SFTPB基因内含子4区(CA)n模体对RNA剪切的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景与目的肺表面活性物质(pulmonary surfactant)是主要由肺泡Ⅱ型细胞合成,组装并分泌的一种脂蛋白复合物,主要作用为降低肺泡表面张力,提高肺的顺应性,促进肺泡气体交换并防止肺损伤。其主要功能成分为肺泡表面蛋白(surfactant protein,SP)和脂类。其中SP-B是必需的蛋白质,不正常的SP-B表达与多种肺部疾病相关。
     SP-B等位基因具有多态性,基因突变除点突变(外显子和内显子),并有包含一段序列的结构区域的插入和缺失突变,这些突变与成熟SP-B的减少有关和/或影响了proSP-B的加工过程进而造成SP-B蛋白合成障碍。
     SP-B基因内含子4区的前半部分存在11个以不同长度的(CA)。为特征的模体(motif),每个模体由一段20个碱基左右的保守序列和随后的CA重复序列(2到17个)构成。1995年本实验室研究发现此区域序列的基因多态性同ARDS有关。2005年本实验室研究又发现(CA)。模体的缺失变异同SP-B mRNA不完全剪切有关,且此不完全剪切同肺癌相关。显示SP-B基因内含子4区(CA)。模体可能通过影响SP-B mRNA的剪切过程从而导致成熟SP-B mRNA的减少并影响功能性SP-B蛋白的表达。但这11个(CA)。模体的具体作用方式及作用机制并不清楚。
     RNA剪切(RNA splicing)是真核基因表达中一个重要的转录后调控过程。RNA序列决定了剪切位点,正确的剪切有赖于剪切位点的正确供给。另外剪切调控蛋白可结合到称为外显子/内含子剪切增强子(ESE或者ISE, exonic/intronic splicing enhancer)或者外显子/内含子剪切沉默子(ESS或者ISS, exonic/intronic splicing silencer)的特殊RNA序列,前者增强附近的剪切位点的剪切,后者正好相反。同时,RNA构像即RNA二级结构的变化及稳定性也会影响剪切位点的供给及增强子/沉默子序列的结合能力。
     基于RNA剪切的发生过程和影响因素,为进一步探讨(CA)。模体对SP-BmRNA剪切过程的影响机制,我们对SP-B基因内含子4区(CA)。模体进行了系统性研究。首先合成野生型SP-B基因内含子4区(WT intron4)基因序列,并以此为基础构建了一系列(CA)。结构域的缺失结构的质粒,然后在细胞中表达这些DNA质粒。利用Northern杂交和实时定量PCR检测(CA)。模体对SP-B mRNA剪切的影响;然后对这一系列缺失结构进行剪切位点预测及RNA二级结构分析;最后通过凝胶阻滞迁移实验(EMSA)研究相关(CA)。模体的RNA序列与其潜在结合蛋白的相互作用,探讨相关(CA)。模体影响SP-B基因剪切的发生机制。
     方法第一部分:合成含正常(CA)。模体的野生型SP-B基因内含子4区(WT intron4)结构,并以此为基础构建了一系列不同(CA)。模体缺失的内含子4区缺失结构(DC-A, DC-B,...DC-K),并将所有内含子4区结构导入我们构建的已经去除内含子4区的pcDNA3.1SP-B Minigene-del-m (Del-M)中,形成一系列含不同(CA)n模体缺失的SP-B Minigene,将他们转染至CHO细胞中并抽提RNA,利用Northern杂交和实时定量PCR检测mRNA的剪切效率(完全剪切/不完全剪切)分析(CA)n模体对SP-B mRNA剪切的影响。根据结果构建含特定模体的SPB minigene再次进行Northern杂交和RT-PCR以确定特定模体的对剪切的影响。
     第二部分:利用程序对这一系列缺失结构进行相关剪切位点的预测及RNA二级结构分析(包括分析结构的构型特征和稳定性),对含有特定模体的缺失结构进行比较分析。
     第三部分:分析特定(CA)。模体可能存在的潜在RNA结合蛋白并合成含有特定蛋白结合位点的RNA序列的探针及突变序列探针,用凝胶阻滞迁移(EMSA)技术研究相关(CA)。模体的RNA序列与其潜在结合蛋白的相互作用。
     结果第一部分:缺失结构及含特定模体结构的northern blot和RT-PCR分析:1)所有不同(CA)n模体缺失的SP-B Minigene的mRNA剪切效率较之完全(正常)剪切均有下降;2)这些含不同(CA)n模体缺失的SP-B Minigene的剪切效率各不相同,其中第8,9号(CA)。模体显示对剪切产生明显的并且相反的影响作用。
     第二部分:剪切位点的预测:支点序列与3’端的AG决定区的距离为258bp,共有四组高预测剪切蛋白存在于intron4模体区,HnRNP L顷向与较长(CA)n结合,模体8可能具有SRP20的特异性结合位点。RNA二级结构分析:SP-BMinigene的RNA二级结构呈现出共同的特征:1)所有的(CA)。模体或(CA)。簇团倾向于通过他们自身或和其他(CA)。模体一起形成稳定的环状结构(loop),同时(CA)。模体的保守序列倾向于形成稳定性各不相同的茎状结构(stem)。RNA二级结构稳定性或者茎状结构和/或环状结构的稳定性的变化可能同RNA剪切效率的变化相关。2)当RNA二级结构的影响因素相同时,RNA剪切效率的变化同增强子或沉默子序列的变化有关。
     第三部分:特定(CA)。模体存在的潜在RNA结合蛋白分析:(CA)n模体可能存在影响RNA剪切的增强子和沉默子,第8号(CA)。模体的保守序列上存在SRP20的特定结合位点,它可能通过发挥增强子的作用从而影响RNA的剪切。
     结论SP-B内含子4区(CA)。模体区可能存在影响RNA剪切的增强子和沉默子,第8,9号(CA)。模体显示出对剪切产生明显的并且相反(增强和抑制)的影响作用。第8号(CA)。模体的保守序列上存在SRP20的结合位点,它可能通过发挥增强子的作用从而影响RNA的剪切。在对缺失结构进行剪切效率分析时,RNA二级结构也是重要的影响因素。
