何首乌二苯乙烯苷对缺血性脑损伤和学习记忆的影响及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分二苯乙烯苷对缺血性脑损伤的保护作用及其机制
     目的:缺血性脑损伤因其高致残率和致死率被认为是威胁人类生命健康最主要的原因之一。研究表明,缺血再灌注过程中活性氧/氮族(reactive oxygen/nitrogen species,ROS/RNS)的过度产生导致的氧化应激是介导神经细胞损伤的主要机制之一。氧化应激可以通过破环细胞膜正常功能,引起胞内钙离子超载,激活胞内氧化应激相关的信号通路如c-Jun氨基末端激酶(c-Jun N-teminal Kinase,JNK),引起线粒体功能紊乱等,导致凋亡相关因子的释放和表达,从而导致细胞的凋亡坏死。缺血再灌注损伤过程中产生的ROS还能活化重要的核转录因子-κB (nuclear transcription factor-κB,NF-κB),增强诱导型一氧化氮合酶(inductible nitric oxide synthase,iNOS)的表达,从而使氮自由基如一氧化氮(nitrogen oxide,NO)、亚硝酸盐的产生进一步增多。二苯乙烯苷(tetrahydroxystilbene glucoside,TSG),是从中药何首乌中提取的一种具有多酚结构的活性成分,已证实其具有清除自由基、抗氧化、抗炎的作用。但TSG是否对脑缺血损伤有保护作用,目前尚未见报道。本研究旨在从细胞和整体水平考察TSG对脑缺血再灌注损伤的保护作用及其相关机制。
     方法:建立原代培养的皮层神经元氧-糖剥夺(oxygen-glucose deprivation,OGD)模型,采用3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴盐(3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide,MTT)比色法和乳酸脱氢酶(lactate dehydrogenase,LDH)测定法检测细胞活性;Hoechst染色检测细胞凋亡;细胞免疫荧光和流式细胞术检测胞内ROS水平、线粒体膜电位(mitochondrial membrane potential,MMP)变化和核转录因子NF-κB的激活程度;钙离子成像技术检测胞内钙离子水平;免疫印迹(western blotting)和实时定量PCR(real-time PCR)技术检测凋亡相关蛋白(Bcl-2,Bax)、应激活化蛋白JNK、抗衰老蛋白沉默信息调节因子类型1(silent informationregulator type 1,SIRT1)及iNOS表达水平。采用大脑中动脉栓塞法(middle cerebralartery occlusion,MCAO)建立小鼠局灶性脑缺血损伤再灌注模型,2,3,5-三苯基氯化四氮唑(2,3,5-triphenyltetrazolium chloride,TTC)染色法测定脑梗死面积和体积,Tunel法检测皮层组织神经元凋亡程度。
     结果:细胞分别经过1 h,2 h,4 h OGD再灌注24 h后,与对照组相比,MTT法显示细胞存活率呈时间依赖性降低。因此我们选择OGD 2 h再灌注24 h(oxygen-glucose deprivation following reperfusion,OGD-R)作为后续的离体细胞缺血再灌注损伤模型。与对照组相比,细胞经OGD-R处理后,细胞存活率降低,LDH释放增加;Hoechst染色表明凋亡细胞增多,细胞核呈固缩突亮或碎块状致密浓染。经过不同浓度的TSG(5μM,10μM,25μM,50μM,100μM)预处理细胞后能减轻OGD-R所致的细胞损伤,减少胞内ROS积聚,逆转MMP的驱散;减轻H_2O_2所致的胞内钙超载。Western blotting和Real-time PCR结果显示,TSG能减少OGD-R处理后促凋亡蛋白Bax及应激活化蛋白p-JNK的水平,增加抗凋亡蛋白Bcl-2的表达。TSG孵育细胞可增强SIRT1蛋白表达,能减弱OGD-R所致的NF-κB活化,减少OGD-R所致的iNOS基因的表达。SIRT1抑制剂烟酰胺(nicotinamide)削弱了TSG对NF-κB激活和iNOS表达增加的抑制作用。TTC染色法显示,与假手术组比较,模型组脑梗死面积和体积增加,TSG组脑梗死面积和体积均减少。Tunnel法显示,TSG组皮层组织神经元凋亡程度减轻。
     结论:二苯乙烯苷可通过清除自由基,减轻钙超载,下调促凋亡蛋白Bax表达和应激活化蛋白JNK的磷酸化水平,增加抗凋亡蛋白Bcl-2表达,激活抗衰老蛋白SIRT1和抑制NF-κB激活等途径发挥脑缺血再灌注损伤的保护作用。
     第二部分二苯乙烯苷对小鼠海马突触可塑性及学习记忆的影响及其机制
     目的:随着人口老龄化问题逐渐加重,衰老相关的神经退行性疾病如阿尔茨海默病(Alzheimer's disease,AD)、血管性痴呆(vascular dementia,VD)及帕金森病(Parkinson's disease,PD)等伴随的认知功能损伤和学习记忆能力的下降,成为影响人民生活质量的重大问题。何首乌是我国一种沿用已久的用于抗衰老治疗的名贵中药。二苯乙烯苷(tetrahydroxystilbene glucosid,TSG)是从何首乌中提取的一种具有多酚结构的活性成分。最近的研究表明,TSG对衰老大鼠和APP转基因的AD模型鼠海马区突触超微结构和学习记忆能力均有所改善。但TSG是否对正常动物的突触可塑性及学习记忆能力有调节作用,其具体的分子机理是什么,目前尚未见报道。本研究旨在从脑片水平观察TSG对正常小鼠海马CA1区长时程增强(long-term potentiation,LTP)的调节及对学习记忆能力的影响。
     方法:急性分离小鼠海马脑片,采用细胞外场电位记录和western blotting的方法研究TSG对海马CA1区LTP的影响及其机制。采用行为学方法观察灌胃给予TSG对小鼠学习记忆能力的影响。
     结果:本实验所用浓度的TSG(0.1μM,1μM,5μM,10μM)对海马CA1区N-甲基-D-天冬氨酸(N-methyl-D-aspartic acid,NMDA)受体依赖的LTP的增强作用呈钟形分布,且在1μM时作用最明显,但对基础突触传递和反映突触前反应的双波易化(paired pulse facilitation,PPF)和输入-输出反应(input-output curve,I/Ocurve)均无影响。TSG增强LTP的作用需要钙/钙调蛋白激酶Ⅱ(calcium/calmodulin-dependent protein kinaseⅡ,CaMKⅡ)和细胞外信号调节激酶(extracellular signal-regulated kinases,ERKs)的激活。行为学结果显示,TSG处理的小鼠在Morris水迷宫和跳台实验的表现优于对照组。透射电镜的结果显示,TSG增加小鼠海马CA1区辐射层的突触后密度(postsynaptic density,PSD)面积。
     结论:TSG增强正常小鼠海马CA1区NMDA受体依赖的LTP和学习记忆能力,这些增强作用可能与其激活学习记忆相关的关键分子CaMKⅡ和ERK1/2以及改变突触的超微结构有关。
PartⅠProtection by tetrahydroxystilbene glucoside against cerebralischemia injury
     Backgroud: Ischemic brain injury is considered as one of the leading causes of death andadult disability for its high mortality rate in many countries. Reactive oxygen/nitrogenspecies (ROS/RNS) have been considered important mediators of the brain damage afterischemia/reperfusion injury. Oxidative stress generation during ischemia/reperfusioncontributes to a disturbed membrane function, results in a critical intracellular calciumaccumulation and leads to cell apoptosis and death by triggering various critical cellularsignal transduction pathways such as c-Jun N-terminal kinase (JNK), an importantsubgroup of the mitogen-activated protein kinase (MAPK) superfamily which is activatedby oxidative stress. Oxidative stress generation during ischemia/reperfusion also leads toactivation of nuclear transcription factor-κB (NF-κB), which upregulats expression ofinductible nitric oxide synthase (iNOS) and results in the increase of nitric oxide (NO)production and subsequently the increase of peroxynitrite formation. Tetrahydroxystilbeneglucoside (TSG), an active component of the rhizome extract from Polygonum Multiflorum,exhibits anti-oxidative and scavenges free radical effects. However, whether TSG hasneuroprotecive effects on cerebral ischemia injury remains unkown. Therefore, in this study,we investigated the neuroprotective effects of TSG on ischemia/reperfusion brain injury aswell as the underlying mechanisms.
