SIRT1表达对大鼠胰岛β细胞凋亡及非酒精性脂肪肝病形成的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质的乙酰化/去乙酰化调节是机体快速调节酶蛋白活性的重要方式之一,在体内,导致2型糖尿病胰岛β细胞凋亡的多种蛋白质和细胞因子活性受乙酰化/去乙酰化调节。SIRT1是哺乳动物中氨基酸序列最接近酵母基因沉默信息调节因子2(Sir2)的同系物,具有强大的NAD+依赖的组蛋白脱乙酰基酶活性,其对诸多底物如P53、FOXO、Ku70、NF-κB、PGC-1α、TAFI68、P300、PCAF等均具有强大的去乙酰化作用,可能参与细胞凋亡、细胞周期调控、基因转录、物质代谢和其他一些细胞调节通路。本文主要讨论了SIRT1的去乙酰化调节作用与2型糖尿病胰岛β细胞凋亡、高脂喂养诱导的非酒精性脂肪肝病(NAFLD)的关系。
     在高脂喂养和2型糖尿病的大鼠模型中,应用小剂量链脲佐菌素(35mg/kg)处理的大鼠随机血糖明显升高而空腹血糖正常。在此慢性高血糖基础上,分别给予普通饲料喂养及高脂喂养模拟糖毒性和脂毒性。结果,在正常的血糖水平下,高脂血症对β细胞分泌功能并未造成明显损害,但长期慢性高血糖则可独立影响胰岛β细胞功能,并且显著促进脂毒性对胰岛β细胞功能的损害。研究结果表明,脂毒性对胰岛β细胞的损害作用需要慢性高血糖环境,脂毒性依赖于糖毒性。
     在糖脂毒性对胰岛β细胞功能损害中,慢性高血糖显著促进β细胞的凋亡,胰岛β细胞SIRT1的mRNA及蛋白表达显著降低;脂毒性在高血糖背景下进一步增加β细胞的凋亡,SIRT1的mRNA及蛋白表达进一步显著降低,糖脂毒性在胰岛β细胞凋亡中具有协同促进作用。热卡限制明显增加SIRT1在β细胞中mRNA及蛋白表达,降低胰岛β细胞的凋亡率。结果表明,SIRT1表达降低可能是显著促进2型糖尿病胰岛β细胞凋亡的重要机制之一。
     肝脏的组织病理学分析表明,单纯高脂喂养3个月的大鼠发生明显的NAFLD。同时,肝脏SIRT1表达明显降低,线粒体产生显著的退行性改变。进行1个月严格的热卡限制后,肝脏SIRT1表达增加,NAFLD病理改变显著改善,显示SIRT1表达在高脂喂养诱导的NAFLD中发挥重要作用。热卡限制通过增加SIRT1的表达,改善胰岛素抵抗和线粒体功能失常,进而减轻氧化应激达到治疗NAFLD的效果。
     我们的研究结果显示,SIRT1表达改变在2型糖尿病胰岛β细胞凋亡及NAFLD的发生和转归中发挥重要作用,SIRT1表达降低可能是多种器官疾病的普遍性机制。在糖尿病和NAFLD的治疗中,SIRT1可能成为一个新的治疗靶点。
The acetylation/deacetylation regulation of proteins is one of important modes by which organism quickly regulates activity of zymoprotein. In vivo, many kinds of proteins and cell factors which can induce apoptosis of islet beta-cell in type 2 diabetes are controlled by this regulation. The mammalian Sir2 orthologue, SIRT1, as an NAD+ dependent deacetylase, deacetylates various substrates such as the p53 tumor suppressor, the FOXO transcription factors, the transcriptional coactivator PGC-1α, Ku70, NF-κB, TAFI68, P300, PCAF, and so on. It may be involved in apoptosis, cell cycle regulation, genetic transcription, substance metabolism and many other cellular and organismal regulatory pathways. The thesis mainly discusses the relationship between SIRT1 deacetylation and apoptosis of islet beta-cell in type 2 diabetes, nonalcoholic fatty liver disease (NAFLD) induced by high fat feeding.
     In the rat models of high fat feeding and type 2 diabetes, the random blood sugar of rats with low dose streptozotocin (35mg/kg) injection increased significantly, but the fasting blood sugar was normal. On the base of chronic hyperglycemia, rats were fed with normal chow and high fat diet respectively to mimic glucotoxicity and lipotoxicity. As a result, hyperlipemia had no obvious impairment to beta-cell when glycemia was normal. The long-term chronic hyperglycemia, however, had independent impacts on function of islet beta-cell. Furthermore, chronic hyperglycemia dramaticly promoted function impairment of beta-cell by lipotoxicity. The finding shows that chronic hyperglycemia is necessary for lipotoxicity impairment to islet beta-cell, and lipotoxicity is dependent on glucotoxicity.