Background and Objectives:Pulmonary surfactants are lipoprotein complexes that are produced, assembled, and synthesized by lung alveolar type II cells. The primary functions of pulmonary surfactants include lowering alveolar surface tension, improving lung compliance, promoting alveolar gas exchange, and preventing lung damage. The major functional components are the surfactant proteins A. B. C and D (e.g., surfactant protein, SP-A, B, C, D) and lipids, of which, SP-B is essential for normal lung function and abnormal expression of SP-B is associated with multiple lung diseases.
     Human SP-B gene contains a number of polymorphisms. In addition to point mutations (exons and introns), there are sequence insertion and deletion mutations that directly affect the structural region of the SP-B protein; therefore, these mutations may be related to the decreased expression of mature SP-B, and/or affect proSP-B post translational processing and secretion, which cause SP-B protein synthesis disorder.
     There are11different (CA)n motifs in the first half of intron4of the human SP-B gene. Each motif is composed of a conserved sequence (-20bp) and2-17subsequent CA repeats. In1995, the work in our laboratory demonstarted that gene polymorphisms in this region were associated with acute respiratory distress syndrome (ARDS). In2005, the work further found that (CA)n motif deletions were related to the incomplete splicing of SP-B mRNA, which was associated with lung cancer. These studies indicated that the intron4(CA)n motifs in the SP-B gene may-by influencing SP-B mRNA splicing processes-lead to the reduction of mature SP-B mRNA and influence the expression of functional SP-B protein. However, the detailed mechanisms of SP-B mRNA splicing regulation by the11(CA)n motifs are unknown.
     RNA splicing is an important post-transcriptional regulation process in eukaryotic gene expression. RNA sequences can determine RNA splice sites, and correct RNA splicing requires the availability of the correct splicing site. In addition, splice-regulating proteins can bind to specific RNA sequences called exon/intron splicing enhancers (ESE or ISE, exonic/intronic splicing enhancer) or exon/intron splicing silencers (ESS or ISS, exonic/intronic splicing silencer); the former enhances splicing near the splicing site, while the latter inhibits splicing. Additionally, RNA conformation, namely the alteration of RNA secondary structure and stability, also affects the availability of the splicing site and the binding ability of the enhancer/silencer sequence.
