沉默子及染色质重构蛋白对基因沉默和异染色质结构的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酿酒酵母染色质的大部分端粒附近,rDNA区域以及HML和HMR区域基因是沉默不表达的,形成了类似高等真核生物的异染色质结构。沉默子HML-E和HML-I对其第三号染色质的HML区域基因沉默起着决定作用,它们由复制起点识别复合物(Origin Recognition Complex, ORC)结合位点, (repressor activator Protein, Raplp)结合位点和自主复制序列(autonomously replicating sequence binding factor, Ab.f1p)结合位点中的三个或者两个结合位点所组成,这些结合位点被称为原沉默子(protosilencer)。沉默子通过多种蛋白募集沉默信息(silent information regulator, Sir)蛋白到它上面,进而沿着染色质纤维传递,形成基因沉默的异染色质区域。但组成沉默子的原沉默子单独情况下对基因沉默的作用尚未研究清楚,此外常染色质与异染色质之间的转化需要染色质的重构,但任意一种Sir蛋白都没有染色质重构活性,而染色质重构因子例如Fun30, Snf2, IswI等对基因沉默起一定作用,但是染色质重构因子在基因沉默以及异染色质形成过程中的具体作用尚未研究清楚。
     为研究原沉默子对基因沉默的作用,本研究采用带有报告基因URA3的不同原沉默子替代HML区域HML-I沉默子,比较URA3的基因表达的差别,发现原沉默子单独情况下没有沉默作用,但与HML-E沉默子共同作用下能在两者之间形成一定的基因沉默;为研究原沉默子拷贝数对基因沉默的影响,本研究利用带有报告基因URA3的不同拷贝数的原沉默子Abflp结合位点替代HML-I沉默子,发现增加拷贝数能增强基因沉默作用;为研究原沉默子在不同位置对基因沉默的影响,本研究利用带有报告基因URA3的原沉默子Raplp结合位点在不同位置的序列替代HML-I沉默子,发现Raplp在本身原来的位置有一定的基因沉默作用,在其他位置基本没有基因沉默作用。为研究原沉默子基因沉默产生差异的原因,通过DNA拓扑结构法研究了不同条件下原沉默子对该区域染色质DNA螺旋程度产生的影响,发现发现负超螺旋DNA的比例Abflp结合位点最高,ORC次之,Rap1结合位点最弱;为研究它们对对染色质结构产生的影响,通过不完全MNase降解结合Southern blot法发现不同的原沉默子沉默子相互作用下原沉默子附近的核小体结构发生较大变化,但沉默子附近的染色质结构没有发生变化,通过染色质结构变化上不同推测,可能是沉默子与原沉默子之间相互作用会随着它们种类,数目,位置的不同而不同,从而导致形成的基因沉默上存在差别。
     为研究重构蛋白在异染色质重排中的具体作用,本研究敲除了酵母的IswIp, Isw2p, Chdlp, Ino80p, Rad54p, Fun30等基因。发现敲除Isw2p, Chdlp, Ino80p, Rad54p基因对酵母的基因沉默没有影响,而敲除IswIp, Fun30基因会酵母的基因沉默产生影响;通过拓扑结构法以及MNase不完全降解结合Southern blot法发现敲除Fun30对异染色质的形成影响很大而对异染色质的维持影响不大,而敲除IswI对异染色质的形成影响不大但对异染色质的稳定维持影响很大。
     本研究创新之处:1)不同的原沉默子对插入的外源基因有不同的沉默作用,对异染色质核小体的排列以及染色质DNA螺旋有不同的影响;2)增加原沉默子Abfl结合位点拷贝数能增强基因沉默作用:3)改变原沉默子的排列也会影响基因沉默;4)染色质重构因子Fun30和IswI这两种蛋白对基因沉默起增强作用;5)Fun30对异染色质的形成起重要作用而对异染色质的稳定维持起很小作用,而IswI对异染色质的形成起很小作用,而对异染色质的稳定维持起重要作用。
The basic unit of chromatin is the nucleosome, which is composed of two copies each of the four core histones H2A.H2B, H32. H42 and approximately 146 bp of DNA wrapped in about two turns around a histone octamer complex. Chromatin is divided into different regions, which are loosely structured euchromatin and highly condensed chromatin heterochromatin. Gene expression is normal in euchromatin,but gene expression is silent in heterochromatin which is also known as silent chromatin. Heterochromatin in Saccharomyces cerevisiae exists at HML and HMR loci as well as subtelomeric region. Like its metazoan counterpart, Saccharomyces cerevisiae heterochromatin consists of highly like its metazoan counterpart, its heterochromatin consists of highly ordered and stably positioned nucleosomes. It also bears characteristic histone modifications such as hypoacetylation and hypomethylation, DNA replication occurs in later S phase.