     The chronic hyperglycemia promoted dramaticly apoptosis of islet beta-cell when glucolipotoxicity impaired function of beta-cell. The mRNA and protein expression of SIRT1 in islet beta-cell reduced significantly. Lipotoxicity further increased apoptosis of beta-cell in the background of chronic hyperglycemia. The mRNA and protein expression of SIRT1 further decreased obviously. The glucotoxicity and lipotoxicity cooperated on apoptosis of islet beta-cell. Calorie restriction apparently raised the mRNA and protein expression of SIRT1 in beta-cell, and then lowered apoptosis ratio of islet beta-cell. These results indicate that depressed SIRT1 expression may be the one of important mechanisms by which prominently facilitates beta-cell apoptosis in type 2 diabetes.
     The histopathology of liver suggests that rats fed with high fat diet for three months developed typical NAFLD. In these high fat feeding rats, the SIRT1 expression of liver reduced significantly and the mitochondria displayed retrogression changes. After strict calorie restriction for one month, the SIRT1 expression of liver increased and the pathology changes of NAFLD was obviously improved, shows that the SIRT1 expression plays an important role in NAFLD induced by high fat feeding. Calorie restriction improves insulin resistance and mitochondrion malfunction by increased SIRT1 expression, and then ameliorates oxidative stress to treat NAFLD.
     Our findings make clear that the changes of SIRT1 expression take an important action in islet beta-cell apoptosis of type 2 diabetes and development and turnover of NAFLD. Reduced SIRT1 expression may be a general mechanism of various diseases. As expected, SIRT1 possibly becomes a new target in treatment of diabetes and NAFLD.
引文
[1] Yang XJ, Gregoire S. Class II Histone Deacetylases: from Sequence to Function, Regulation, and Clinical Implication. Mol Cell Biol, 2005, 25: 2873-2884
    [2] Kurdistani SK, Grunstein M. Histone acetylation and deacetylation in yeast. Nat Rev Mol Cell Biol, 2003, 4: 276–284
    [3] Gregoretti IV, Lee YM, Goodson HV. 2004. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol, 2004, 338: 17-31
    [4] Yang XJ, Seto E. Collaborative spirit of histone deacetylases in regulating chromatin structure and gene expression. Curr Opin Genet Dev, 2003, 13: 143-153
    [5] Lin SJ, Kaeberlein M, Andalis AA, et al. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature, 2002, 418: 344-348
    [6] Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev, 1999, 13: 2570-2580
    [7] Lamming DW, Wood JG, Sinclair DA. Small molecules that regulate lifespan: evidence for xenohormesis. Mol Microbiol, 2004, 53: 1003-1009
    [8] Hisahara S, Chiba S, Matsumoto H, et al. Transcriptional Regulation of Neuronal Genes and Its Effect on Neural Functions: NAD-Dependent Histone Deacetylase SIRT1 (Sir2α). J Pharmacol Sci, 2005, 98: 200-204
    [9] Cheng HL, Mostoslavsky R, Saito S, et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci USA, 2003, 100: 10794-10799
    [10] Pagans S, Pedal A, North BJ, et al. SIRT1 Regulates HIV Transcription via Tat Deacetylation. PLoS Biology, 2005, 3: 210-220
    [11] Blander G, Olejnik J, Krzymanska-Olejnik E, et al. SIRT1 Shows no substrate specificity in vitro. J Biol Chem, 2005, 280: 9780-9785
    [12] Min J, Landry J, Sternglanz R, et al. Crystal structure of a SIR2 homolog-NADcomplex. Cell, 2001, 105: 269-279
    [13] Avalos JL, Celic I., Muhammad S, et al. Structure of a Sir2 enzyme bound to an acetylated p53 peptide. Mol Cell, 2002, 10: 523-535
    [14] Grunstein M. Yeast heterochromatin: regulation of its assembly and inheritance by histones. Cell, 1998, 93: 325-328
    [15] Gottlieb S, Esposito RE. A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. Cell, 1989, 56: 771-776
    [16] Howitz KT, Bitterman KJ, Cohen HY, et al. Small molecule activators of Sirtuins extend Saccharomyces cerevisiae lifespan. Nature, 2003, 425: 191-196
    [17] Buck SW, Gallo CM, Smith JS. Diversity in the Sir2 family of protein deacetylases. J Leukoc Biol, 2004, 75: 939-950