     To further investigate the role of the (CA)n motif on the SP-B mRNA splicing process, we conducted a systematic study of the intron4(CA)n motifs in the SP-B gene. We synthesized the intron4gene sequence from the wild-type SP-B gene (WT intron4) by PCR method. Based on this sequence, we constructed a series of (CA)n deletion mutant plasmids. These DNA plasmids were transfected into CHO cells and then Northern blot and real-time quantitative PCR analyses were used to determine the effects of the (CA)n motif on SP-B mRNA splicing. Additionally, through electrophoretic mobility shift assay (EMSA) experiments, we studied the (CA)n motif-related RNA sequences and the potential interactions with binding proteins and discussed the mechanism of (CA)n motif-regulated SP-B gene splicing.
     Methods Part Ⅰ:pcDNA3.1SP-B minigene and WT intron4fragment were synthesized from the SP-B gene by PCR method. By using the WT intron4sequence, we constructed a series of (CA)n motif mutated fragments (DC-A, DC-B,... DC-K) that characterized by deletion of the different motif one by one. Each of intron4(CA)n motif fragment was inserted into the pcDNA3.1SP-B minigene, so that a series of mutanted SP-B minigene plasmids contained different (CA)n motif deletion were generated. These plasmids were transfected into CHO cells and the RNA was extracted. Northern blot and real-time quantitative PCR analyses were used to determine the mRNA-splicing efficiency (completed splicing/incompleted splicing), and then the effects of the intron4(CA)n motifs on SP-B mRNA splicing were evaluated.
     Part Ⅱ:Online programs were used to predict the splicing site and to analyze the RNA secondary structure of the deletion mutants, which included the analysis of structural characteristics and stability. Additionally, comparative analysis among the specific motifs relative to their RNA secondary structure was performed.
     Part Ⅲ:Specific (CA)n motifs that potentially bind RNA-binding proteins were analyzed. To confirm RNA-binding protein interaction with specific (CA)n motif, RNA probes that contained potentially specific binding sites as well as mutated-sequence probe were synthesized. EMSA technology was used to study the correlation and interactions between (CA)n motif and potential binding proteins.
     Results Part Ⅰ:1) The splicing efficiencies of RNA in all SP-B minigenes that deleted different (CA)n motifs were lower than that of WT minigene.2) All minigene constructs, including WT, expressed visible variable amount of incompletely spliced RNA in addition to completely spliced RNA (or normal mRNA). The Motif8and Motif9were able to enhance and attenuate, respectively, RNA splicing.
     Part Ⅱ:Prediction of splice sites:The distance between the branch point site and the3'-end of the possible AG-determining regions was258bp, and4groups of potential splicing proteins have a possibility to bind in the intron4motif region. HnRNP L was found to bind the longer (CA)n repeat, while the motif8may have SRp20-specific binding site. We observed that:1) All RNA secondary structures of the minigene and mutants shared similar properties:CA-repeat regions or CA clusters tended to form stable loops by themselves or with other CA rich regions. On the other hand, the conservative sequences (GC rich) tended to form stems with varying stability.2) The stability of the secondary structures of the various constructs, and/or "microstability" of stem/loop elements may differ within constructs and these differences correlated with the observed splice ratios.3) When the stability of the secondary structures was the same in different minigene constructs, the missing motif sequence(s) with potential splicing site may be the reason of different splicing efficiency.
     Part III:The analysis of specific (CA)n motif demonstrated potential RNA-binding proteins in the(CA)n motifs.:(CA)n motifs may exist in the enhancers and silencers that affect RNA splicing. A specific binding site of SRp20exists in the conserved sequence of the motif8, which may enhance RNA splicing in this study.
     Conclusions:The (CA)n Motif8and Motif9of SP-B intron4are able to enhance and attenuate, respectively, RNA splicing. A specific RNA-binding site of SRp20exists in the conserved sequence of the motif8, which may have a role of enhancing RNA splicing. The RNA secondary structures may be the considerable element in the analysis of different splicing efficiency.