     Methods: An in vitro ischemic model of oxygen-glucose deprivation followed byreperfusion (OGD-R) was established. Colorimetric assay methods of 3-(4, 5-Dimeth-ylthiazol-2-yl)-2, 5-diphenyltetrazoliumbromide (MTT) and lactate dehydrogenase (LDH)and staining method of Hoechst were used to measure the cell viability and apoptosis. Cytoimmunity fluorescence and flow cytometry were employed to evaluate the levels ofROS and mitochondrial membrane potential (MMP) and activation of NF-κB. Intracellularcalcium concentration ([Ca~(2+)]_i) was monitored using the fluorescent Ca~(2+) indicatorfura-2/AM by calcium imaging technique. The expressions of apoptosis-related proteins(Bcl-2 and Bax), stress-activated protein of JNK and anti-aging protein of SIRT1 weremeasured by western blotting and real-time PCR analysis. An in vivo ischemic model ofmiddle cerebral artery occlusion (MCAO) was established. Staining method of2,3,5-triphenyltetrazolium chloride (TTC) was used to assay the area and volume ofcerebral infarct. Tunel assay was used to measure the extent of apoptosis in cerebral cortex.
     Results: The viability of the cells exposed to OGD for 1 h, 2 h and 4 h followed by 24-hreoxygenation decreased time-dependently compared with the control, respectively. Thus,the protocol of 2-h OGD followed by 24-h reoxygenation was selected for furtherexperiments in the present study. When compared with the control, OGD-R inducedneuronal injury determined by MTT, LDH and Hoechst staining, intracellular ROSgeneration and mitochondrial membrane potential dissipation, which were reversed by TSG.The elevation of H_2O_2-induced [Ca~(2+)]_i was also attenuated by TSG. The inhibition of JNKand Bcl-2 family related apoptotic signaling pathway was involved in the neuroprotectionof TSG. Meanwhile, TSG inhibited iNOS mRNA expression induced by OGD-R, whichmay be mediated by the activation of SIRT1 and inhibition of NF-κB activation. In vivostudies further demonstrated that TSG significantly reduced the brain infarct volume andthe number of positive cells for Tunel staining in the cerebral cortex when compared toMCAO group.
     Conclusion: Our study indicated that TSG protected against cerebral ischemia/reperfusioninjury through multifunctional cytoprotective pathways including decrease of ROSgeneration, attenuation of intracellular calcium overload, downregulation of apoptoticprotein Bax expression and stress-activated protein phospho-JNK level, activation ofanti-aging protein SIRT1 and inhibition of NF-κB activation.
     PartⅡTetrahydroxystilbene glucoside promotes hippocampal synapticplasticity and learning-memory of mice
     Backgroud: Impaired cognition and memory associated with aging-related neurode-generativediseases such as Alzheimer's disease (AD), vascular dementia (VD) andParkinson's disease (PD) have become a large public issue with the increasing elderlypopulation. Tetrahydroxystilbene Glucoside (TSG), an active component of the rhizomeextract with polyphenolic structure from Polygonum Multiflorum, which has been widelyused in the Orient as a tonic, anti-oxidative and anti-aging agent since ancient times. Recentstudies have demonstrated that TSG has the ability of changing the ultrastructure ofhippocampal synapses and enhancing learning-memory in both APP transgenic mice andaged rats. However, whether TSG can affect physiological synaptic transmission orimprove learning and memory as well as the related mechanisms in normal animal remainsunknown. In the present study, we investigated the roles of TSG on long-term potentiation(LTP) in the CA1 region of the hippocampal slices and cognitive behavioral performancesin intact adult mice as well as the underlying mechanisms.
     Methods: Acute isolation of hippocampal slice in mouse, field potentials recordings andwestern blotting analysis were used to evaluate the effects and mechanisms of TSG on LTPin CA1 region of hippocampal slices. Behavioral tests of Morris water maze and step-downfear conditioning were applied to investigate the effects of TSG on learning and memory.
     Results: TSG enhanced the N-Methyl-D-Aspartate (NMDA) receptor dependent CA1-LTPin a dose-dependent manner, with a maximal effective dose at 1μM. The concentrations ofTSG used in this study did not affect the basic synaptic transmission, PPF and input-outputcurves. The enhancement of TSG-induced LTP required calcium/calmodulin-dependent protein kinaseⅡ(CaMKⅡ) and extracellular signal-regulated kinases (ERKs) activation.Behaviorally, TSG-treated mice performed significantly better than that in the controlgroup in Morris water maze and in step-down fear conditioning. Furthermore, increasedpostsynaptic density was found in TSG-treated group by electron microscopy.