     Establishment of HM loci silencing is initiated at silencer, which are composed of two or three combinations of binding sites for proteins Rap1 protein, Abf1 protein, and the ORC. These binding sites are called protosilencer. It was proposed that silencer-binding proteins recruit a complex of SIR complex (Sir2p/Sir3p/Sir4p), which is an integral part of the silent chromatin. Sir2p was found to be a histone deacetylase, Sir3p/Sir4p interact with the N-terminal tails of histones H3 and H4, and there is evidence that Sir3p (hence the SIR complex) has a much higher affinity for hypoaceylated histones. So Sir2p recruited to the silencer deacetylates histones in an adjacent nucleosome enabling it to bind another SIR complex with high affinity, the nucleosome-bound SIR complex in turn deacetylates the neighboring nucleosome allowing it to recruit a new SIR complex,In this manner, the SIR complex promotes its own propagation along the chromatin to form heterochromatin.
     Although S. cerevisiae silencers function through a common mechanism, they exhibit different efficiencies in gene silencing. At the HMR locus, HMR-E can silence the HMRa genes on its own, whereas HMR-I can't, or play an auxiliary role. At the HML locus, on the other hand, either HML-E or HML-I alonecan silence the HMLa genes. When ectopically inserted near the MAT locus, HMR-E was shown to be stronger than HML-E. A possible explanation for the difference of the silencers concerning their potencies of silencing is that each silencer consists of a unique sequence, and maybe we will benefit a lot from studying protosilencer.
     In addition, there are huge difference between enchromatin and heterchromatin, and converting chromatin form one form to another need its remodeling, but none of the Sir proteins has chromatin remodeling activity. Fortunately, some evidences show that chromatin remodeling proteins Fun30, Snf2, Isw1 are involved in transcriptional silencing, how any of these factors contributes to gene silencing and heterochromatin structure is not known.
     Our finding that protsilencer alone can not produce gene silencing; with the help of HML-E silencer, protosilencer Abf1p and ORC binding sites can produce gene silencing on on its both sides while Rap1 binding site only have gene silencing on its right side, these results show that protosilencer play auxiliary role on gene silencing, and Rap1 binding site not only play auxiliary role on gene silencing, but also has boundary acitivity. We also found that increasing the copy number Abf1 binding sites can enhance the role of gene silencing with helping of HML-E silencer, and it is amazing that two copies of the Abf1 binding site alone can have gene silencing without HML-E silencer, but the reasons for the change need further study; we also found that Raplp binding sites varys degrees of gene silencing in different locations, and only has gene silencing effect in its original position, and the possible explanation for the difference maybe because of the sequence around it can increased its role in gene silecing.
     In order to study the intrinsic reason of gene silencing of protosilencer, frist we adopted the topology assay to analyze the supericoil chromatin DNA. We found that the ORC binding site and Abf1p binding site together with HML-E silencer formed higher proportion of negative supercoils, but the Rap1 binding site together with HML-E silencer form lower percentage DNA negative supercoils; we also found if we increases the copy number of Abfl binding site which is together with HML-E silencer, negative supercoiled DNA would increase, especially at three copies almost all of DNA circle will be negative supercoils; We found that the Abf1p binding site t with help of HML-E silencer, they would form more negative DNA supercoils at original location of Rap1 binding site than other locations. The DNA supercoils data is consistent with previous analysis of gene silencing.
     Moreover, we mapped nucleosomes within HM1-E and protosilencer by micrococcal nuclease digestion and indirect end labeling. The results show that the chromatin nucleosome arrangement between HML-E silencer and ORC binding site or Abfl binding site are similar with HML-E with the HMR-E silencer, but the chromatin nucleosome arrangement between HML-E silencer and Rapl binding site are similar with HML-E alone. In addition, nucleosomes arrangement near the protosilencer in sir- strains is similar with Sir+ strains, so it is indicated that the protosilencer changes nucleosome around it does not depend on the Sir proteins.