    [18] Falcon AA, Aris JP. Plasmid accumulation reduces life span in Saccharomyces cerevisiae. J Biol Chem, 2003, 278: 41607-41617
    [19] Cohen HY, Miller C, Bitterman KJ, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science, 2004, 305: 390-392
    [20] Lin S, Defossez PA, Guarente L. Requirement of NAD+ and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science, 2000, 289: 2126-2128
    [21] Wood JG, Rogina B, Lavu S, et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature, 2004, 430: 686-689
    [22] Fabrizio P, Gattazzo C, Battistella L, et al. Sir2 blocks extreme life-span extension. Cell, 2005, 123: 655-667
    [23] Kaeberlein M, Kirkland KT, Fields S, et al. Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol, 2004, 2: E296
    [24] Michishita E, Park JY, Burneskis JM, et al. Evolutionarily Conserved and Non-conserved Cellular Localizations and Functions of Human SIRT Proteins. Mol Biol Cell, 2005, 16: 4623-4635
    [25] Olaharski AJ, Rine J, Marshall BL, et al. The flavoring agent dihydrocoumarin reverses epigenetic silencing and inhibits sirtuin deacetylases. PLoS Genet, 2005, 1: e77
    [26] Borra MT, O’Neill FJ, Jackson MD, et al. Conserved enzymatic production and biological effect of O-acetyl-ADP-ribose by silent information regulator 2-like NAD+-dependent deacetylases. J Biol Chem, 2002, 277: 12632-12641
    [27] Moynihan KA, Grimm AA, Plueger MM, et al. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab, 2005, 2: 105-117
    [28] Bordone L, Motta MC, Picard F, et al. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic b cells. PLoS Biol, 2006, 4: e31
    [29] Rodgers JT, Lerin C, Haas W, et al. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature, 2005, 434: 113-118
    [30] Picard F, Kurtev M, Chung N, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature, 2004, 429: 771-776
    [31] Hallows WC, Lee S, Denu JM. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci USA, 2006, 103: 10230-10235
    [32] Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab, 2005, 1: 361-370
    [33] Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest, 2002, 109: 1125-1131
    [34] Nisoli E, Tonello C, Cardile A, et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science, 2005, 310: 314-317
    [35] Nisoli E, Carruba MO. Nitric oxide and mitochondrial biogenesis. J Cell Sci, 2006, 15, 119: 2855-2862
    [36] Motta MC, Divecha N, Lemieux M, et al. Mammalian SIRT1 represses forkhead transcription factors. Cell, 2004, 116: 551-563
    [37] Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science, 2004, 303: 2011-2015
    [38] Vaziri H, Dessain SK, Ng Eaton E, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell, 2001, 107: 149-159
    [39] Luo J, Nikolaev AY, Imai S, et al. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell, 2001, 107: 137-148
    [40] Langley E, Pearson M, Faretta M, et al. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J, 2002, 21: 2383-2396
    [41] Susan H, Michael B, Zehavit G, et al. Apoptosis-the P53 network. J Cell Sci, 2003, 116: 4077-4085
    [42] Accili D, Arden KC. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell, 2004, 117: 421-426
    [43] van der Horst A, Tertoolen LG, de Vries-Smits LM, et al. FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1). J Biol Chem, 2004, 279: 28873-28879
    [44] Kobayashi Y, Furukawa-Hibi Y, Chen C, et al. SIRT1 is critical regulator of FOXO-mediated transcription in response to oxidative stress. Int J Mol Med, 2005, 16: 237-243
    [45] Motta MC, Divecha N, Lemieux M, et al. Mammalian SIRT1 represses forkhead transcription factors. Cell, 2004, 116551-116563
    [46] Yeung F, Hoberg JE, Ramsey CS, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J, 2004, 23: 2369-2380
    [47] Fulco M, Schiltz RL, Iezzi S, et al. Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol Cell, 2003, 12: 51-62
    [48] Fu M, Liu M, Sauve AA, et al. Hormonal Control of Androgen Receptor Function through SIRT1. Mol Cell Biol, 2006, 26: 8122-8135
    [49] Borra MT, Smith BC, Denu JM. Mechanism of Human SIRT1 Activation by Resveratrol. J Biol Chem, 2005, 280: 17187-17195