     Conlusion: Our data demonstrate that TSG promotes LTP in CA1 region of hippocampalslices and enhances memory in mice, which positively correlates with the increase of theactivities of plasticity-related proteins such as CaMKⅡand ERK1/2 and change theultrastructure of hippocampal synapses.
引文
1. Luo RZ, et al. General review on Polygonum multiflorum. Chinese Traditional and Herbal Drugs. 2005, 36(7): 1097-1100.
    2. Wang W, Wang QD. Progress of study on brain protective effect and mechanism of Polygonum multiflorum. Chinese Journal of Integrated Traditional and Western Medicine. 2005, 25(10): 955-59.
    3. Li M, Du XP, Ye H. Protective effect of Polygonum multiflorum thunb on the cerebral cholinergic neurofibers in rats. Hunan Yi Ke Da Xue Xue Bao. 2003, 28(4): 361-4.
    4. Ryu G, et al. The radical scavenging effects of stilbene glucosides from Polygonum multiflorum. Arch Pharm Res. 2002, 25(5): 636-9.
    5. Wang X, et al. Protective effects of 2,3,5,4'-tetrahydroxystilbene-2-O-beta-d-glucoside, an active component of Polygonum multiflorum Thunb, on experimental colitis in mice. Eur J Pharmacol. 2008, 578(2-3): 339-48.
    6. Liu QL, et al. Effect of 2,3,5,4'-tetrahydroxystilbene-2-O-beta-D-glucoside on lipoprotein oxidation and proliferation of coronary arterial smooth cells. J Asian Nat Prod Res. 2007, 9(6-8): 689-97.
    7. Lv LS. Recent Advances on Stilbene Glucoside from Polygonum multiflorum Thunb. Food Science. 2006, 27(10): 608-12.
    8. Li YL, et al. Protective effect of tetrahydroxystilbene glucoside on hippocampal neurons damage induced by glutamate in rats. Chinese Journal of Rehabilitation Theory & Practice. 2004,10(12): 751-53
    9. Zhang L, et al. Mechanism of the protection of stilbene glycoside which is the effective component of tuber fleeceflower root on nerve cells. Chinese Journal of Clinical Rehabilitation. 2004, 8(1): 118-21.
    10. Zhang L, et al. Learning-memory deficit with aging in APP transgenic mice of Alzheimer's disease and intervention by using tetrahydroxystilbene glucoside. Behav Brain Res. 2006,173(2): 246-54.
    11. Jin C, Ye CF, Li L. Effects of stilbene-glycoside on learning and memory function and free radicals metabolism in dementia model mice. Basic & Clinical Medicine. 2003,9(11): 643-45.
    12. Jin C, et al. Effects of Stilbene-glycoside on Learning and Memory Ability and Neurotrophic Factor of Brain Aging Model Mice Induced by D-galactose. China Pharmacy. 2005,16(1): 13-16.
    13. Ye CF, et al. Effects of 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside, on learning and memory function and excitability in Alzheimer's disease rat induced by model cholinergic damage. Chinese Journal of Rehabilitation Theory & Practice. 2003,9(10): 593-95
    14. Wang R, et al. Changes in hippocampal synapses and learning-memory abilities in age-increasing rats and effects of tetrahydroxystilbene glucoside in aged rats. Neuroscience. 2007,149(4): 739-46.
    15. Scalbert A, Williamson G. Dietary intake and bioavailability of polyphenols. J Nutr. 2000,130(8S): 2073S-85S.
    16. Surh YJ, et al. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat Res. 2001, 480-481: 243-68.
    17. Schroeter H, et al. Flavonoids protect neurons from oxidized low-density- lipoprotein-induced apoptosis involving c-Jun N-terminal kinase (JNK), c-Jun and caspase-3. Biochem J. 2001, 358(3): 547-57.
    18. Dragsted LO. Antioxidant actions of polyphenols in humans. Int J Vitam Nutr Res. 2003, 73(2): 112-9.
    19. Zhang H, et al. Resveratrol attenuates early pyramidal neuron excitability impairment and death in acute rat hippocampal slices caused by oxygen-glucose deprivation. Exp Neurol. 2008, 212(1): 44-52.
    20. Jiang J, et al. Neuroprotective effect of curcumin on focal cerebral ischemic rats by preventing blood-brain barrier damage. Eur J Pharmacol. 2007, 561(1-3): 54-62.
    21. Sutherland BA, Rahman RM, Appleton I. Mechanisms of action of green tea catechins, with a focus on ischemia-induced neurodegeneratioa J Nutr Biochem. 2006,17(5): 291-306.
    22. Mancuso C, et al. Natural antioxidants in Alzheimer's disease. Expert Opin Investig Drugs. 2007,16(12): 1921-31
    23. Bastianetto S. Neuroprotective effects of green and black teas and their catechin gallate esters against beta-amyloid-induced toxicity. Eur J Neurosci. 2006, 23(1): 55-64.
    24. Xiong Z, et al. Protective effects of breviscapine on ischemic vascular dementia in rats. Biol Pharm Bull. 2006, 29(9): 1880-5.
    25. Liu C, et al. Baicalein improves cognitive deficits induced by chronic cerebral hypoperfusion in rats. Pharmacol Biochem Behav. 2007, 86(3): 423-30.
    26. Howitz KT, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003, 425(6954): 191-6.
    27. Daitoku H, et al. Silent information regulator 2 potentiates Foxol-mediated transcription through its deacetylase activity. Proc Natl Acad Sci U S A. 2004,101(27): 10042-7.
    28. Wang F, et al. SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell. 2007, 6(4): 505-14.
    29. Yeung F, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 2004, 23(12): 2369-80.
    30. Maher P. Akaishi T, Abe K. Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory. Proc Natl Acad Sei U S A. 2006,103(44): 16568-73.
    31. Maher P, et al. A pyrazole derivative of curcumin enhances memory. Neurobiol Aging. 2008, [Epub ahead of print].
    32. Malenka RC. Synaptic plasticity in the hippocampus: LTP and LTD. Cell. 1994, 78(4):535-8.
    33. Malenka RC, Bear MF. LTP and LTD: an embarrassment of riches. Neuron. 2004,44(1): 5-21.
    1. Xiong Z, et al. Protective effects of breviscapine on ischemic vascular dementia in rats. Biol Pharm Bull. 2006, 29(9): 1880-5.
