biogeochemical Cycles, 1994, 8(1): 103-116.
    
    Altabet M.A. Nitrogen and carbon isotopic tracers of the source and transforamtion of particles in the deep sea. In: Ittekkot V. et al. (eds.), Particle flux in the ocean. New York: John wiley & Sons, 1996, 155-184
    
    Andersen R.A., Bidigare R.R., Keller M.D. et al. A comparison of HPLC pigment signatures and electron microscopic observations for oligotrophic waters of the North Atlantic and Pacific Oceans. Deep-Sea Research II, 1996,43: 517-537.
    
    Ansotegui A., Trigueros J.M., Wrive E. The use of pigment signatures to assess phytoplankton assemblage structure in estuarine waters. Estuarine, Coastal and Shelf Science, 2001, 52: 689-703.
    
    Balifto B.M., Fasham M.J.R., Bowles M.C. JGOFS-IGBP. Ocean Biogeochemistry and Global Change. IGBP Science, 2001, 2: 11.
    
    Barcena M.A., Isla E., Plaza A., et al. Bioaccumulation record and paleoclimatic significance in the Western Bransfield Strait. The last 2000 years. Deep-sea Research II, 2002, 49(4-5):935-950.
    
    Barlow R.G., Mantoura R.F.C., Gough M.A. et al. Pigment signatures of the phytoplankton composition in the northeastern Atlantic during the 1990 spring bloom. Deep-Sea Research II,1993,40:459-477.
    
    Bernardez P., Prego R., Frances G, et al. Opal content in the Ria de Vigo and Galician continental shelf: Biogenic silica in the muddy fraction as an accurate paleoproductivity proxy.Continental Shelf Research, 2005, 25: 1249-1264.
    
    Bezrukov P.L. Distribution and rate of deposition of silicate sedimentations in the Sea of Okhotsk. DoKl. Akad. Nauk SSSR, 1955, 103: 473-476.
    
    Brown S.R. Paleolimnological evidence from fossil pigments. Mitt. Internat.Verein. Limnol.,1969,17:95-103.
    
    Buesseler K.O. The de-coupling of production and particulate export in the surface ocean.Global Biogeochemical cycles, 1998, 12(2): 297-310.
    
    Calvert S. E., Nielsen B., Fontugne M. R. Evidence from nitrogen isotope ratios for enhanced productivity during formation of eastern Mediterranean sapropels. Nature, 1992, 359: 223-225.
    
    Chen C.T.A., Wang S.L. Carbon, alkalinity and nutrient budgets on the East China Sea continental shelf. Journal of Geophysical Research, 1999, 104: 20675-20686.
    
    Chen Jian-Fang, Xia Xiao-Ming, Ye Xin-Rong, et al. Marine organic pollution histoy in the
    Changjiang Estuary and Zhejiang Coastal area—HCHs and DDTs stratigraphical records. Marine Pollution Bulletin, 2002,45, 391-396.
    
    Chen N., Bianchi T.S, McKee B.A. et al. Historical trends of hypoxia on the Louisiana shelf: application of pigments as biomarkers. Organic Geochemistry, 2001, 32: 543-561.
    
    Chung Shi-Wei. Jan Sen, Liu Kon-Ke. Nutrient fluxs throulgh the Taiwan Strait in spring and summer 1999. J. Oceanogr. 2001. 57(1): 47—53.
    
    Cifuentes L., Sharp J., Fogel M. Stable carbon and nitrogen isotope biogeochemistry in the Delaware estuary. Limnol Oceanogr., 1988, 33: 1102-1115.
    
    Claustre H. The trophic status of various oceanic provinces as revealed by phytoplankton pigment signatures. Limnol. Oceanogr., 1994, 39(5): 1206-1210.
    
    Cline J. D., Kaplan I. R. Isotopic fractionation of dissolved nitrate during denitrification in the Eastern Tropical North Pacific. Marine Chemistry, 1975, 3: 271-299.
    
    Conley D. J. Schelske S. L. Stoermer E. F. Modification of the biogeochemical cycle of silica with eutrophication. Marine Ecology Progress Series, 1993, 101: 179-192.
    
    Crocker K.M., Ondrusek M.E., Petty R.L. et al. Dimethylsulfide, algal pigments and light in an Antarctic Phaeocystis sp. bloom. Marine Biology, 1995, 124: 335-340.
    
    CSIRO, Mrine Research, NATO/IOCCG Ocean Colour Training Course, Erdemli, Turkey,September2000, http://www.ioccg.org/trai-ning/turkey/DrClementson lect.pdf.
    
    Degens E.T., Behrendt M., Gotthardt B. Metabolic fractionation of carbon isotopes in marine plankton, Deep Sea Research II, 1968, 15: 11-20.
    