引文
1. Tokieda, K., Whitsett, J.A., Clark, J.C., Weaver, T.E., Ikeda, K., McConnell, K. B., Jobe, A. H., Ikegami, M. and Iwamoto, H. S. (1997) Pulmonary dysfunction in neonatal SP-B-deficient mice. Am J Physiol.273, L875-882
    2 Melton, K.R., Nesslein, L. L., Ikegami, M., Tichelaar, J.W., Clark, J. C., Whitsett, J. A. and Weaver, T.E. (2003) SP-B deficiency causes respiratory failure in adult mice. Am J Physiol Lung Cell Mol Physiol.285, L543-549
    3 Clark, J. C., Wert, S.E., Bachurski, C. J., Stahlman, M. T., Stripp, B. R., Weaver, T. E. and Whitsett, J.A. (1995) Targeted disruption of the surfactant protein B gene disrupts surfactant homeostasis, causing respiratory failure in newborn mice. Proc Natl Acad Sci U S A.92,7794-7798
    4. Cruz A, Casals C, Plasencia I,et al. Depth profiles of pulmonary surfactant protein B in phosphatidy choline bilayers, studied by fluorescence and electron spin resonance spectroscopy. Biochemistry,1998,37(26):9488-9496
    5. Cochrane CG, Revak SD. Pulmonary surfactant protein B (SP-B):structure-function relationships. Science,1991,254(5031):566-568
    6. deMelb DE, Nogee LM,Heyman S. Molecular and phenotypic variability in the congenital alveolar proteinosis syndrome associated with inherited surfactant protein B deficiency. J Pediatr,1994 125(1):43-50
    7. Floros, J., Veletza, S. V., Kotikalapudi, P., Krizkova, L., Karinch, A. M., Friedman, C.,Buchter, S. and Marks, K. (1995) Dinucleotide repeats in the human surfactant protein-B gene and respiratory-distress syndrome. Biochem. J.305,583-590
    8. Kala, P., Ten Have, T., Nielsen, H., Dunn, M. and Floros, J. (1998) Association of pulmonary surfactant protein A (SP-A) gene and respiratory distress syndrome:interaction with SP-B. Pediatr. Res.43,169-177
    9. Floros, J. and Kala, P. (1998) Surfactant proteins:molecular genetics of neonatal pulmonary diseases. Annu. Rev. Physiol.60,365-384
    10. Floros, J. and Lin, Z. (1999) Genetic variability of surfactant protein-B and respiratory distress diseases. Medscape General Medicine 1,1999
    11. Max, M., Pison, U. and Floros, J. (1996) Frequency of SP-B and SP-A1 gene polymorphisms in the acute respiratory syndrome (ARDS). Appl. Cardiopulm. Physiol.6,111-118
    12. Rova, M., Haataja, R., Marttila, R., Ollikainen, V., Tammela, O. and Hallman, M. (2004)Data mining and multiparameter analysis of lung surfactant protein genes in bronchopulmonary dysplasia. Hum. Mol. Genet.13,1095-1104
    13. Seifart, C., Plagens, A., Brodje, D., Muller, B., Von Wichert, P. and Floros, J. (2002)Surfactant protein B intron 4 variation in German patients with COPD and acute respiratory failure. Dis. Markers 18,129-136
    14. Seifart, C., Seifart, U., Plagens, A., Wolf, M. and von Wichert, P. (2002) Surfactant protein B gene variations enhance susceptibility to squamous cell carcinoma of the lung in German patients. Br. J. Cancer 87,212-217
    15. Wert, S.E., Whitsett, J.A.and Nogee, L. M. (2009) Genetic disorders of surfactant dysfunction. Pediatr Dev Pathol.12,253-274
    16.Nogee, L. M. (1998) Genetics of the hydrophobic surfactant proteins. Biochim Biophys Acta. 1408,323-333
    17. Hartl, D. and Griese, M. (2005) Interstitial lung disease in children--genetic background and associated phenotypes. Respir Res.6,32
    18. Hamvas, A., Heins, H. B., Guttentag, S. H., Wegner, D. J., Trusgnich, M.A., Bennet, K. W., Yang, P., Carlson, C. S., An, P. and Cole, F. S. (2009) Developmental and genetic regulation of human surfactant protein B in vivo. Neonatology.95, 117-124
    19. Nogee, L. M. (2004) Alterations in SP-B and SP-C expression in neonatal lung disease. Annu Rev Physiol.66,601-623
    20. Pastor, T., Talotti, G., Lewandowska, M.A. and Pagani, F. (2009) An Alu-derived intronic splicing enhancer facilitates intronic processing and modulates aberrant splicing in ATM. Nucleic Acids Res.37,7258-7267
    21. Ward, A. J. and Cooper, T.A. (2010) The pathobiology of splicing. J Pathol.220,152-163
    22.TejaK, CooperPH, SquiresJE, SchnatterlyPT.Pulmonary alveolar proteinosis in four siblings. 1981.N Engl J Med.Dec 3;305(23):1390-2.