    2. Burlacu A. Regulation of apoptosis by Bcl-2 family proteins. J Cell Mol Med. 2003, 7(3): 249-57.
    3. Shen HM, Liu ZG JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. Free Radic Biol Med. 2006, 40(6): 928-39.
    4. Yeung F, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 2004, 23(12): 2369-80.
    5. Ghosh HS, et al. Sirt1 interacts with transducin-like enhancer of split-1 to inhibit nuclear factor kappaB-mediated transcription. Biochem J. 2007, 408(1): 105-11.
    6. Peters O, et al. Increased formation of reactive oxygen species after permanent and reversible middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab. 1998,18(2): 196-205.
    7. Crack PJ, Taylor JM. Reactive oxygen species and the modulation of stroke. Free Radic Biol Med. 2005, 38(11): 1433-44.
    8. Sugawara T, Chan PH. Reactive oxygen radicals and pathogenesis of neuronal death after cerebral ischemia. Antioxid Redox Signal. 2003, 5(5): 597-607.
    9. Yamada J, et al. Cell permeable ROS scavengers, Tiron and Tempol, rescue PC12 cell death caused by pyrogallol or hypoxia/reoxygenation. Neurosci Res. 2003,45(1): 1-8.
    10. Chen Y, et al. 2,2-Diphenyl-1-picrylhydrazyl radical-scavenging active components from Polygonum multiflorum thunb. J Agric Food Chem. 1999, 47(6):2226-8.
    11. Desagher S, Martinou JC. Mitochondria as the central control point of apoptosis. Trends Cell Biol. 2000,10(9): 369-77.
    12. Christophe M, Nicolas S. Mitochondria: a target for neuroprotective interventions in cerebral ischemia-reperfusion. Curr Pharm Des. 2006,12(6): 739-57.
    13. Swerdlow RH. Mitochondrial DNA--related mitochondrial dysfunction in neurodegenerative diseases. Arch Pathol Lab Med. 2002, 126(3): 271-80.
    14. Bano D, Nicotera P. Ca~(2+) signals and neuronal death in brain ischemia. Stroke. 2007, 38(2): 674-6.
    15. Arundine M, Tymianski M. Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium. 2003, 34(4-5): 325-37.
    16. Chinopoulos C, Adam-Vizi V. Calcium, mitochondria and oxidative stress in neuronal pathology. Novel aspects of an enduring theme. FEBS J. 2006,273(3): 433-50.
    17. Borsello T, Forloni G. JNK signalling: a possible target to prevent neurodegeneration. Curr Pharm Des. 2007,13(18): 1875-86.
    18. Kowalczyk JE, Zablocka B. Protein kinases in mitochondria Postepy Biochem.2008, 54(2): 209-16.
    19. Sato M, et al. Grape seed proanthocyanidin reduces cardiomyocyte apoptosis by inhibiting ischemia/reperfusion-induced activation of JNK-1 and C-JUN. Free Radic Biol Med. 2001, 31(6): 729-37.
    20. Yoshizumi M, et al. Ebselen attenuates oxidative stress-induced apoptosis via the inhibition of the c-Jun N-terminal kinase and activator protein-1 signalling pathway in PC12 cells. Br J Pharmacol. 2002,136(7): 1023-32.
    21. Liu K, et al. The dynamic detection of NO during stroke and reperfusion in vivo. Brain Inj. 2009, 23(5): 450-8.
    22. Cazevieille C, et al. Superoxide and nitric oxide cooperation in hypoxia/ reoxygenation-induced neuron injury. Free Radic Biol Med. 1993, 14(4): 389-95.
    23. Brown GC, Borutaite V. Inhibition of mitochondrial respiratory complex Ⅰ by nitric oxide, peroxynitrite and S-nitrosothiols. Biochim Biophys Acta. 2004, 1658(1-2): 44-9.
    24. Iadecola C, et al. Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J Neurosci. 1997,17(23): 9157-64.
    25. Mori K, et al. Aminoguanidine prevented the impairment of learning behavior and hippocampal long-term potentiation following transient cerebral ischemia. Behav Brain Res. 2001,120(2): 159-68.
    26. Wang ZF, et al. Huperzine A exhibits anti-inflammatory and neuroprotective effects in a rat model of transient focal cerebral ischemia. J Neurochem. 2008, 106(4): 1594-603.
    27. Kleinert H, et al. Regulation of the expression of inducible nitric oxide synthase. Eur J Pharmacol. 2004, 500(1-3): 255-66.
    28. Caccamo D, et al. Antioxidant treatment inhibited glutamate-evoked NF-kappaB activation in primary astroglial cell cultures Neurotoxicology. 2005, 26(5): 915-21.
    29. Li HL, et al. Epigallocathechin-3 gallate inhibits cardiac hypertrophy through blocking reactive oxidative species-dependent and -independent signal pathways.Free Radic Biol Med. 2006, 40(10): 1756-75.
    30. Hou DX, et al. Prodelphinidin B-4 3'-O-gallate, a tea polyphenol, is involved in the inhibition of COX-2 and iNOS via the downregulation of TAK1-NF-kappaB pathway. Biochem Pharmacol. 2007, 74(5): 742-51.
    31. Chen L, et al. Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science. 2001, 293(5535): 1653-7.
    32. Howitz KT, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003, 425(6954): 191-6.
    33. Prieto-Arribas R, et al. Experimental models of cerebral ischemia. Rev Neurol. 2008, 47(8): 414-26.
    1. Morris RG, et al. Place navigation impaired in rats with hippocampal lesions. Nature. 1982, 297(5868): 681-3.
    2. Geinisman Y, et al. Aging, spatial learning, and total synapse number in the rat CA1 stratum radiatum. Neurobiol Aging. 2004, 25(3): 407-16.
    3. Geinisman Y, et al Remodeling of hippocampal synapses after hippocampusdependent associative learning. J Comp Neurol. 2000, 417(1): 49-59.
    4. Berberich S, et al. The role of NMDAR subtypes and charge transfer during hippocampal LTP induction. Neuropharmacology. 2007, 52(1): 77-86.
    5. Malenka RC, Nicoll RA. Long-term potentiation--a decade of progress? Science.1999, 285(5435): 1870-4.
    6. Morgan SL, Teyler TJ. VDCCs and NMDARs underlie two forms of LTP in CA1 hippocampus in vivo. J Neurophysiol. 1999, 82(2): 736-40.