    Demaster D. J. The supply and accumulation of silica in the marine environment. Geochim.Cosmochim. Acta, 1981,45, 1715-1732.
    
    DeMaster D.J., McKee B.A., Nittrouer C.A., et al. Rates of sediment accumulation and particle reworking based on radiochemical measurements from continental shelf deposits in the East China Sea. Continental Shelf Research, 1985,4(1-2): 143-158.
    Demaster D.J., Mckee B.A., Nittrouer C.A., et al. Rates of sedimentary processes based on radiochemical profiles from continental shelf deposits in the East China Sea. Sedimentation on the continental shelf,with special reference to the East China Sea. Volume 2. Beijing: China Ocean Press, 1983, 581-589.
    
    Ducklow H.W., Steinberg D.K., Buesseler K..O. Upper Ocean Carbon Export and the Biological Pump. Oceanography, 2001, 14(4): 50-58.
    
    Eckardt C.B., Keely B.J., Waring J.R., et al. Preservation of chlorophyll-derived pigments in sedimentary organic matter. Philosphical Transactions of the Royal Society of London. Biological Sciences, Series B, 1991, 333: 339-348.
    
    Eeva-Liisa P., Nikkila K. Carotenoid pigments as tracers of cyanobacterial blooms in recent and post glacial sediments of the Baltic Sea. AMBIO, 2001, 30(4-5): 179-183.
    
    Egge J.K. Are diatoms poor competitors at low phosphate concentrations?. Journal of Marine Systems, 1998,16: 191-198.
    
    Fogel M.L., Cifuentes L.A. Isotpe fractionation during primary production. In: Engel M H.,Macko S.A.(Eds). Organic geochemwitry. PlemunPress, New York, 1993, pp 73-98.
    
    Furuya K., Hayashi M., Yabushita Y., et al. Phytoplankton dynamics in the East China Sea in spring and summer as revealed by HPLC-derived pigment signatures. Deep-Sea Research II, 2003,50: 367-387.
    
    Furuya K., Hayashi M., Yavushita Y. HPLC determination of phytoplankton pigmewnts using N,N-dimethylformamide. Journal of Oceanography, 1998, 54: 199-203.
    
    Garrido J.L., Rodriguez F., Campan E., et al. Rapid separation of chlorophylls a and b and their demetallated and dephytylated derivatives using a monolithic silica C18 column and a pyridine-containing mobile phase. Journal of Chromatography A, 2003, 994: 85-92.
    
    Gibb S.W., Cummings D. G., Irigoienl X., et al. Phytoplankton pigment chemotaxonomy of the northeastern Atlantic. Deep-Sea Research II, 2001,48: 795-823.
    
    Gibb S.W., Cummings D.G., Irigoienl X., et al. Phytoplankton pigment chemotaxonomy of the northeastern Atlantic. Deep-Sea Research II, 2001. 48: 795-823.
    
    Giger W., Schaffner C, Wakeham S.G Aliphatic and olefinic hydrocarbons in recent sediments of Greifensee, Switzerland. Geochimica er Cosmochimica Acta, 1980,44: 119-129.
    Grasshoff K., Kremling K., Ehrhardt M. Methods of Seawater Analysis. Weinheim:Wiley-VCH, 1999: 193-198.
    
    Guan B.X. Patterns and structures of the currents in Bohai, Huangai and East China Seas. In:Oceanology of China Seas, Vol.1, Zhou Di, Liang YuanBo and Zeng Chengkui (editors), Kluwer Academic Publishers, 1994, pp 17-26.
    
    Hallegraeff G.M., Jeffrey S.W. Tropical phytoplankton species and pigments of continental shelf waters of north and north-west Australia. Marine Ecology Progress Series, 1984,20: 59-74.
    
    Harradine P.J., Harris P.G., Head R.N., et al. Steryl chlorin esters are formed by zooplankton herbivory. Geochimica et Cosmochimica Acta, 1996, 60: 2265-2270.
    
    Harris P.G, Maxwell J.R. A novel method for the rapid determination of chlorin concentrations at high stratigraphic resolution in marine sediments. Org.Geochem, 1995, 23(9):853-856.
    
    Harris P.G., Pearce G.E.S., Peakman T.M., et al. A widespread and abundant chlorophyll transformation product in aquatic environments. Org. Geochem, 1995, 23(2): 183-187.
    
    Harris P.G., Zhao M., Rosell-Mele A., et al. Chlorin accumulation rate as a proxy for Quaternary marine primary productivity. Nature, 1996, 383(5): 63-65.
    
    Hayes J.M. Factors controlling 13C contents of sedimentary organic compounds: Principles and evidence. Marine Geology, 1993, 113: 111-125.
    