    23. Ballard PL, Merrill JD, Godinez RI, Godinez MH, Truog WE, Ballard RA Surfactant protein profile of pulmonary surfactant in premature infants. Am J Respir Crit Care Med.2003 Nov 1;168(9):1123-8. Epub 2003 Aug 6.
    24. Lin, Z., Thomas, N. J., Wang, Y., Guo, X., Seifart, C., Shakoor, H. and Floros, J. (2005) Deletions within a CA-repeat-rich region of intron 4 of the human SP-B gene affect mRNA splicing. Biochem J.389,403-412
    25. Hamvas, A., Wegner, D. J., Trusgnich, M.A., Madden, K., Heins, H., Liu, Y, Rice, T., An, P., Watkins-Torry, J. and Cole, F. S. (2005) Genetic variant characterization in intron 4 of the surfactant protein B gene. Hum Mutat.26,494-495
    26. Hallman, M., Haataja, R. and Marttila, R. (2002) Surfactant proteins and genetic predisposition to respiratory distress syndrome. Semin Perinatol.26.450-460
    27. Gong, M.N., Wei, Z., Xu, L. L., Miller, D. P., Thompson, B. T. and Christiani, D. C. (2004) Polymorphism in the surfactant protein-B gene, gender, and the risk of direct pulmonary injury and ARDS. Chest.125,203-211
    28. Tazi, J., Bakkour, N. and Stamm, S. (2009) Alternative splicing and disease. Biochim Biophys Acta.1792,14-26
    29. Faustino, N. A. and Cooper, T.A. (2003) Pre-mRNA splicing and human disease. Genes Dev.17,419-437
    30. Hung, L. H., Heiner, M., Hui, J., Schreiner, S., Benes, V. and Bindereif, A. (2008) Diverse roles of hnRNP L in mammalian mRNA processing:a combined microarray and RNAi analysis. RNA.14,284-296
    31. Hui, J., Hung, L. H., Heiner, M., Schreiner, S., Neumuller, N., Reither, G, Haas, S. A. an- Bindereif, A. (2005) Intronic CA-repeat and CA-rich elements:a new class of regulators of mammalian alternative splicing. EMBO J.24,1988-1998
    32. Wang, G S. and Cooper, T.A. (2007) Splicing in disease:disruption of the splicing code and the decoding machinery. Nat Rev Genet.8,749-761
    33. Gebhardt F, Zanker KS, Brandt B. Modulation of epidermal growth factor receptor gene transcription by a polymorphic dinucleotide repeat in intron 1. J Biol Chem.1999 May 7;274(19):13176-80.
    34. Sueoka-Aragane N, Imai K, Komiya K, Sato A, Tomimasu R, Hisatomi T, Sakuragi T, Mitsuoka M, Hayashi S, Nakachi K, Sueoka E. Exon 19 of EGFR mutation in relation to the CA-repeat polymorphism in intron 1. Cancer Sci.2008 Jun;99(6):1180-7.
    35. Agarwal AK, Giacchetti G, Lavery G, Nikkila H, Palermo M, Ricketts M, McTernan C, Bianchi G, Manunta P, Strazzullo P, Mantero F, White PC, Stewart PM. CA-Repeat polymorphism in intron 1 of HSD11B2:effects on gene expression and salt sensitivity. Hypertension.2000 Aug;36(2):187-94.
    36. Black DL (2003) Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 72:291-336
    37. Brion, P., and E. Westhof.1997. Hierarchy and dynamics of RNA folding. Annu. Rev. Biophys. Biomol. Struct.26:113-137.
    38. Conn, G L., and D. E. Draper.1998. RNA structure. Curr. Opin. Struct. Biol.8:278-285.
    39. Fontana, W., D. A. Konings, P. F. Stadler, and P. Schuster.1993. Statistics of RNA secondary structures. Biopolymers 33:1389-1404.
    40. Buratti, E. and Baralle, F. E. (2004) Influence of RNA secondary structure on the pre-mRNA splicing process. Mol Cell Biol.24,10505-10514
    41. Sobczak, K., M. De Mezer, G. Michlewski, J. Krol, and W. J. Krzyzosiak.2003. RNA structure of trinucleotide repeats associated with human neurological diseases. Nucleic Acids Res. 31:5469-5482.