    7. Malenka RC. Synaptic plasticity in the hippocampus: LTP and LTD. Cell. 1994, 78(4): 535-8.
    8. Kelly PT, McGuinness TL, Greengard P. Evidence that the major postsynaptic density protein is a component of a Ca~(2+)/calmodulin-dependent protein kinase.Proc Natl Acad Sci U S A. 1984, 81(3): 945-9.
    9. Zhao D, Watson JB, Xie CW. Amyloid beta prevents activation of calcium/calmodulin-dependent protein kinase Ⅱand AMPA receptor phosph-orylation during hippocampal long-term potentiation. J Neurophysiol. 2004, 92(5): 2853-8.
    10. Giese, KP, et al. Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase Ⅱin LTP and learning. Science. 1998, 279(5352): 870-3.
    11. Moriguchi S, et al. CaM kinase Ⅱ and protein kinase C activations mediate enhancement of long-term potentiation by nefiracetam in the rat hippocampal CA1 region. J Neurochem. 2008,106(3): 1092-103.
    12. Maher P, et al. A pyrazole derivative of curcumin enhances memory. Neurobiol Aging. 2008, [Epub ahead of print].
    13. Sweatt JD. Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol. 2004,14(3): 311-7.
    14. Thomas GM, Huganir RL. MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci. 2004, 5(3): 173-83.
    15. Pearson G, et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev. 2001, 22(2): 153-83.
    16. Rakhit S, et al. N-methyl-D-aspartate and brain-derived neurotrophic factor induce distinct profiles of extracellular signal-regulated kinase, mitogen- and stress-activated kinase, and ribosomal s6 kinase phosphorylation in cortical neurons. Mol Pharmacol. 2005, 67(4): 1158-65.
    17. English JD, Sweatt JD. Activation of p42 mitogen-activated protein kinase in hippocampal long term potentiation. J Biol Chem. 1996, 271(40): 24329-32.
    18. English JD, Sweatt JD. A requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiatioa J Biol Chem. 1997, 272(31):19103-6.
    19. Ying SW, et al. Brain-derived neurotrophic factor induces long-term potentiation in intact adult hippocampus: requirement foT ERK activation coupled to CREB and upregulation of Arc synthesis. J Neurosci. 2002, 22(5): 1532-40.
    20. Gooney M, et al. long-term potentiation and spatial learning are associated with increased phosphorylation of TrkB and extracellular signal-regulated kinase (ERK) in the dentate gyrus: evidence for a role for brain-derived neurotrophic factor.Behav Neurosci. 2002,116(3): 455-63.
    21. Maher P. Akaishi T, Abe K. Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory. Proc Natl Acad Sci U S A. 2006, 103(44):16568-73.
    22. Zhang L, et al. Learning-memory deficit with aging in APP transgenic mice of Alzheimer's disease and intervention by using tetrahydroxystilbene glucoside. Behav Brain Res. 2006,173(2): 246-54.
    23. Wang R, et al. Changes in hippocampal synapses and learning-memory abilities in age-increasing rats and effects of tetrahydroxystilbene glucoside in aged rats. Neuroscience. 2007,149(4): 739-46.
    24. Kelly KM, et al. The neurobiology of aging. Epilepsy Res. 2006, 68(S1): S5-20.
    25. Landfield PW. Hippocampal neurobiological mechanisms of age-related memory dysfunction. Neurobiol Aging. 1988, 9(5-6): 571-9.
    26. Gertz HJ, Kiefer M. Review about Ginkgo biloba special extract EGb 761 (Ginkgo). Curr Pharm Des. 2004,10(3): 261-4.
    27. Williams B, et al. Age-related effects of Ginkgo biloba extract on synaptic plasticity and excitability. Neurobiol Aging. 2004, 25(7): 955-62.
    28. Lephart ED, et al. Neurobehavioral effects of dietary soy phytoestrogens. Neurotoxicol Teratol, 2002. 24(1): 5-16.
    29. Kim HK, et al. Effects of green tea polyphenol on cognitive and acetylcholinesterase activities. Biosci Biotechnol Biochem. 2004, 68(9): 1977-9.
    1. Hossmann KA. Pathophysiology and therapy of experimental stroke. Cell Mol Neurobiol. 2006, 26(7-8): 1057-83.
    2. Baron JC. Mapping the ischaemic penumbra with PET: implications for acute stroke treatment .Cerebrovasc Dis. 1999, 9(4): 193-201.
    3. Fisher M, Baron JC. Which targets are relevant for therapy of acute ischemic stroke? Stroke. 2000, 31(4): 984-6.
    4. Caplan LR. Stroke treatment: promising but still struggling. JAMA. 1998, 279(16): 1304-6.
    5. Nishizawa Y. Glutamate release and neuronal damage in ischemia. Life Sci. 2001, 69(4): 369-81.
    6. Giffard RG, Swanson RA. Ischemia-induced programmed cell death in astrocytes. Glia. 2005, 50(4):299-306.
    7. Mori T, et al. Attenuation of a delayed increase in the extracellular glutamate level in the peri-infarct area following focal cerebral ischemia by a novel agent ONO-2506. Neurochem Int.2004, 45(2-3): 381-7.
    8. Dohmen C, et al. Spreading depolarizations occur in human ischemic stroke with high incidence. Ann Neural. 2008, 63(6): 720-8.
    9. Ohta K, et al. Calcium ion transients in peri-infarct depolarizations may deteriorate ion homeostasis and expand infarction in focal cerebral ischemia in cats. Stroke. 2001, 32(2): 535-43.
    10. Umegaki M, et al. Peri-infarct depolarizations reveal penumbra-like conditions in striatum. J Neurosci. 2005, 25(6): 1387-94.
    11. Fabricius M, et al. Cortical spreading depression and peri-infarct depolarization in acutely injured human cerebral cortex. Brain. 2006,129(3): 778-90.
    12. Lu XC, et al. Effects of delayed intrathecal infusion of an NMDA receptor antagonist on ischemic injury and peri-infarct depolarizations. Brain Res. 2005,1056(2): 200-8.
    13. Nowak L, et al. Magnesium gates glutamate-activated channels in mouse central neurones. Nature. 1984, 307(5950): 462-5.
    14. Mishina M, et al. A single amino acid residue determines the Ca~(2+) permeability of AMPA-selective glutamate receptor channels. Biochem Biophys Res Commun. 1991,180(2): 813-21.