    Hecky R.E, Kilham P. Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment. Limnol Oceanogr., 1988,33(4, Part2): 796-822.
    
    Higginson M.J, Altabet M.A. Initial test of the silicic acid leakage hypothesis using sedimentary biomarkers. Geophys. Res. Lett. 2004, 31, L183O3, doi: 10.1029/2004GL020511.
    
    Higginson M.J., Maxwell J.R., Altabet M.A. Nitrogen isotope and chlorin paleoproductivituy records from the Northern South China Seaxemote vs. local forcing of millennial- and orbital-scale variability. Marine Geology, 2003, 201: 223-250.
    
    Holm Hanson O., Booth C.B. The measurements of adenosine triphosphate in the ocean and its ecological significance. Limnol. Oceanogr., 1966, 11(4): 510-519.http://www.ucmp.berkelev.edu/glossary/gloss3/pigments.html
    Hung J.J, Lin P.L, Liu K.K. Dissloved and paniculate organic carbon in the southern East China Sea. Continental Shelf Research, 2000, 20: 545-569.
    
    Iglesias-Rodriguez M.D., Brown D.C., Doney S.C., et al. Representing key phytoplankton functional groups in ocean carbon cycle models: Coccolithophorids. Global Biogeochem. Cycles,2002, 16(4), 1100, doi: 10.1029/2001GB001454.
    
    Jeffrey S.W., Humphrey G.F. New spectrophotometric equations for determining chlorophylls a, b and c, and c2 in higher plants algae and natural phytoplankton. Biochem. Physiol. Pfanz.,1975, 167: 191-194.
    
    Jeffrey S.W., Mantoura R.F.C. Development of pigment methods for oceanography:SCOR-Supported Working Groups and objectives. Jeffrey S. W., Mantoura R. F. C, Wright S. W.,eds. phytoplankton pigments in oceanography. UNESCO Publishing, Paris, 1997, 19-36.
    
    Jeffrey S.W., Mantoura R.F.C., Wright S.W., phytoplankton pigments in oceanography.UNESCO Publishing, Paris, 1997.
    
    Jin Hai-yan, Chen Jianfang, Jin Mingming et al., Characterization of summer phytoplankton communities in the East China Sea using HPLC-derived pigment signatures. 5th International Conference on Marine Pollution and Ecotoxicology. 3-6 June 2007. ppO-112.
    
    Kamatani A., Oku O. Measuring biogenic silica in marine sediment. Marine Chemistry, 2000,68(3): 219-229.
    
    Kao S.J., Lin F.J., Liu K.K. Organic carbon and nitrogen contents and their isotopic compositions in surficial sediments from the East China Sea shelf and the southern Okinawa Trough. Deep-Sea Research II, 2003, 50: 1203-1217.
    
    Keil R.G, Tsamakis E., Fuh C.B., et al., Mineralogical and textural controls on the organic composition of coastal marine sediments: Hydrodynamic separation using SPLITT-fractionation.Geochim. Cosmochim. Acta., 1994, 58: 879-893.
    
    Kennedy T.A., Brassell S.C. Molecular stratigraphy of Santa Barbara Basin: Comparison with historical records of annual climate change. Org Geochem., 1992, 19(1-3): 235-246.
    
    Kienast M., Calvert S.E., Pelejero C, et al. A critical review of marine sedimentary ~(13)C_(org)-pCO_2 estimates:New palaeorecords form the South China Sea and a revisit of other low-latitude ~(13)C_(org)-pCO_2 records. Global Biogeochemical Cycles, 2001, 15(1): 113-127.
    Kienast M., Unchanged nitrogen isotopic composition of organic matter in the South China Sea during the last climatic cycle: Global implications. Paleoceanography, 2000, 15(2): 244-253.
    
    Klein B., Gieskes W.W.C., Kraay G.G. Digestion of chlorophylls and carotenoids by the marine protozoan Oxyrrhis marina studied by h.p.l.c. analysis of algal pigments. Journal of Plankton Research, 1986, 8: 827-936.
    
    Leblanca K., Queguinera B., Fialab M., et al. Particulate biogenic silica and carbon production rates and particulate matter distribution in the Indian sector of the Subantarctic Ocean.Deep-Sea Research II, 2002,49: 3189-3206.
    
    Li Mao-Tian, XU Kai-Qin, Watanabe M., et al. Long-term variations in dissolved silicate,nitrogen, and phosphorus flux from the Yangtze River into the East China Sea and impacts on estuarine ecosystem. Estuarine, Coastal and Shelf Science, 2007, 71:3-12.
    