    [50] Zhang J. Resveratrol inhibits insulin responses in a SirT1-independent pathway. Biochem J, 2006, 397: 519-527
    [51] Hambrock A, de Oliveira Franz CB, Hiller S, et al. Resveratrol binds to the sulfonylurea receptor (SUR) and induces apoptosis in a SUR subtype-specific manner. J Biol Chem, 2007, 282: 3347-3356
    [52] Schmidt MT, Smith BC, Jackson MD, et al. Coenzyme specificity of Sir2 protein deacetylases: implications for physiological regulation. J Biol Chem, 2004, 279:40122-40129
    [53] Bedalov A, Gatbonton T, Irvine WP, et al. Identification of a small molecule inhibitor of Sir2p. Proc Natl Acad Sci USA, 2001, 98: 15113-15118
    [54] Araki T, Sasaki Y, Milbrandt J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science, 2004, 305: 1010-1013
    [1] Mandrup-Poulsen T. Beta-cell apoptosis: stimuli and signaling. Diabetes, 2001, 50(suppl 1): s58-s63
    [2] Mathis D, Vence C, Benoist C. Beta-cell death during progression to diabetes. Nature, 2001, 414: 792-798
    [3] Butler AE, Janson J, Bonner-Weir S, et al. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes, 2003, 52: 102-110
    [4] Donath MY, Halban PA. Decreased beta-cell mass in diabetes: significance, mechanisms and therapeutic implications. Diabetologia, 2004, 47: 581-589
    [5] Fukagawa NK, Li M, Timblin CR, et al. Modulation of cell injury and survival by high glucose and advancing age. Free Radic Biol Med, 2001, 31: 1560-1569
    [6] Abdelli S, Ansite J, Roduit R, et al. Intracellular stress signaling pathways activated during human islet preparation and following acute cytokine exposure. Diabetes, 2004, 53: 2815-2823
    [7] Nakano M, Matsumoto I, Sawada T, et al. Caspase-3 inhibitor prevents apoptosis of human islets immediately after isolation and improves islet graft function. Pancreas, 2004, 29: 104-109
    [8] Donath MY, Storling J, Maedler K, et al. Inflammatory mediators and isletβ-cell failure: a link between type 1 and type 2 diabetes. J Mol Med, 2003, 81: 455-470
    [9] Hengartener MO. The biochemistry of apoptosis. Nature, 2000, 407: 770-776
    [10] Hongxiang H, Francesco D, Umberto DM, et al. Role of caspases in the regulation of apoptotic pancreatic islet beta-cells death. J Cell Physiol, 2004, 200: 177-200
    [11] Atkinson MA, Eisenbarth GS. Type 1 diabetes: new perspectives on disease pathogenesis and treatment. Lancet, 2001, 358: 221-229
    [12] Martin S, Wolf-Eichbaum D, Duinkerken G, et al. Development of type 1 diabetes despite severe hereditary B-lymphocyte deficiency. N Engl J Med, 2001, 345: 1036-1040
    [13] Hussain S, Delovitch TL. Dysregulated B7-1 and B7-2 expression on nonobese diabetic mouse B cells is associated with increased T cell costimulation and the development of insulitis. J Immunol, 2005, 174: 680-687
    [14] Eizirik DL, Mandrup-Poulsen T. A choice of death– the signal-transduction of immune-mediated beta-cell apoptosis. Diabetologia, 2001, 44: 2115-2133
    [15] Rhodes CJ. Type 2 diabetes---a matter ofβ-cell life and death? Science, 2005, 307: 380-384
    [16] Loweth AC, Williams GT, James RF, et al. Human islets of Langerhans express Fas ligand and undergo apoptosis in response to interleukin 1 beta and Fas ligation. Diabetes, 1998, 47: 727-732
    [17] Maedler K, Spinas GA, Lehmann R, et al. Glucose induces beta-cell apoptosis via upregulation of the Fas receptor in human islets. Diabetes, 2001, 50: 1683-1690
    [18] NakayamaM, Nagata M, Yasuda H, et al. Fas/Fas ligand interactions play an essential role in the initiation of murine autoimmune diabetes. Diabetes, 2002, 51: 1391-1397
    [19] Petrovsky N, Silva D, Socha L, et al. The role of Fas ligand in beta-cells destruction in autoimmune diabetes of NOD mice. Ann NY Acad Sci, 2002, 958: 204-208
    [20] Allison J, Strasser A. Mechanisms of beta cell death in diabetes: a minor role for CD95. Proc Natl Acad Sci USA, 1998, 95: 13818-13822
    [21] Kim S, Kim KA, Yagita H, et al. Apoptosis of pancreatic beta-cells detected in accelerated diabetes of NOD mice: No role of Fas-Fas ligand interaction in autoimmune diabetes. Eur J Immunol, 1999, 29: 455-465