    15. Beckman JS, et al. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A. 1990, 87(4):1520-4.
    16. Gardoni F, Marcello E, Di Luca M. Postsynaptic density-membrane associated guanylate kinase proteins (PSD-MAGUKs) and their role in CNS disorders. Neuroscience. 2009,158(1): 324-33.
    17. Brenman JE, et al. Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alphal-syntrophin mediated by PDZ domains. Cell. 1996, 84(5): 757-67.
    18. Aarts M, et al. Treatment of ischemic brain damage by perturbing NMDA receptor- PSD-95 protein interactions. Science. 2002,298(5594): 846-50.
    19. Sattler R, et al. Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science. 1999,284(5421): 1845-8.
    20. Tang W, et al. Flavonoids from Radix Scutellariae as potential stroke therapeutic agents by targeting the second postsynaptic density 95 (PSD-95)/disc large/zonula occludens-1 (PDZ) domain of PSD-95. Phytomedicine. 2004,11(4): 277-84.
    21. Wen W, Wang W, Zhang M. Targeting PDZ domain proteins for treating NMDA receptor-mediated excitotoxicity. Curr Top Med Chem. 2006, 6(7): 711-21.
    22. Erondu NE, Kennedy MB. Regional distribution of type ⅡCa~(2+)/calmodulin-dependent protein kinase in rat brain. J Neurosci. 1985, 5(12): 3270-7.
    23. Shackelford DA, et al. Effect of cerebral ischemia on calcium/calmodulin-dependent protein kinase Ⅱactivity and phosphorylation. J Cereb Blood Flow Metab. 1995,15(3): 450-61.
    24. Babcock AM, et al. Transient cerebral ischemia decreases calcium/calmodulin-dependent protein kinase Ⅱimmunoreactivity, but not mRNA levels in the gerbil hippocampus. Brain Res. 1995,705(1-2): 307-14.
    25. Churn SB, et al. Temperature modulation of ischemic neuronal death and inhibition of calcium/calmodulin-dependent protein kinase Ⅱin gerbils. Stroke. 1990, 21(12): 1715-21.
    26. Soderling TR. Structure and regulation of calcium/calmodulin-dependent protein kinases Ⅱand Ⅳ Biochim Biophys Acta. 1996,1297(2): 131-8.
    27. Hu BR, et al. Persistent phosphorylation of cyclic AMP responsive element-binding protein and activating transcription factor-2 transcription factors following transient cerebral ischemia in rat brain. Neuroscience. 1999, 89(2): 437-52.
    28. Shieh PB, et al. Identification of a signaling pathway involved in calcium regulation of BDNF expression. Neuron. 1998, 20(4): 727-40.
    29. See V, et al. Calcium/calmodulin-dependent protein kinase type Ⅳ(CaMKIV) inhibits apoptosis induced by potassium deprivation in cerebellar granule neurons. FASEB J. 2001,15(1): 134-144.
    30. Meller R, et al. CREB-mediated Bcl-2 protein expression after ischemic preconditioning. J Cereb Blood How Metab. 2005,25(2): 234-46.
    31. Yano S, et al. Functional proteins involved in regulation of intracellular Ca~(2+) for drug development: role of calcium/calmodulin-dependent protein kinases in ischemic neuronal death. J Pharmacol Sci.2005, 97(3): 351-4.
    32. Kogel D, Prehn JH, Scheidtmann KH. The DAP kinase family of pro-apoptotic proteins: novel players in the apoptotic game. Bioessays. 2001, 23(4): 352-8.
    33. Inbal B, et al. DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death. J Cell Biol. 2002,157(3): 455-68.
    34. Yamamoto M, et al. Developmental changes in distribution of death-associated protein kinase mRNAs. J Neurosci Res. 1999, 58(5): 674-83.
    35. Schumacher AM, et al. DAPK catalytic activity in the hippocampus increases during the recovery phase in an animal model of brain hypoxic-ischemic injury. Biochim Biophys Acta. 2002, 1600(1-2): 128-37.
    36. Shamloo M, et al. Death-associated protein kinase is activated by dephosphorylation in response to cerebral ischemia. J Biol Chem. 2005, 280(51): 42290-9.
    37. Kishino M, et al. Deletion of the kinase domain in death-associated protein kinase attenuates tubular cell apoptosis in renal ischemia-reperfusion injury. J Am Soc Nephrol. 2004, 15(7): 1826-34.
    38. Nita DA, et al. Oxidative damage following cerebral ischemia depends on reperfusion- a biochemical study in rat. J Cell Mol Med. 2001,5(2): 163-70.
    39. Slemmer JE, et al. Antioxidants and free radical scavengers for the treatment of stroke, traumatic brain injury and aging. Curr Med Chem. 2008,15(4): 404-14.
    40. Beetsch JW, et al. Xanthine oxidase-derived superoxide causes reoxygenation injury of ischemic cerebral endothelial cells. Brain Res. 1998,786(1-2): 89-95.
    41. Katsuki H, Okuda S. Arachidonic acid as a neurotoxic and neurotrophic substance. Prog Neurobiol. 1995, 46(6): 607-36.
    42. Wang ZQ, et al. U0126 prevents ERK pathway phosphorylation and interleukin-1beta mRNA production after cerebral ischemia. Chin Med Sci J. 2004,19(4): 270-5.
    43. Huang J, et al. Dehydroascorbic acid, a blood-brain barrier transportable form of vitamin C, mediates potent cerebroprotection in experimental stroke. Proc Natl Acad Sci U S A. 2001, 98(20):11720-4.
    44. Noshita N, et al. Manganese Superoxide Dismutase Affects Cytochrome c Release and Caspase-9 Activation After Transient Focal Cerebral Ischemia in Mice. J Cereb Blood Flow Metab. 2001,21(5): 557-67.
    45. Sugawara T, et al. Overexpression of copper/zinc superoxide dismutase in transgenic rats protects vulnerable neurons against ischemic damage by blocking the mitochondrial pathway of caspase activation. J Neurosci. 2002, 22(1): 209-17.
    46. Saito A, et al. Modulation of the Omi/HtrA2 signaling pathway after transient focal cerebral ischemia in mouse brains that overexpress SOD1. Brain Res Mol Brain Res. 2004,127(1-2): 89-95.
    47. Kim DW, et al. Transduced Tat-SOD fusion protein protects against ischemic brain injury. Mol Cells. 2005, 19(1): 88-96.