    Liu K.K., Atkinson L., Chen C.T.A. et al. Exploring continental margin carbon fluxes on a global scale. Eos, Transactions. American Geophysical Union, 2000a, 81(52): 641-644.
    
    Liu Kon-Ke, Su Mei-Jwen, Hsueh Chen-Ru, et al. The nitrogen isotopic composition of nitrate in the Kuroshio Water northeast of Taiwan: evidence for nitrogen fixation as a source of isotopically light nitrate. Marine Chemistry, 1996, 54: 273-292.
    
    Loh A.N, Bauer J.E. Distribution, partitioning and fluxes of dissolved and particulate organic C, N and P in the eastern North Pacific and Southern Oceans. Deep-Sea Research I, 2000, 47:2287-2316.
    
    Lohse L., Kloosterhuis R.T., de Stigter H.C. Carbonate removal by acidification causes loss of nitrogenous compounds in continental margin sediments. Marine Chemistry, 2000, 69: 193-201.
    
    Lorenzen C, Determination of chlorophyll and pheopigments: spectrophotometric equations.Limnology and Oceanography, 1967, 12(2): 343-346.
    
    Mackey D.J., Blanchot J., Higgins H.W., et al. Phytoplankton abundances and community structure in the equatorial Pacific. Deep-Sea Research II, 2002,49: 2561-2582.
    
    Mackey D.J., Higgins H.W., Mackey M.D., et al. Algal class abundances in the western equatorial Pacific: estimation from HPLC measurements of chloroplast pigments using CHEMTAX. Deep-Sea Research I, 1998, 45: 1441-1468.
    
    Mackey M.D., Mackey D.J., Higgins H.W., et al. CHEMTAX-a program for estimating class abundances from chemical markers: application to HPLC measurement of phytoplankton. Marine ecology progress series, 1996, 144: 265-283.
    
    Marlowe I.T., Brassell S.C., Eglinton G, et al. Long chain unsaturated ketones and esters in living algae and marine sediments. Organic Geochmistry, 1984, 6: 135-141.
    
    Mayer L.M. Surface area control of organic carbon accumulation in continental shelf sediments. Geochimica et CosmochimicaActa, 1994,58: 1271-1284.
    
    Meyers P.A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org. Geochem., 1997, 27(5/6): 213-250.
    
    Meyers P.A. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology, 1994, 144: 289-302.
    
    Millie D.F, Kirkpatrick G.J, Vinyard B.T. Relating photosynthetic pigments and in vivo optical density spectra to irradiance for the Florida red—tide dinoflagellate Gymnodinium breve. Marine Ecology Progress Series, 1995, 120: 65-75.
    
    Mortlock P.A., Froelich P.N. A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep Sea Research, 1989, 36(9): 1415-1426.
    
    Mortlock R.A., Charles C.D., Froelich P.N, et al. Evidence for lower productivity in the Antarctic Ocean during the last glaciation. Nature, 1991, 351: 220-222.
    
    Nelson D.M., Anderson R.F., Barber R.T. Vertical budgets for organic carbon and biogenic silica in the Pacific sector of the Southern Ocean, 1996-1998. Deep-Sea Research II, 2002, 49:1645-1673.
    
    Nelson D.M., Treguer P., Brzezinski M.A., et al. Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochemical Cycles, 1995, 9: 359-372.
    
    Officer C.B., Ryther J.H. The possible importance of silicon in marine eutrophication. Marine Ecology Progress Series, 1980, 3: 83-91.
    
    Pelejero C, Grimalt J.O. Sarnthein M, et al. Molecular biomarker record of sea surface temperature and climatic change in the South China Sea during the last 140,000 years. Mar. Geol.,1999,156: 109-121.
    
    Peng T.H, Hung J.J, Wannikhof R., et al. Carbon budget in the East China Sea in spring. Tellus, 1999, 51B(3):531-540.
    
    Peters K.E., Sweeney R.E., Kaplan I.R. Correlation of carbon and nitrogen stable isotope ratios in sedimentary organic matter. Limnology and Oceanography, 1978,23: 598-604.
    
    Poutannen E.L., Nikkila" K. Carotenoid pigments as tracers of cyanobacterial blooms in recent and post glacial sediments of the Baltic Sea. AMBIO, 2001, 30(4-5): 179-183.
    
    Rau G.H., Arthur M.A., Dean W.E. ~(15)N/~(14) N variations in Cretaceous Atlantic sedimentary sequences: implications for past changes in marine nitrogen biogeochemistry. Earth and Planetary Science Letters, 1987, 82: 269-279.
    
    Redfield A.C., Ketchum B.H., Richards F.A. The influence of organisms on the composition of seawater. In: The Sea, vol. 2, Edited by Hill M. N, Interscience, New York, 1963, 26-77.
    