     In addition, there is evidence implicating chromatin remodeling proteins play an important role on heterochromatin formation, but their exact roles are not clear. We demonstrate that the Fun30p and IswIp chromatin remodeling factors are similarly required for gene silencing at the HML locus, but they differentially contribute to the structure and stability of HML heterochromatin in Saccharomyces cerevisiae. In the absence of Fun30p, only a partially silenced structure is established at HML. This structure likely represents an intermediate state of heterochromatin that is between fully silenced and derepressed chromatin structures. Moreover, Fun30p removal reduces the rate of de novo establishment of heterochromatin, suggesting that Fun30p assists the silencing machinery in forming mature heterochromatin. On the other hand, IswIp is dispensable for the formation of heterochromatin structure, but is instead critically required for maintaining its stability. Therefore, chromatin remodeling proteins may rearrange nucleosomes during the formation of heterochromatin, or serve to stabilize/maintain heterochromatin structure.
引文
[1]Grewal S I, Moazed D. Heterochromatin and epigenetic control of gene expression[J]. Science,2003,301 (5634):798-802.
    [2]Cam H, Grewal S I. RNA interference and epigenetic control of heterochromatin assembly in fission yeast [J]. Cold Spring Harb Symp Quant Biol, 2004,69:419-427.
    [3]Carrel L, Willard H F. X-inactivation profile reveals extensive variability in X-linked gene expression in females[J]. Nature, 2005,434(7031):400-404.
    [4]Weber J M, Ehrenhofer-Murray A E. Design of a minimal silencer for the silent mating-type locus HML of Saccharomyces cerevisiae [J]. Nucleic Acids Res, 2010,38(22):7991-8000.
    [5]Klar A J, Mclndoo J, Hicks J B, et al. Precise mapping of the homothallism genes HML and HMR in Saccharomyces cerevisiae[J]. Genetics,1980,96(2): 315-320.
    [6]Mahoney D J, Broach J R. The HML mating-type cassette of Saccharomyces cerevisiae is regulated by two separate but functionally equivalent silencers[J]. Mol Cell Biol,1989,9(11):4621-4630.
    [7]Lebrun E, Revardel E, Boscheron C, et al. Protosilencers in Saccharomyces cerevisiae subtelomeric regions[J]. Genetics,2001,158(1): 167-176.
    [8]Hoppe G J, Tanny J C, Rudner A D, et al. Steps in assembly of silent chromatin in yeast:Sir3-independent binding of a Sir2/Sir4 complex to silencers and role for Sir2-dependent deacetylation[J]. Mol Cell Biol, 2002,22(12):4167-4180.
    [9]Kimmerly W, Buchman A, Kornberg R, et al. Roles of two DNA-binding factors in replication, segregation and transcriptional repression mediated by a yeast silencer[J]. EMBO J,1988,7(7):2241-2253.
    [10]Lynch P J, Rusche L N. An auxiliary silencer and a boundary element maintain high levels of silencing proteins at HMR in Saccharomyces cerevisiae[J]. Genetics,2010,185(1):113-127.
    [11]Smith C L, Peterson C L. A conserved Swi2/Snf2 ATPase motif couples ATP hydrolysis to chromatin remodeling[J]. Mol Cell Biol,2005,25(14): 5880-5892.
    [12]Awad S, Ryan D, Prochasson P, et al. The Snf2 homolog Fun30 acts as a homodimeric ATP-dependent chromatin-remodeling enzyme[J]. J Biol Chem, 2010,285(13):9477-9484.
    [13]Thoma N H, Czyzewski B K, Alexeev A A, et al. Structure of the SWI2/SNF2 chromatin-remodeling domain of eukaryotic Rad54[J]. Nat Struct Mol Biol, 2005,12(4):350-356.
    [14]Awad S, Ryan D, Prochasson P, et al. The Snf2 homolog Fun30 acts as a homodimeric ATP-dependent chromatin-remodeling enzyme[J]. J Biol Chem, 2010,285 (13):9477-9484.
    [15]Neves-Costa A, Will W R, Vetter A T, et al. The SNF2-fami]y member Fun30 promotes gene silencing in heterochromatic loci[J]. PLoS One,2009,4(12): e8111.
    [16]Pinskaya M, Nair A, Clynes D, et al. Nucleosome remodeling and transcriptional repression are distinct functions of Iswl in Saccharomyces cerevisiae[J]. Mol Cell Biol,2009,29 (9):2419-2430.
    [17]Luger K, Mader A W, Richmond R K, et al. Crystal structure of the nucleosome core particle at 2.8 A resolution[J]. Nature, 1997,389(6648):251-260.