    48. Kilic U, et al. Intravenous TAT-GDNF is protective after focal cerebral ischemia in mice. Stroke. 2003, 34(5): 1304-10.
    49. Pei Z, Pang SF, Cheung RT. Pretreatment with melatonin reduces volume of cerebral infarction in a rat middle cerebral artery occlusion stroke model. J Pineal Res. 2002, 32(3): 168-72.
    50. Pei Z, Pang SF, Cheung RT. Administration of melatonin after onset of ischemia reduces the volume of cerebral infarction in a rat middle cerebral artery occlusion stroke model. Stroke. 2003, 34(3): 770-5.
    51. Tutunculer F, et al. The protective role of melatonin in experimental hypoxic brain damage. Pediatr Int. 2005, 47(4): 434-9.
    52. Mohan N, et al. The neurohormone melatonin inhibits cytokine, mitogen and ionizing radiation induced NF-kappa B. Biochem Mol Biol Int. 1995, 37(6): 1063-70.
    53. Nozaki K, Nishimura M, Hashimoto N. Mitogen-activated protein kinases and cerebral ischemia. Mol Neurobiol. 2001, 23(1): 1-19.
    54. Pearson G, et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev. 2001, 22(2): 153-83.
    55. Lennmyr F, et al. Activation of mitogen-activated protein kinases in experimental cerebral ischemia. Acta Neurol Scand. 2002,106(6): 333-40.
    56. Nishida E, Gotoh Y. The MAP kinase cascade is essential for diverse signal transduction pathways. Trends Biochem Sci. 1993,18(4): 128-31.
    57. Aikawa R, et al. Oxidative stress activates extracellular signal-regulated kinases through Src and Ras in cultured cardiac myocytes of neonatal rats. J Clin Invest. 1997,100(7): 1813-21.
    58. Rosen LB, et al. Membrane depolarization and calcium influx stimulate MEK and MAP kinase via activation of Ras. Neuron. 1994,12(6): 1207-21.
    59. Kurino M, et al. Activation of mitogen-activated protein kinase in cultured rat hippocampal neurons by stimulation of glutamate receptors. J Neurochem. 1995, 65(3): 1282-9.
    60. Sgambato V, et al. Extracellular signal-regulated kinase (ERK) controls immediate early gene induction on corticostriatal stimulation. J Neurosci. 1998,18(21): 8814-25.
    61. Park EM, et al. A neuroprotective role of extracellular signal-regulated kinase in N-acetyl-O-methyldopamine-treated hippocampal neurons after exposure to in vitro and in vivo ischemia. Neuroscience. 2004, 123(1): 147-54.
    62. Sun X, et al. Neuroprotection of brain-derived neurotrophic factor against hypoxic injury in vitro requires activation of extracellular signal-regulated kinase and phosphatidylinositol 3-kinase. Int J Dev Neurosci. 2008,26(3-4): 363-70.
    63. Zhang Y, Pardridge WM. Neuroprotection in transient focal brain ischemia after delayed intravenous administration of brain-derived neurotrophic factor conjugated to a blood-brain barrier drug targeting system. Stroke. 2001, 32(6): 1378-84.
    64. Schabitz WR, et al. Intravenous brain-derived neurotrophic factor reduces infarct size and counterregulates Bax and Bcl-2 expression after temporary focal cerebral ischemia. Stroke. 2000, 31(9): 2212-7.
    65. Irving EA, Bamford M. Role of mitogen- and stress-activated kinases in ischemic injury. J Cereb Blood Flow Metab. 2002,22(6): 631-47.
    66. Barone FC, et al. Inhibition of p38 mitogen-activated protein kinase provides neuroprotection in cerebral focal ischemia. Med Res Rev. 2001,21(2): 129-45.
    67. Okuno S, et al. The c-Jun N-terminal protein kinase signaling pathway mediates Bax activation and subsequent neuronal apoptosis through interaction with Bim after transient focal cerebral ischemia. J Neurosci. 2004, 24(36): 7879-87.
    68. Guan QH, et al. Brain ischemia/reperfusion-induced expression of DP5 and its interaction with Bcl-2, thus freeing Bax from Bcl-2/Bax dimmers are mediated by c-Jun N-terminal kinase (JNK) pathway. Neurosci Lett. 2006, 393(2-3): 226-30.
    69. Kuan CY, et al. A critical role of neural-specific JNK3 for ischemic apoptosis. Proc Natl Acad Sci U S A. 2003,100(25): 15184-9.
    70. Brecht S, et al. Specific pathophysiological functions of JNK isoforms in the brain. Eur J Neurosci. 2005, 21(2): 363-77.
    71. Borsello T, et al. A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat Med. 2003, 9(9): 1180-6.
    72. Hunot S, et al. JNK-mediated induction of cyclooxygenase 2 is required for neurodegeneration in a mouse model of Parkinson's disease. Proc Natl Acad Sci U S A. 2004,101(2): 665-70.
    73. Hess J, Angel P, Schorpp-Kistner M. AP-1 subunits: quarrel and harmony among siblings. J Cell Sci.2004,117(25): 5965-73.
    74. Shen YH, et al. Cross-talk between JNK/SAPK and ERK/MAPK pathways: sustained activation of JNK blocks ERK activation by mitogenic factors. J Biol Chem. 2003, 278(29): 26715-21.
    75. Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron. 2008, 57(2): 178-201.
    76. Klohs J, et al. In vivo near-infrared fluorescence imaging of matrix metalloproteinase activity after cerebral ischemia. J Cereb Blood Flow Metab. 2009, [Epub ahead of print].
    77. Rosell A, et al. Increased brain expression of matrix metalloproteinase-9 after ischemic and hemorrhagic human stroke. Stroke. 2006, 37(6): 1399-406.
    78. Jiang X, Namura S, Nagata I. Matrix metalloproteinase inhibitor KB-R7785 attenuates brain damage resulting from permanent focal cerebral ischemia in mice. Neurosci Lett. 2001, 305(1): 41-4.
    79. HuangnJ, Upadhyay UM, Tamargo RJ. Inflammation in stroke and focal cerebral ischemia. Surg Neurol. 2006,66(3): 232-45.
    80. Huang J, et al. Postischemic cerebrovascular E-selectin expression mediates tissue injury in murine stroke. Stroke. 2000,31(12): 3047-53.
    81. Mocco J, et al. HuEP5C7 as a humanized monoclonal anti-E/P-selectin neurovascular protective strategy in a blinded placebo-controlled trial of nonhuman primate stroke. Circ Res. 2002, 91(10): 907-14.