    Reuss N., Conley D.J., Bianchi T.S. Preservation conditions and the use of sediment pigments as a tool for recent ecological reconstruction in four Northern European estuaries. Marine Chemistry, 2005, 95: 283-302.
    
    Ritchie J.C., McHenry J.R. A comparison of three methods for measuring recent rates of sediment accumulation. Journal of the America Water Resources Association, 1985, 21(1):99-104.
    
    Schaffner L.C., Diaz R.J., Olsen R.C., et al. Faunal characteristics and sediment accumulation processes in the James River estuary, Virginia. Estuarine, Coastal and Shelf Science, 1987, 25:211-226.
    
    Schubert C.J., Calvert S.E. Nitrogen and carbon isotopic compositon of marine and terrestrial organic matter in Arctic Ocean sediments:implications for nutrient utilization and organic matter composition. Deep Sea Research I, 2001, 48: 789-810.
    
    Schubert C.J., Nielsen B. Effects of decarbonation treatments on δ~(13)C values in marine sediments. Marine Chemistry, 2000, 72: 55-59.
    
    Schubert C.J., Villanueva J., Calvert S.E., et al. Stable phytoplankton community structure in the Arabian Sea over the past 200,000 years. Nature, 1998, 394: 563-566.
    
    SCOR Handbook, Halifax, Nova Scotia, Canada, May 1991, pp90.
    
    Strom S.L. Production of pheopigments by marine protozoa: results of laboratory experiments analysed by HPLC. Deep-Sea Research Part I, 1993,40: 57-80.
    Suess E. participate organic carbon flux in the oceans—surface productivity and oxygen utilization. Nature, 1980,288: 260-263.
    
    Sun M.Y., Lee C, Aller R.C., Anoxic and oxicdegradation of ~(14)C-labeled chloropigments and a ~(14)C-labeled diatom in Long Island Sound sediments. Limnol. Oceanogr., 1993, 38: 1438-1451.
    
    Sun X.J., Luo Y.L., Chen, H.C. Deep-sea pollen research in China. Chinese Science Bulletin,2003,48(20): 2155-2164.
    
    Swain E.B. Measurement and interpretation of sedimentary pigments. Freshwater Biology,1985, 15: 53-75.
    
    Tan F.C., Cai D.L., Edmond J.M. Carbon isotope geochemistry of the Changjiang Estuary.Estuarine, Coastal and Shelf Science, 1991, 32: 395-403.
    
    Thuynell R.C, MIAO Q., CALVERT S.E., et al. Glacial-Holocene biogenic sedimentation patterns in the Soouth China Sea: productivity variations and surface water Pco2.Paleoceanography, 1992, 7: 143-162.
    
    Tsunogai S., Watanabe S., Sato T. Is there a "continental shelf pump"for the absorption of atmospheric CO_2?. Tellus, 1999, 51B(3): 701-712.
    
    Van Heukelem L., Thomas C.S. Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. J Chromatogr. A , 2001, 910: 31-49.
    
    Vernet M., Lorenzen C.J. The relative abundance of pheophorbide a and pheophytin a in temperate marine waters. Limnology and Oceanography, 1987,32: 352-358.
    
    Villanueva J., Hastings D.W. A century-scale record of the preservation of chlorophyll and its transformation products in anoxic sediments. Geochimica et Cosmochimica Acta, 2000, 64(13):2281-2294.
    
    Volkman J.K., Barrett S.M., Blackburn S.I., et al. Microalgal biomarkers: a review of recent research developments. Org. Ceochem., 1998,29: 1163-1179.
    
    Walling D.E., He Q. Use of fallout Cs in investigations of overbank sediment deposition on river floodplain. Catena, 1997,29(3): 263-282.
    
    Walsh J.J. Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen. Nature, 1991, 50: 53-55.
    Wang Baodong. Cultural eutrophication in the Changjiang (Yangtze River) plume: History and perspective. Estuarine, Coastal and Shelf Science, 2006, 69: 471-477.
    
    Wassmann P., Egge J.K., Reigstad M., et al. Infuluence of dissolved silicate on vertical flux of paniculate biogenic matter. Marine Pollution Bulletin, 1996, 33(1-6): 10-21.
    
    Watts D.C., Maxwell J.R. Carotenoid diagenesis in a marine sediment. Geochim. Cosmochim.Acta, 1977,41:493-497.
    
    Wei T.Y., Chen Z.Y., Duan L.Y., et al. Sedimentation rates in relation to sedimentary processes of the Yangtze Estuary, China. Estuarine, Coastal and Shef, Science, 2007, 71(1-2):37-46.
    