    [22] Thomas HE, Darwiche R, Corbett JA, et al. Evidence that beta cell death in the nonobese diabetic mouse is Fas independent. J Immunol, 1999, 163: 1562-1569
    [23] Hanke J. Apoptosis and occurrence of Bcl-2, Bak, Bax, Fas and FasL in the developing and adult rat endocrine pancreas. Anat Embryol (Berlin), 2000, 202: 303-312
    [24] Mellado-Gil JM, Aguilar-Diosdado. High glucose potentiates cytokine- and streptozotocin-induced apoptosis of rat islet cells: effect on apoptosis-related genes. JEndocrinol, 2004, 183: 155-162
    [25] Maedler K, Fontana A, Ris F, et al. FLIP switches Fas-mediated glucose signaling in human pancreatic beta cells from apoptosis to cell replication. Proc Natl Acad Sci USA, 2002, 99: 8236-8241
    [26] Bai L, Maedler K, Donath M, et al. Expression of Fas but not Fas ligand on fetal pig beta cells. Xenotransplantation, 2004, 11: 426-435
    [27] Ishizuka N, Yagui K, Tokuyama Y, et al. Tumor necrosis factor alpha signaling pathway and apoptosis in pancreatic beta-cells. Metabolism, 1999, 48: 1485-1492
    [28] Ou D, Metzger DL, Wang X, et al. TNF-related apoptosis-inducing ligand death pathway-mediated human beta-cell destruction. Diabetologia, 2002, 45: 1678-1688
    [29] Thomas F, Wu J, Contreras JL, et al. A tripartite anoikis-like mechanism causes early isolated islet apoptosis. Surgery, 2001, 130: 333-338
    [30] Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science, 2005, 307: 384-387
    [31] Lupi R, Dotta F, Marselli L, et al. Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on human pancreatic islets: Evidence that beta-cell death is caspase mediated, partially dependent on ceramide pathway, and Bcl-2 regulated. Diabetes, 2002, 51: 1437-1442
    [32] Klein D, Ribeiro MM, Mendoza V, et al. Delivery of Bcl-XL or its BH4 domain by protein transduction inhibits apoptosis in human islets. Biochem Biophys Res Commun, 2004, 323: 473-478
    [33] Shimabukuro M, Wang MY, Zhou YT, et al. Protection against lipoapoptosis ofβcells through leptin-dependent maintenance of Bcl-2 expression. Proc Natl Acad Sci USA, 1998, 95: 9558-9561
    [34] Maedler K, Oberholzer J, Bucher P, et al. Monounsaturated fatty acid prevent the deleterious effects of palmitate and high glucose on human pancreaticβ-cell turnover and function. Diabetes, 2003, 52: 726-733
    [35] Federici M, Hribal M, Perego L, et al. High glucose causes apoptosis in cultured human pancreatic islets of Langerhans: A potential role for regulation of specific Bcl family genes toward an apoptotic cell death program. Diabetes, 2001, 50: 1290-1301
    [36] Cohen HY, Miller C, Bitterman KJ, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science, 2004, 305: 390-392
    [37] Yoshida T, Tomioka I, Nagahara T, et al. Bax-inhibiting peptide derived from mouse and rat Ku70. Biochem Biophys Res Commun, 2004, 321: 961-966
    [38] Cohen HY, Lavu S, Bitterman KJ, et al. Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol Cell, 2004, 13: 627-638
    [39] Susan H, Michael B, Zehavit G, et al. Apoptosis-the P53 network. J Cell Sci, 2003, 116: 4077-4085
    [40] Zhang S, Liu J, Saafi EL, et al. Induction of apoptosis by human amylin in RINm5F islet beta-cells is associated with enhanced expression of p53 and p21WAF1/CIP1. FEBS Lett, 1999, 455: 315-320
    [41] Wrede CE, Dickson LM, Lingohr MK, et al. Protein kinase B/Akt prevents fatty acid-induced apoptosis in pancreatic beta-cells (INS-1). J Biol Chem, 2002, 277: 49676-49684
    [42] Cheng HL, Mostoslavsky R, Saito S, et al. Developmental defects and P53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci USA, 2003, 100: 10794-10799
    [43] Kagi D, Odermatt B, Seiler P, et al. Reduced incidence and delayed onset of diabetes in perforin-deficient nonobese diabetic mice. J Exp Med, 1997, 186: 989-997
    [44] Herrera PL, Harlan DM, Vassalli P. A mouse CD8 T cell-mediated acute autoimmune diabetes independent of the perforin and Fas cytotoxic pathways: possible role of membrane TNF. Proc Natl Acad Sci USA, 2000, 97: 279-284