    42. Lopez De Silanes, I., M. Zhan, A. Lal, X. Yang, and M. Gorospe.2004. Identification of a target RNA motif for RNA-binding protein HuR. Proc. Natl. Acad. Sci. USA 101:2987-2992.
    43. Deshler, J. O., and J. J. Rossi.1991. Unexpected point mutations activate cryptic 3- splice sites by perturbing a natural secondary structure within a yeast intron. Genes Dev.5:1252-1263.
    44. Goguel, V., Y. Wang, and M. Rosbash.1993. Short artificial hairpins sequester splicing signals and inhibit yeast pre-mRNA splicing. Mol. Cell. Biol.13:6841-6848.
    45. Chen, Y, and W. Stephan.2003. Compensatory evolution of a precursor messenger RNA secondary structure in the Drosophila melanogaster Adh gene. Proc. Natl. Acad. Sci. USA 100:11499-11504.
    46. Munroe, S. H.1984. Secondary structure of splice sites in adenovirus mRNA precursors. Nucleic Acids Res.12:8437-8456.
    47. Mathews, D. H., Sabina, J., Zuker, M. and Turner, D. H. (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol.288,911-940
    48. Ge H, Manley JL:A protein factor, ASF, controls cell-specific alternative splicing of SV40 early pre-mRNA in vitro. Cell 1990,62:25-34.
    49. Krainer AR, Conway GC, Kozak D:Purification and characterization of pre-mRNA splicing factor SF2 from HeLa cells. Genes Dev 1990,4:1158-1171.
    50. Fu XD, Maniatis T:The 35-kDa mammalian splicing factor SC35 mediates specific interactions between U1 and U2 small nuclear ribonucleoprotein particles at the 3'splice site. Proc Natl Acad Sci USA 1992,89:1725-1729.
    51. Hui, J. (2009) Regulation of mammalian pre-mRNA splicing. Sci China C Life Sci.52, 253-260
    52. Graveley BR:Sorting out the complexity of SR protein functions. RNA 2000, 6:1197-1211.
    53. Blencowe BJ:Exonic splicing enhancers:mechanism of action, diversity and role in human genetic diseases. Trends Biochem Sci 2000,25:106-110.
    54. Black DL:Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 2003,72:291-336.
    55. Fu X-D:Specific commitment of different pre-mRNAs to splicing by single SR proteins. Nature 1993,365:82-85.
    56. Roscigno RF, Garcia-Blanco MA:SR proteins escort the U4/U6.U5 tri-snRNP to the spliceosome. RNA 1995,1:692-706.
    57. Mermoud JE, Cohen P, Lamond AI:Ser/Thr-specific protein phosphatases are required for both catalytic steps of pre-mRNA splicing. Nucleic Acids Res 1992,20:5263-5269.
    58. Mermoud JE, Cohen PT, Lamond AI:Regulation of mammalian spliceosome assembly by a protein phosphorylation mechanism. EMBO J 1994,13:5679-5688.
    59. Graveley BR, Hertel KJ, Maniatis T:A systematic analysis of the factors that determine the strength of pre- mRNA splicing enhancers. EMBO J 1998,17:6747-6756.
    60. Ibrahim EC, Schaal TD, Hertel KJ, Reed R, Maniatis T:Serine/arginine-rich protein-dependent suppression of exon skipping by exonic splicing enhancers. Proc Natl Acad Sci USA 2005, 102:5002-5007.
    61. Yann Hargousl, Guillaume M, Hautbergue, Aura M Tintaru, et al. Molecular basis of RNA recognition and TAP binding by the SR proteins SRp20 and 9G8. The EMBO Journal (2006) 25, 5126-5137
    1. Maniatis T, Reed R (2002) An extensive network of coupling among gene expression machines. Nature 416:499-506.
    2. Burge C, Tuschl T, Sharp P (1999) Splicing of precursors to mRNAs by the spliceosomes. In:Gesteland R, Cech T, Atkins J, editors. The RNA world.2nd edition. Cold Spring Harbor (New York):Cold Spring Harbor Laboratory Press. pp.525-560.
    3. Lopez A J (1998) Alternative splicing of pre-mRNA:Developmental consequences and mechanisms of regulation. Annu Rev Genet 32:279-305.