    Williams P.M., Carlucci A.F., Olson R.A. deep profile of some biologically important properties in the central North Pacific gyre. Oceanologica Acta, 1980, 3(4): 471-476.
    
    Winn K., Zheng L., Erlenkeuser H., et al. Oxygen/carbon isotopes and paleoproductivity in the South China Sea during the past 110 000 years. Jin X., Kudrass H.R., Pautot G. Marine Geology and Geophysics of the South China Sea. Beijing: Chian Ocean press, 1992, 154-166.
    
    Wright S.W. Analysis of phytoplankton populations using pigment markers, Course notes for a workshop "Pigment Analysis Of Antarctic Microorganisms", University of Malaya, June 29 -July 1,2005.
    
    Wright S.W., Jeffrey S.W. High-resolution HPLC system for chlorophylls and carotenoids of marine phytoplankton. In: Phytoplankton pigments in oceanography (Jeffrey S.W., Mantoura R.F.C., Wright S.W., eds). UNESCO, 1997, pp. 327-341.
    
    Wright S.W., Jeffrey S.W. Mantoura, R.F. Improved HPLC method for the analysis of chorophylls and carotenoids from marine phytoplankton. Marine Ecology Progress Series, 1991,77: 183-196.
    
    Wright S.W., Jeffrey S.W., Mantoura R.F.C. Evaluation of methods and solventns for pigment extraction. In: Jeffrey S.W., Mantoura R.F.C, Wright S.W.(Ed.) Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO Publishing, Paris, France. 1997,p:261-282.
    