    82. Fiszer U, et al. Increased expression of adhesion molecule CD18 (LFA-1beta) on the leukocytes of peripheral blood in patients with acute ischemic stroke. Acta Neurol Scand. 1998, 97(4): 221-4.
    83. Zhang RL, et al. The temporal profiles of ICAM-1 protein and mRNA expression after transient MCA occlusion in the rat. Brain Res. 1995, 682(1-2): 182-8.
    84. Vemuganti R, Dempsey RJ, Bowen, KK Inhibition of intercellular adhesion molecule-1 protein expression by antisense oligonucleotides is neuroprotective after transient middle cerebral artery occlusion in rat. Stroke. 2004, 35(1): 179-84.
    85. Um JY, et al. Association of interleukin-1 alpha gene polymorphism with cerebral infarction. Brain Res Mol Brain Res. 2003,115(1): 50-4.
    86. Schielke GP, et al. Reduced ischemic brain injury in interleukin-1 beta converting enzyme-deficient mice. J Cereb Blood Flow Metab. 1998,18(2): 180-5.
    87. Wang X, et al. Expression of interleukin-6, c-fos, and zif268 mRNAs in rat ischemic cortex. J Cereb Blood How Metab. 1995,15(1): 166-71.
    88. Zaremba J, Skrobanski P, Losy J. Tumour necrosis factor-alpha is increased in the cerebrospinal fluid and serum of ischaemic stroke patients and correlates with the volume of evolving brain infarct. Biomed Pharmacother. 2001, 55(5): 258-63.
    89. Khan M, et al. Administration of N-acetylcysteine after focal cerebral ischemia protects brain and reduces inflammation in a rat model of experimental stroke. J Neurosci Res. 2004, 76(4): 519-27.
    90. Yokota C, et al. Temporal and topographic profiles of cyclooxygenase-2 expression during 24 h of focal brain ishemia in rats. Neurosci Lett. 2004, 357(3): 219-22.
    91. Candelario-Jalil E, et al. Effects of the cyclooxygenase-2 inhibitor nimesulide on cerebral infarction and neurological deficits induced by permanent middle cerebral artery occlusion in the rat. J Neuroinflammation. 2005, 2(1): 3.
    92. Yenari MA, et al. Microglia potentiate damage to blood-brain barrier constituents: improvement by minocycline in vivo and in vitro. Stroke. 2006, 37(4): 1087-93.
    93. Trendelenburg G, et al. Serial analysis of gene expression identifies metallothionein-Ⅱ as major neuroprotective gene in mouse focal cerebral ischemia. J Neurosci. 2002, 22(14): 5879-88.
    94. Anderson MF, et al. Astrocytes and stroke: networking for survival? Neurochem Res. 2003, 28(2): 293-305.
    95. Thoren AE, et al. Astrocytic function assessed from 1-14C-acetate metabolism after temporary focal cerebral ischemia in rats. J Cereb Blood Flow Metab. 2005, 25(4): 440-50.
    96. Kimelberg HK. Astrocytic swelling in cerebral ischemia as a possible cause of injury and target for therapy. Glia. 2005, 50(4): 389-97.
    97. Nakase T, Fushiki S, Naus CC. Astrocytic gap junctions composed of connexin 43 reduce apoptotic neuronal damage in cerebral ischemia. Stroke. 2003, 34(8): 1987-93.
    98. Nakase T, et al. Increased apoptosis and inflammation after focal brain ischemia in mice lacking connexin43 in astrocytes. Am J Pathol. 2004,164(6): 2067-75.
    99. Wojcik M, Mac-Marcjanek K, Wozniak LA. Physiological and pathophysiological functions of SIRTl. Mini Rev Med Chem. 2009,9(3): 386-94.
    100. Cao C, et al. SIRTl confers protection against UVB- and H_2O_2-induced cell death via modulation of p53 and JNK in cultured skin keratinocytes. J Cell Mol Med. 2008, [Epub ahead of print].
    101. Yeung F, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 2004, 23(12): 2369-80.
    102. Chen J, et al. SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. J Biol Chem. 2005, 280(48): 40364-74.
    103. Della-Morte D, et al. Resveratrol pretreatment protects rat brain from cerebral ischemic damage via a sirtuin 1 -- uncoupling protein 2 pathway. Neuroscience. 2009,159(3): 993-1002.
    104. Wang L, et al. Icariin enhances neuronal survival after oxygen and glucose deprivation by increasing SIRT1. Eur J Pharmacol. 2009, 609(1-3): 40-4.
    105. Taoufik E, Probert L. Ischemic neuronal damage. Curr Pharm Des. 2008,14(33): 3565-73.
    106. Rathmell JC, Thompson CB. The central effectors of cell death in the immune system. Annu Rev Immunol. 1999,17(1): 781-828.
    107. Dong Z, et al. Internucleosomal DNA cleavage triggered by plasma membrane damage during necrotic cell death. Involvement of serine but not cysteine proteases. Am J Pathol. 1997, 151(5): 1205-13.
    108. Bicknell GR, Cohen GM. Cleavage of DNA to large kilobase pair fragments occurs in some forms of necrosis as well as apoptosis. Biochem Biophys Res Commun. 1995, 207(1): 40-7.
    109. Love S. Apoptosis and brain ischaemia. Prog Neuropsychopharmacol Biol Psychiatry. 2003, 27(2): 267-82.
    110. Zhang F, Yin W, Chen J. Apoptosis in cerebral ischemia: executional and regulatory signaling mechanisms. Neurol Res. 2004, 26(8): 835-45.
    111. Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell. 2004,116(2): 205-19.
    112. Zou H, et al. An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem. 1999, 274(17): 11549-56.
    113. Du C, et al. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell. 2000,102(1): 33-42.
    114. Thorpe JA, Christian PA, Schwarze SR. Proteasome inhibition blocks caspase-8 degradation and sensitizes prostate cancer cells to death receptor-mediated apoptosis. Prostate. 2008, 68(2): 200-9.
    115. Hong SJ, Dawson TM, Dawson VL. Nuclear and mitochondrial conversations in cell death: PARP-1 and AIF signaling. Trends Pharmacol Sci. 2004, 25(5): 259-64.
    116. Mate MJ, et al. The crystal structure of the mouse apoptosis-inducing factor AIF. Nat Struct Biol. 2002, 9(6): 442-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700