    [45] Trincavelli ML, Marselli L, Falleni A, et al. Upregulation of mitochondrial peripheral benzodiazepine receptor expression by cytokine-induced damage of human pancreatic islets. J Cell Biochem, 2002, 84: 636-644
    [46] Eizirik DL, Mandrup-Poulsen T. A choice of death-The signal transduction of immune-mediated beta-cell apoptosis. Diabetologia, 2001, 44: 2115-2133
    [47] Ammendrup A, Maillard A, Nielsen K, et al. The c-Jun amino-terminal kinase pathway is preferentially activated by interleukin-1 and controls apoptosis in differentiating pancreatic beta-cells. Diabetes, 2000, 49: 1468-1476
    [48] Bonny C, Oberson A, Steinmann M, et al. IB1 reduces cytokine-induced apoptosis of insulin-secreting cells. J Biol Chem, 2000, 275: 16466-16472
    [49] Bonny C, Oberson A, Negri S, et al. Cell-permeable peptide inhibitors of JNK: novel blockers of beta-cell death. Diabetes, 2001, 50: 77-82
    [50] Andersen NA, Larsen CM, Mandrup-Poulsen T. TNFalpha and IFNgamma potentiate IL-1beta induced mitogen activated protein kinase activity in rat pancreatic islets of Langerhans. Diabetologia, 2000, 43: 1389-1396
    [51] Heimberg H, Heremans Y, Jobin C, et al. Inhibition of cytokine induced NF-kappaB activation by adenovirus-mediated expression of a NF-kappaB super-repressor prevents beta-cell apoptosis. Diabetes, 2001, 50: 2219-2224
    [52] Giannoukakis N, Rudert WA, Trucco M, et al. Protection of human islets from the effects of interleukin- 1beta by adenoviral gene transfer of an Ikappa B repressor. J Biol Chem, 2000, 275: 36509-36513
    [53] Liu D, Pavlovic D, Chen MC, et al. Cytokines induce apoptosis in beta-cells isolated from mice lacking the inducible isoform of nitric oxide synthase (iNOS-/-). Diabetes, 2000, 49: 1116-1122
    [54] Zumsteg U, Frigerio S, Hollander GA. Nitric oxide production and Fas surface expression mediate two independent pathways of cytokine-induced murine beta-cell damage. Diabetes, 2000, 49: 39-47
    [55] Todaro M, Di Gaudio F, Lavitrano M, et al. Isletβ-cell apoptosis triggered in Vivo by interleukin-1 is not related to the inducible nitric oxide synthase pathway: evidence for mitochondrial function impairment and lipoperoxidation. Endocrinology, 2003, 144: 4264-4271
    [56] Herold KC, Hagopian W, Auger JA, et al. Anti-CD3 monoclonal antibody in newonset type 1 diabetes mellitus. N Engl J Med, 2002, 346: 1692-1698
    [57] Contreras JL, Smyth CA, Bilbao G, et al. Simvastatin induces activation of the serine-threonine protein kinase AKT and increases survival of isolated human pancreatic islets. Transplantation,2002, 74: 1063-1069
    [58] Drucker DJ. Glucagon-Like Peptide-1 and the isletβ-cell: augmentation of cell proliferation and inhibition of apoptosis. Endocrinology, 2003, 144: 5145-5148
    [59] Wang Q, Li L, Xu E, et al. Glucagon-like peptide-1 regulates proliferation and apoptosis via activation of protein kinase B in pancreatic INS-1 beta cells. Diabetologia, 2004, 47: 478-487
    [1] Hiramatsu S, Grill V. Influence of a high-fat diet during chronic hyperglycemia on b-cell function in pancreatic islet transplants to streptozotocin-diabetic rats. Eur J Endocrin, 2001, 144: 521-527
    [2] Dubois M, Kerr-Conte J, Gmyr V, et al. Non-esterified fatty acids are deleterious for human pancreatic islet function at physiological glucose concentration. Diabetologia, 2004, 47: 463-469
    [3] Lerco MM, Macedo CS, Silva RJ, et al. The number of podocyte and slit diaphragm is decreased in experimental diabetic nephropathy. Acta Cir Bras, 2006, 21: 87-91
    [4]李玲,厉平,王贵新等.糖耐量受损者胰岛素敏感性及胰岛β细胞功能的研究.中华糖尿病杂志,2005,13:87-89
    [5] Poitout V, Hagman D, Stein R, et al. Regulation of the Insulin Gene by Glucose and Fatty Acids. J Nutr, 2006, 136: 873-876
    [6] Poitout V, Robertson RP. Minireview: SecondaryβCell Failure in Type 2 Diabetes—A Convergence of Glucotoxicity and Lipotoxicity. Endocrinology, 2002, 143: 339-342
    [7] Robertson RP, Harmon J, Tran PO, et al. Beta-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes. Diabetes, 2004, 53(Suppl 1): S119-124