    Wright S.W., van den Enden R.L. Phytoplankton community structure and stocks in the East Antarctic marginal ice zone (BROKE survey, January-March 1996) determined by CHEMTAX analysis of HPLC pigment signatures.Deep-Sea Research Ⅱ,2000,47:2363-2400.
    Wu Y.,Dittmar T.,Ludwichowski K-U.,et al.Tracing suspended organic nitrogen from the Yangtze River catchment into the East China Sea.Marine Chemistry,2007,107:367-377.
    Wu Y.,Zhang J.,Li D.J.,et al.Isotope variability of particulate organic matter at the PN section in the East China Sea.Biogeochemistry,2003,65:31-49.
    Wulff A.,W(a|¨)ngberg S.-A.Spatial and vertical distribution ofphytoplankton pigments in the eastern Atlantic sector ofthe Southern Ocean.Deep-Sea Research Ⅱ,2004,51:2701-2713.
    W(u|¨)nsche L.,C(u|¨)lacar F.O.,Buchs A.Several unexpected marine sterols in a freshwater environment.Organic Geochemistry,1987,11:215-219.
    You Kun-Yuan,Sui Liang-Ren,Qian Jiang-Chu.Modern sedimentation rate in the vicinity of Changjiang Estuary and adjacent continental shelf.Sedimentation on the continental shelf,with special reference to the East China Sea.Volume 2.Beijing:China Ocean Press,1983,pp 590-605.
    Zapata M.,Rodriguez F.,Garrido J.L.Separation of chlorophylls and carotenoids from marine phytoplankton:a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases.Mar Ecol Prog Ser.,2000,195:29-45.
    Zhang J.,Wu Y.,Jennerjahn T.C.Distribution of organic matter in the Changjiang(Yangtze River) Estuary and their stable carbon and nitrogen isotopic ratios:Implications for source discrimination and sedimentary dynamics.Marine Chemistry,2007,106:111-126.
    Zhang J.,Zhang Z.F.,Liu S.M.,et al.Human impacts on the large world rivers:would the Changjiang be an illustration? Global Biogeochemistry Cycles,1999,13(4):1099-1105.
    Zhou Ming-Jiang,Shen Zhi-Liang,Yu Ren-Cheng.Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang(Yangtze) River.Continental Shelf Research,2008,28:1483-1489.
    Z(u|¨)llig H.On the use of carotenoid stratigraphy in lake sediments for detecting past developments of phytoplankton.Limnology and Oceanography,1981,26(5):970-976.
    蔡德陵,Tan F.C.,Edmond J.M.长江口有机碳同位素地球化学.地球化学,1992,3:305-312.
    柴超,俞志明,宋秀贤等.长江口水域富营养化特性的探索性数据分析.环境科学,2007,28(1):53-58.
    陈纪新,黄邦钦,贾锡伟等,利用光合色素研究厦门海域超微型浮游植物群落结构.海洋环境科学,2003,22(2):16-21.
    陈纪新,黄邦钦,刘媛等.应用特征光合色素研究东海和南海北部浮游植物的群落结构.地球科学进展,2006,21(7):738-746.
    陈建芳,古海洋研究中的地球化学新指标.地球科学进展,2002,17(3):402-410.
    陈建芳,南海沉降颗粒物的生物地球化学过程及其在古环境研究中的意义,同济大学博士学位论文,2005.
    陈建芳,叶新荣,周怀阳等,长江口、杭州湾一带有机污染历史初步研究:DDT与BHC 的地层学记录.中国环境科学,1999,19(3):206-210.
    陈建芳,周怀阳,张海生等.工业化以来海洋污染历史的分子(元素)地层学记录.东海海洋,1998,16(3):64-69.
    高生泉,林以安,金明明等.春、秋季东、黄海营养盐的分布变化特征及营养结构.东海海洋,2004,22(4):38-50.
    谷颖,项有堂,象山港海域富营养化与赤潮的关系.海洋环境科学,2002,21(3):67-69.
    郭皓主编,中国近海赤潮生物图谱,海洋出版社,2004.
    郭玉洁,杨则禹.长江口区浮游植物的数量变动及生态分析.海洋科学集刊,1992,10:167-189.
    胡敦欣等,关于浙江沿岸上升流的成因及动力结构的研究,海洋科学集刊,1984,21:101-121.
    黄蓉,浙江沿海赤潮状况及防治对策.环境监测管理与技术,2001,13(5):29-30.
    黄自强,傅天保,张远辉.东海海水中POC的分布特征.台湾海峡,1997,16(2):145-152.
    贾国东,翦知民,彭平安等.南海南部17962柱状样生物硅沉积记录及其古海洋意义.地球化学,2000,29(3):293-296.
    江天久,陈菊芳,邹迎麟等.中国东海和南海有害赤潮高发区麻痹性贝毒素研究.应用生态学报,2003,14(7):1156-1160.
    蒋国昌,浙江南部海域富营养化和赤潮的关系探讨.东海海洋,1993,11(2):55-61.