    [18]Pachov G V, Gabdoulline R R, Wade R C. On the structure and dynamics of the complex of the nucleosome and the linker histone[J]. Nucleic Acids Res, 2011.
    [19]Grewal S I, Moazed D. Heterochromatin and epigenetic control of gene expression [J]. Science,2003,301(5634):798-802.
    [20]Lynch P J, Rusche L N. An auxiliary silencer and a boundary element maintain high levels of silencing proteins at HMR in Saccharomyces cerevisiae[J]. Genetics,2010,185(1):113-127.
    [21]Chang J S, Winston F. Spt10 and Spt21 are required for transcriptional silencing in Saccharomyces cerevisiae[J]. Eukaryot Cell,2010.
    [22]Patterson E E, Fox C A. The Ku complex in silencing the cryptic mating-type loci of Saccharomyces cerevisiae[J]. Genetics,2008,180(2): 771-783.
    [23]Chaudhuri S, Wyrick J J, Smerdon M J. Histone H3 Lys79 methylation is required for efficient nucleotide excision repair in a silenced locus of Saccharomyces cerevisiae[J]. Nucleic Acids Res,2009,37(5):1690-1700.
    [24]Biswas M, Maqani N, Rai R, et al. Limiting the extent of the RDN1 heterochromatin domain by a silencing barrier and Sir2 protein levels in Saccharomyces cerevisiae[J]. Mo] Cell Biol,2009,29(10):2889-2898.
    [25]Verzijlbergen K F, Faber A W, Stulemeijer I J, et al. Multiple histone modifications in euchromatin promote heterochromatin formation by redundant mechanisms in Saccharomyces cerevisiae[J]. BMC Mol Biol,2009,10:76.
    [26]Buchberger J R, Onishi M, Li G, et al. Sir3-nucleosome interactions in spreading of silent chromatin in Saccharomyces cerevisiae[J]. Mol Cell Biol, 2008,28(22):6903-6918.
    [27]Bi X, Broach J R. DNA in transcriptionally silent chromatin assumes a distinct topology that is sensitive to cell cycle progression[J]. Mol Cell Biol,1997,17(12):7077-7087.
    [28]Weiss K, Simpson R T. High-resolution structural analysis of chromatin at specific loci:Saccharomyces cerevisiae silent mating type locus HMLalpha[J]. Mol Cell Biol,1998,18(9):5392-5403.
    [29]Yang B, Britton J, Kirchmaier A L. Insights into the impact of histone acetylation and methylation on Sir protein recruitment, spreading, and silencing in Saccharomyces cerevisiae[J]. J Mol Biol,2008,381(4):826-844.
    [30]Laible G, Wolf A, Dorn R, et al. Mammalian homologues of the Polycomb-group gene Enhancer of zeste mediate gene silencing in Drosophila heterochromatin and at S. cerevisiae telomeres[J]. EMBO J,1997,16(11):3219-3232.
    [31]Pedram M, Sprung C N, Gao Q, et al. Telomere position effect and silencing of transgenes near telomeres in the mouse [J]. Mol Cell Biol, 2006,26(5):1865-1878.
    [32]Baur J A, Zou Y, Shay J W, et al. Telomere position effect in human cells[J]. Science,2001,292(5524):2075-2077.
    [33]Palmer J M, Mallaredy S, Perry D W, et al. Telomere position effect is regulated by heterochromatin-associated proteins and NkuA in Aspergillus nidulans[J]. Microbiology,2010,156(Pt 12):3522-3531.
    [34]Baur J A, Wright W E, Shay J W. Analysis of mammalian telomere position effect[J]. Methods Mol Biol,2004,287:121-136.
    [35]Denisenko 0, Bomsztyk K. Yeast hnRNP K-like genes are involved in regulation of the telomeric position effect and telomere length[J]. Mol Cell Biol,2002,22(1):286-297.
    [36]Sandell L L, Gottschling D E, Zakian V A. Transcription of a yeast telomere alleviates telomere position effect without affecting chromosome stability[J]. Proc Natl Acad Sci U S A,1994,91 (25):12061-12065.
    [37]Pryde F E, Louis E J. Limitations of silencing at native yeast telomeres[J]. EMBO J,1999,18(9):2538-2550.
    [38]Loney E R, Inglis P W, Sharp S, et al. Repressive and non-repressive chromatin at native telomeres in Saccharomyces cerevisiae[J]. Epigenetics Chromatin,2009,2(1):18.