    4. Black DL (2003) Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 72:291-336.
    5. Jurica MS, Moore MJ (2003) Pre-mRNA splicing:Awash in a sea of proteins. Mol Cell 12:5-14.
    6. Nilsen TW (2003) The spliceosome:The most complex macromolecular machine in the cell? Bioessays 25:1147-1149.
    7. Graveley BR (2001) Alternative splicing:Increasing diversity in the proteomic world. Trends Genet 17:100-107.
    8. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, et al. (2001) Initial sequencing and analysis of the human genome. Nature 409:860-921.
    9. Modrek B, Lee CJ (2003) Alternative splicing in the human, mouse and rat genomes is associated with an increased frequency of exon creation and/or loss. Nat Genet 34:177-180.
    10. Holste D, Huo G, Tung V, Burge CB (2006) HOLLYWOOD:A comparative relational database of alternative splicing. Nucleic Acids Res 34:D56-D62.
    11. Faustino NA, Cooper TA (2003) Pre-mRNA splicing and human disease. Genes Dev 17:419-437.
    12. Lejeune F, Maquat LE (2005) Mechanistic links between nonsense-mediated mRNA decay and pre-mRNA splicing in mammalian cells. Curr Opin Cell Biol 17:309-315.
    13. Lewis BP, Green RE, Brenner SE (2003) Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc Natl Acad Sci U S A 100:189-192.
    14. Pan Q, SaltzmanAL, Kim YK, Misquitta C, Shai O, et al. (2006) Quantitative microarray profiling provides evidence against widespread coupling of alternative splicing with nonsense-mediated mRNA decay to control gene expression. Genes Dev 20:153-158.
    15. Lareau LF, Green RE, Bhatnagar RS, Brenner SE (2004) The evolving roles of alternative splicing. Curr Opin Struct Biol 14:273-282.
    16. Lee C, Wang Q (2005) Bioinformatics analysis of alternative splicing. Brief Bioinform 6:23-33.
    17. Cartegni L, Chew SL, Krainer AR (2002) Listening to silence and understanding nonsense:Exonic mutations that affect splicing. Nat Rev Genet 3:285-298.
    18. Matlin AJ, Clark F, Smith CW (2005) Understanding alternative splicing:Towards a cellular code. Nat Rev Mol Cell Biol 6:386-398.
    19. Ast G (2004) How did alternative splicing evolve? Nat Rev Genetics 5:773-782.
    20. Xing Y, Lee C (2006) Alternative splicing and RNA selection pressure-Evolutionary consequences for eukaryotic genomes. Nat Rev Genet 7:499-509.
    21. Kan Z, States D, Gish W (2002) Selecting for functional alternative splices in ESTs. Genome Res 12:1837-1845.
    22. Yeo G, Holste D, Kreiman G, Burge CB (2004) Variation in alternative splicing across human tissues. Genome Biol 5:R74.
    23. Kim E, Magen A, Ast G (2007) Different levels of alternative splicing among eukaryotes. Nucleic Acids Res 35:125-131.
    24. Brett D, Pospisil H, Valcarcel J, Reich J, Bork P (2002) Alternative splicing and genome complexity. Nat Genet 30:29-30.
    25. Lim LP, Burge CB (2001) A computational analysis of sequence features involved in recognition of short introns. Proc Natl Acad Sci U S A 98:11193-11198.
    26. Irimia M, Penny D, Roy SW (2007) Coevolution of genomic intron number and splice sites. Trends Genet 23:321-325.
    27. Wang Z, Rolish ME, Yeo G, Tung V, Mawson M, et al. (2004) Systematic identification and analysis of exonic splicing silencers. Cell 119:831-845.
    28. Fairbrother WG, Yeh RF, Sharp PA, Burge CB (2002) Predictive identification of exonic splicing enhancers in human genes. Science 297:1007-1013.
    29. Zheng CL, Fu XD, Gribskov M (2005) Characteristics and regulatory elements defining constitutive splicing and different modes of alternative splicing in human and mouse. Rna 11:1777-1787.
    30. Wang J, Smith PJ, Krainer AR, Zhang MQ (2005) Distribution of SR protein exonic splicing enhancer motifs in human protein-coding genes. Nucleic Acids Res 33: 5053-5062.
    31. Zheng ZM (2004) Regulation of alternative RNA splicing by exon definition and exon sequences in viral and mammalian gene expression. J Biomed Sci 11:278-294.