    焦念志,王荣,海洋初级生产光动力学及产品结构.海洋学报,1994,16(5):85-91.
    焦念志,王荣,李超伦.东海春季初级生产力与新生产力的研究,海洋与湖沼,1998,29(2):135-140.
    金翔龙等,东海海洋地质,海洋出版社,北京,1992,p1-7;118-127;185-215.
    李宏亮,北冰洋楚科奇海古生产力的沉积历史记录,国家海洋局第二海洋研究所硕士学位论文,2006。
    李徽翡,赵保仁.渤、黄、东海夏季环流的数值模拟.海洋科学,2001,25(1):28-32.
    李家彪主编,东海区域地质,北京:海洋出版社,2008,pp163-167.
    李茂田,程和琴.近50年来长江入海溶解硅通量变化及其影响.中国环境科学,2001,21(3):193-197.
    林瑞芬,闵育顺,卫克勤等.珠江口沉积柱样~(210)Pb法年龄测定结果及其环境地球化学意义.地球化学,1998,27(5):401-411.
    林以安,唐仁友,李炎等.长江口生源元素的生物地球化学特征与絮凝沉降的关系.海洋学报,1995,17(5):65-72.
    林昱,陈孝麟.围隔生态系内富营养引起赤潮的初步研究.海洋与湖沼,1992,23(3):312-317.
    刘红,何青,王元叶等.长江口表层沉积物粒度时空分布特征.沉积学报,2007,25(3):445-455.
    刘素美,张经,陈洪涛.黄海和东海生源要素的化学海洋学.海洋环境科学,2000,19(1):68-74.
    刘文臣,王荣,吉鹏.东海颗粒有机碳的研究.海洋与湖沼,1997,28(1):39-43.
    刘占飞,彭兴跃,徐立等.1997年夏季和1998年冬季两航次颗粒有机碳研究.台湾海峡,2000,19(1):95-101
    刘子琳,陈建芳,张涛等.楚科奇海及其海台区粒度分级叶绿素a与初级生产力.生态学报,2007,27(12):4953-4962.
    柳卫海,詹秉义.东海区渔业资源变动分析.上海水产大学学报,1999,8(1):19-24.
    马金龙,韦刚健,贾国东.碱提取法分析海洋沉积物中生物硅方法中碎屑组份污染的评估及校正.地球化学,2005,34(3):285-290.
    毛汉礼,任允武,万国铭.浅海水团的定性分析:T-S点聚图运用的初步调查.海洋与湖沼,1964,6:1-22.
    宁修仁,C.库蒂.长江口及冲淡水区叶绿素a,细菌,ATP,POC及微生物呼吸作用速率之间的关系.海洋学报,1991,13(6):931-837.
    潘智韬,刘士忠.赤潮对浙江近海养殖业危害的初步调查.东海海洋,1990,8(1):61-66.
    彭兴跃,洪海征,黄明等.厦门港海水光合色素特征.台湾海峡,2002,21(1):78-85.
    浦泳修.夏季长江冲淡水的扩展机制初析.东海海洋,1983,1:43-51.
    齐雨藻等编,中国沿海赤潮,科学出版社,2004.
    沈志良.三峡工程对长江口海区营养盐分布变化影响的研究.海洋与湖沼,1991,22(6):540-546.
    苏纪兰.中国近海的环流动力机制研究.海洋学报,2001,23(3):1-6.
    孙霞,王保栋,王修林等.东海赤潮高发区营养盐时空分布特征及其控制要素.海洋科学,2004,28(8):28-32.
    王爱军,王修林,王江涛等.光照对东海赤潮高发区春季硅藻生长的影响.中国海洋大学学报,2006,36(Sup.):173-178.
    王保栋,战闰,臧家业.长江口及其邻近海域营养盐的分布特征和输送途径.海洋学报,2002,24(1):53-58.
    王凡,许炯心等.长江、黄河口及邻近海域陆海相互作用若干重要问题.海洋出版社,83-139.
    王海黎,洪华生.近岸海域光合色素的生物标志作用研究.Ⅰ.台湾海峡特征光合色素的分布及其对浮游植物类群结构的指示.海洋学报,2000,22(3):94-102.
    王辉.东海和南黄海冬季环流的斜压模式.海洋学报,1995,17(2):21-26.
    王金辉.长江口邻近水域的赤潮生物.海洋环境科学,2003,21(2):37-41.
    王奎.长江口及邻近海区氮的分布、营养支持与生态效应.国家海洋局第二海洋研究所硕士学位论文,2007:53-57.
    王维光,顾俭本.从叶绿体中提取ATP方法的比较.植物生理学通讯,1986,5:259-265.
    王文亮.长江口及邻近海域各形态磷的研究.国家海洋局第二海洋研究所硕士学位论文,2008,p1-8。
    吴莹,张经,张再峰等.长江悬浮颗粒物中稳定碳、氮同位素的季节分布.海洋与湖沼,2002,33(5):546-552.
    吴莹,张经。曹建平等.长江流域有机碳同位素地球化学特征.青岛海洋大学学报:自然科学版,2000,30(2):309-314.
    夏小明,谢钦春,李炎等.东海沿岸海底沉积物中的~(137)Cs、~(210)pb分布及其沉积环境解释. 东海海洋,1999,17(1):20-27.
    夏小明,杨辉,李炎等.长江口—杭州湾毗连海区的现代沉积速率.沉积学报,2004,22(1):130-135.
    徐杰.浙江沿海富营养化与赤潮历史的沉积记录研究.浙江大学硕士学位论文,2004。
    晏维金,章申,王嘉慧.长江流域氮的生物地球化学循环及其对输送无机氮的影响.地理学报,2001,56(5):505-514.
    叶属峰,黄秀清.东海赤潮及其监视监测.海洋环境科学,2003,22(2):10-14.
    张传松,王修林,朱德弟等.营养盐在东海春季大规模赤潮形成过程中的作用.中国海洋大学学报,2007,37(6):1002-1006.
    张瑞,潘少明,汪亚平等.长江河口水下三角洲7Cs地球化学分布特征.第四纪研究,2008,28(4):629-639.
    章伟艳,殷汝广,张富元等.深海柱样粒度分维特征及其古海洋学意义.海洋通报,2005,24(1):41-46.
    赵保仁,任广法,曹德明等.长江口上升流海区的生态环境特征.海洋与湖沼,2001,32(3):327-333.
    中国海湾志编纂委员会.中国海湾志(第十四分册).北京:海洋出版社,1998.
    中华人民共和国国家标准《海洋监测规范:第5部分:沉积物分析》(GB17378.5-1998)
    钟思胜,李锦蓉,罗一丹.大亚湾五角多甲藻赤潮发生的环境因素分析.海洋环境科学,2002,21(1):34-38.
    周名江,颜天,邹景忠.长江口邻近海域赤潮发生区基本特征初探.应用生态学报,2003,14(7):1031-1038.
    周伟华,霍文毅,袁翔城等.东海赤潮高发区春季叶绿素a和初级生产力的分布特征.应用生态学报,2003,14(7):1055-1059.
    朱建荣,沈焕庭.长江冲淡水扩展机制.华东师范大学出版社,1997.
    朱建荣,肖成猷,沈焕庭.夏季长江冲淡水扩展的数值模拟.海洋学报,1998,20(5):13-22.
    《2003年中国海洋灾害公报》.国家海洋局,2004,pp7-9.
    《2007年中国海洋灾害公报》.国家海洋局,2008.(http://www.soa.org.cn/hygb).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700