    [8] Konrad RJ, Mikolaenko I, Tolar JF, et al. The potential mechanism of the diabetogenic action of streptozotocin: inhibition of pancreatic beta-cell O-GlcNAc-selective N-acetyl-beta-D-glucosaminidase. Biochem J, 2001, 356: 31-41
    [9] Striffler JS, Nadler JL. Lisofylline, a novel anti-inflammatory agent, enhances glucose-stimulated insulin secretion in vivo and in vitro: studies in prediabetic and normal rats. Metabolism, 2004, 53: 290-296
    [10] Briaud I, Kelpe CL, Johnson LM, et al. Differential effects of hyperlipidemia on insulin secretion in islets of langerhans from hyperglycemic versus normoglycemic rats. Diabetes, 2002, 51: 662-668
    [11] Biden TJ, Robinson D, Cordery D, et al. Chronic effects of fatty acids on pancreatic beta-cell function: new insights from functional genomics. Diabetes, 2004, 53(Suppl 1): S159-165
    [12] Nolan CJ, Madiraju MS, Delghingaro-Augusto V, et al. Fatty Acid Signaling in the {beta}-Cell and Insulin Secretion. Diabetes, 2006, 55(Suppl 2): S16-23
    [13] Prentki M, Joly E, El-Assaad W, et al. Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity: role in beta-cell adaptation and failure in the etiology of diabetes. Diabetes, 2002, 51(Suppl 3): S405-413
    [14] Herrero L, Rubi B, Sebastian D, et al. Alteration of the malonyl-CoA/carnitine palmitoyltransferase I interaction in the beta-cell impairs glucose-induced insulin secretion. Diabetes, 2005, 54: 462-471
    [1] Donath MY, Halban PA. Decreasedβ-cell mass in diabetes: significance, mechanisms and therapeutic implications. Diabetologia, 2004, 47: 581-589
    [2] Rhodes CJ. Type 2 diabetes– a matter ofβ-cell life and death? Science, 2005, 307: 380-384
    [3] Leibiger IB, Berggren PO. Sirt1: a metabolic master switch that modulates lifespan. Nat Med, 2006, 12: 34-36
    [4] Guarente L, Picard F. Calorie Restriction—the SIR2 Connection. Cell, 2005, 120: 473-482
    [5] Moynihan KA, Grimm AA, Plueger MM, et al. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab, 2005, 2: 105-117
    [6] Bordone L, Motta MC, Picard F, et al. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic b cells. PLoS Biol, 2006, 4: e31
    [7] Lerco MM, Macedo CS, Silva RJ, et al. The number of podocyte and slit diaphragm is decreased in experimental diabetic nephropathy. Acta Cir Bras, 2006, 21:87-91
    [8] Ugochukwu NH, Bagayoko ND, Antwi ME. The effects of dietary caloric restriction on antioxidant status and lipid peroxidation in mild and severe streptozotocin-induceddiabetic rats. Clin Chim Acta, 2004, 348: 121-129
    [9] Cui YF, Ma M, Wang GY, et al. Prevention of core cell damage in isolated islets of Langerhans by low temperature preconditioning. World J Gastroenterol, 2005, 11: 545-550
    [10] Wang C, Wang MW, Tashiro S, et al. Roles of SIRT1 and phosphoinositide 3-OH kinase/protein kinase C pathways in evodiamine-induced human melanoma A375-S2 cell death. J Pharmacol Sci, 2005, 97: 494-500
    [11] Wang H, Kouri G, Wollheim CB. ER stress and SREBP-1 activation are implicated in beta-cell glucolipotoxicity. J Cell Sci 2005, 118: 3905-3915
    [12] Winzell MS, Holm C, Ahren B. Downregulation of islet hormone-sensitive lipase during long-term high-fat feeding. Biochem Biophys Res Commun, 2003, 304: 273-278
    [13] Striffler JS, Nadler JL. Lisofylline, a novel anti-inflammatory agent, enhances glucose-stimulated insulin secretion in vivo and in vitro: studies in prediabetic and normal rats. Metabolism, 2004, 53: 290-296
    [14] Wetter TJ, Gazdag AC, Dean DJ, Cartee GD. Effect of calorie restriction on in vivo glucose metabolism by individual tissues in rats. Am J Physiol, 1999, 276: E728-E738
    [15] McCurdy CE, Davidson RT, Cartee GD. Brief calorie restriction increases Akt2 phosphorylation in insulin-stimulated rat skeletal muscle. Am J Physiol Endocrinol Metab, 2003, 285: E693-E700
    [16] Roth GS, Lane MA, Ingram DK. Caloric restriction mimetics: the next phase. Ann N Y Acad Sci, 2005, 1057: 365-371
    [17] Koubova J, Guarente L. How does calorie restriction work? Genes Dev, 2003, 17: 313-321
    [18] Bitterman KJ, Anderson RM, Cohen HY, et al. Inhibition of Silencing and Accelerated Aging by Nicotinamide, a Putative Negative Regulator of Yeast Sir2 and Human SIRT1. J Biol Chem, 2002, 277: 45099-45107