    32. Ladd AN, Cooper TA (2002) Finding signals that regulate alternative splicing in the post-genomic era. Genome Biol 3:reviews0008.
    33. Jensen KB, Dredge BK, Stefani G, Zhong R, Buckanovich RJ, et al. (2000) Nova-1 regulates neuron-specific alternative splicing and is essential for neuronal viability. Neuron 25:359-371.
    34. Grabowski P J (2000) Genetic evidence for a Nova regulator of alternative splicing in the brain. Neuron 25:254-256.
    35. Rahman L, Bliskovski V, Reinhold W, Zajac-Kaye M (2002) Alternative splicing of brain-specific PTB defines a tissue-specific isoform pattern that predicts distinct functional roles. Genomics 80:245-249.
    36. Jin Y, Suzuki H, Maegawa S, Endo H, Sugano S, et al. (2003) A vertebrate RNA-binding protein Fox-1 regulates tissue-specific splicing via the pentanucleotide GCAUG EMBO J 22:905-912.
    37. Nakahata S, Kawamoto S (2005) Tissue-dependent isoforms of mammalian Fox-1 homologs are associated with tissue-specific splicing activities. Nucleic Acids Res 33: 2078-2089.
    38. Brudno M, Gelfand MS, Spengler S, Zorn M, Dubchak I, et al. (2001) Computational analysis of candidate intron regulatory elements for tissue- specific alternative pre-mRNA splicing. Nucleic Acids Res 29:2338-2348.
    39. Liu HX, Zhang M, Krainer AR (1998) Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins. Genes Dev 12:1998-2012.
    40. Cartegni L, Wang J, Zhu Z, Zhang MQ, Krainer AR (2003) ESEfinder:A web resource to identify exonic splicing enhancers. Nucleic Acids Res 31:3568-3571.
    41. Fairbrother WG, Holste D, Burge CB, Sharp PA (2004) Single nucleotide polymorphism-based validation of exonic splicing enhancers. PLoS Biol 2:e268. doi:10.1371/journal.pbio.0020268
    42. Zhang XH, Chasin LA (2004) Computational definition of sequence motifs governing constitutive exon splicing. Genes Dev 18:1241-1250.
    43. Goren A, Ram O, Amit M, Keren H, Lev-Maor G, et al. (2006) Comparative analysis identifies exonic splicing regulatory sequences-The complex definition of enhancers and silencers. Mol Cell 22:769-781.
    44. Yeo GW, Nostrand EL, Liang TY (2007) Discovery and analysis of evolutionarily conserved intronic splicing regulatory elements. PLoS Genet 3:e85. doi:10.1371/journal. pgen.0030085
    45. Kabat JL, Barberan-Soler S, McKenna P, Clawson H, Farrer T, et al. (2006) Intronic alternative splicing regulators identified by comparative genomics in nematodes. PLoS Comput Biol 2:e86. doi:10.1371/journal.pcbi.0020086
    46. Stadler MB, Shomron N, Yeo GW, Schneider A, Xiao X, et al. (2006) Inference of splicing regulatory activities by sequence neighborhood analysis. PLoS Genet 2:el91. doi:10.1371/journal.pgen.0020191
    47. Baek D, Green P (2005) Sequence conservation, relative isoform frequencies, and nonsense-mediated decay in evolutionarily conserved alternative splicing. Proc Natl Acad Sci U S A 102:12813-12818.
    48. Wang W, Zheng H, Yang S, Yu H, Li J, et al. (2005) Origin and evolution of new exons in rodents. Genome Res 15:1258-1264.
    49. Hong X, Scofield DG, Lynch M (2006) Intron size, abundance, and distribution within untranslated regions of genes. Mol Biol Evol 23:2392-2404.
    50. Yeo GW, Van Nostrand E, Holste D, Poggio T, Burge CB (2005) Identification and analysis of alternative splicing events conserved in human and mouse. Proc Natl Acad Sci U S A 102:2850-2855.
    51. Nurtdinov RN, Artamonova Ⅱ, Mironov AA, Gelfand MS (2003) Low conservation of alternative splicing patterns in the human and mouse genomes. Hum Mol Genet 12: 1313-1320.
    52. Thanaraj TA, Clark F, Muilu J (2003) Conservation of human alternative splice events in mouse. Nucleic Acids Res 31:2544-2552.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700