    [19] Lamming DW, Wood JG, Sinclair DA. Small molecules that regulate lifespan: evidence for xenohormesis. Mol Microbiol, 2004, 53: 1003-1009
    [20] Pagans S, Pedal A, North BJ, et al. SIRT1 Regulates HIV Transcription via Tat Deacetylation. PLoS Biol, 2005, 3: 210-220
    [21] Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science, 2004, 303: 2011-2015
    [22] Luo J, Nikolaev AY, Imai S, et al. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell, 2001, 107: 137-148
    [23] Cohen HY, Miller C, Bitterman KJ, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science, 2004, 305: 390-392
    [24]邓向群,陈璐璐.胰岛β细胞凋亡的分子机制.国际内分泌代谢杂志, 2006, 26: 163-166
    [25] Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science, 2005, 307: 384-387
    [1] Angulo P. Nonalcoholic fatty liver disease. N Engl J Med, 2002, 346: 1221-1231
    [2] Guarente L, Picard F. Calorie Restriction—the SIR2 Connection. Cell, 2005, 120: 473-482
    [3] Lieber CS, Leo MA, Mak KM, et al. Model of nonalcoholic steatohepatitis. Am J Clin Nutr, 2004, 79: 502-509
    [4] Fan JG, Zhong L, Xu ZJ, et al. Effects of low-calorie diet on steatohepatitis in rats with obesity and hyperlipidemia. World J Gastroenterol, 2003, 9: 2045-2049
    [5] Ugochukwu NH, Bagayoko ND, Antwi ME. The effects of dietary caloric restriction on antioxidant status and lipid peroxidation in mild and severe streptozotocin-induced diabetic rats. Clin Chim Acta, 2004, 348: 121-129
    [6] Carmiel-Haggai M, Cederbaum AI, Nieto N. A high-fat diet leads to the progression of non-alcoholic fatty liver disease in obese rats. FASEB J, 2005, 19: 136-138.
    [7] Chitturi S, Abeygunasekera S, Farrell GC, et al. NASH and insulin resistance: insulin hypersecretion and specific association with the insulin resistance syndrome. Hepatology, 2002, 35: 373-379
    [8] Adams LA, Angulo P. Treatment of non-alcoholic fatty liver disease. Postgrad Med J, 2006, 82: 315-322
    [9] Zou Y, Li J, Lu C, et al. High-fat emulsion-induced rat model of nonalcoholic steatohepatitis. Life Sci, 2006, 79: 1100-1107
    [10] Samuel VT, Liu ZX, Qu X, et al. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem, 2004, 279: 32345-32353
    [11] Eguchi Y, Eguchi T, Mizuta T, et al. Visceral fat accumulation and insulin resistance are important factors in nonalcoholic fatty liver disease. J Gastroenterol, 2006, 41: 462-469
    [12] Barzilai N, Banerjee S, Hawkins M, et al. Caloric Restriction Reverses Hepatic Insulin Resistance in Aging Rats by Decreasing Visceral Fat. J Clin Invest, 1998, 101: 1353-1361
    [13] Oliveira CP, Coelho AM, Barbeiro HV, et al. Liver mitochondrial dysfunction and oxidative stress in the pathogenesis of experimental nonalcoholic fatty liver disease. Braz J Med Biol Res, 2006, 39: 189-194.
    [14] Lopez-Lluch G, Hunt N, Jones B, et al. Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc Natl Acad Sci, 2006, 103: 1768-1773
    [15] Hood DA, Irrcher I, Ljubicic V,et al. Coordination of metabolic plasticity in skeletal muscle. J Exp Biol, 2006, 209: 2265-2275
    [16] Finck BN, Kelly DP. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest, 2006, 116: 615-622
    [17] Lamming DW, Wood JG, Sinclair DA. Small molecules that regulate lifespan: evidence for xenohormesis. Mol Microbiol, 2004, 53: 1003-1009
    [18] Heilbronn LK, Civitarese AE, Bogacka I, et al. Glucose tolerance and skeletal muscle gene expression in response to alternate day fasting. Obes Res, 2005, 13:574-581
    [19] Motta MC, Divecha N, Lemieux M, et al. Mammalian SIRT1 represses forkhead transcription factors. Cell, 2004, 116: 551-563
    [20] Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science, 2004, 303: 2011-2015
    [21] Vaziri H, Dessain SK, Ng Eaton E, et al. hSIR2(SIRT1) functions as anNAD-dependent p53 deacetylase. Cell, 2001, 107: 149-159
    [22] Rodgers JT, Lerin C, Haas W, et al. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature, 2005, 434: 113-118

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700