    [39]Pryde F E, Louis E J. Saccharomyces cerevisiae telomeres. A review[J]. Biochemistry (Mosc),1997,62(11):1232-1241.
    [40]Lustig A J. Mechanisms of silencing in Saccharomyces cerevisiae[J]. Curr Opin Genet Dev,1998,8(2):233-239.
    [41]Gao L, Gross D S. Using genomics and proteomics to investigate mechanisms of transcriptional silencing in Saccharomyces cerevisiae[J]. Brief Funct Genomic Proteomic,2006,5(4):280-288.
    [42]Cockell M M, Perrod S, Gasser S M. Analysis of sir2p domains required for rDNA and telomeric silencing in saccharomyces cerevisiae[J]. Genetics, 2000,155(4):2021.
    [43]Bairwa N K, Zzaman S, Mohanty B K, et al. Replication fork arrest and rDNA silencing are two independent and separable functions of the replication terminator protein Fob1 of Saccharomyces cerevisiae[J]. J Biol Chem, 2010,285(17):12612-12619.
    [44]Rine J, Herskowitz I. Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae[J]. Genetics, 1987,116(1):9-22.
    [45]Hecht A, Laroche T, Strahl-Bolsinger S, et al. Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins:a molecular model for the formation of heterochromatin in yeast[J]. Cell,1995,80(4):583-592.
    [46]Moazed D. Enzymatic activities of Sir2 and chromatin silencing [J]. Curr Opin Cell Biol,2001,13(2):232-238.
    [47]Moazed D. Common themes in mechanisms of gene silencing [J]. Mol Cell, 2001,8(3):489-498.
    [48]Luo K, Vega-Palas M A, Grunstein M. Rapl-Sir4 binding independent of other Sir, yKu, or histone interactions initiates the assembly of telomeric heterochromatin in yeast[J]. Genes Dev,2002,16(12):1528-1539.
    [49]Buck S W, Shore D. Action of a RAP1 carboxy-terminal silencing domain reveals an underlying competition between HMR and telomeres in yeast [J]. Genes Dev,1995,9(3):370-384.
    [50]Lynch P J, Rusche L N. A silencer promotes the assembly of silenced chromatin independently of recruitment[J]. Mol Cell Biol,2009,29(1):43-56.
    [51]Rusche L N, Lynch P J. Assembling heterochromatin in the appropriate places:A boost is needed[J]. J Cell Physiol,2009,219(3):525-528.
    [52]Lynch P J, Rusche L N. An auxiliary silencer and a boundary element maintain high levels of silencing proteins at HMR in Saccharomyces cerevisiae[J]. Genetics,2010,185(1):113-127.
    [53]Miele A, Dekker J. Mapping cis- and trans- chromatin interaction networks using chromosome conformation capture (3C)[J]. Methods Mol Biol, 2009,464:105-121.
    [54]Valenzuela L, Dhillon N, Dubey RN, et al. Long-range communication between the silencers of HMR[J]. Mol Cell Biol,2008,28(6):1924-1935.
    [55]Zhang Z, Hayashi M K, Merkel O, et al. Structure and function of the BAH-containing domain of Orc1p in epigenetic silencing[J]. EMBO J, 2002,21(17):4600-4611.
    [56]Gardner K A, Rine J, Fox C A. A region of the Sirl protein dedicated to recognition of a silencer and required for interaction with the Orc1 protein in saccharomyces cerevisiae[J]. Genetics,1999,151(1):31-44.
    [57]Moretti P, Shore D. Multiple interactions in Sir protein recruitment by Raplp at silencers and telomeres in yeast [J]. Mol Cell Biol, 2001,21 (23):8082-8094.
    [58]Luo K, Vega-Palas M A, Grunstein M. Rapl-Sir4 binding independent of other Sir, yKu, or histone interactions initiates the assembly of telomeric heterochromatin in yeast[J]. Genes Dev,2002,16(12):1528-1539.
    [59]Hoppe G J, Tanny J C, Rudner A D, et al. Steps in assembly of silent chromatin in yeast:Sir3-independent binding of a Sir2/Sir4 complex to silencers and role for Sir2-dependent deacetylation[J]. Mol Cell Biol, 2002,22(12):4167-4180.
    [60]Rusche L N, Kirchmaier A L, Rine J. The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae[J]. Annu Rev Biochem,2003,72:481-516.
    [61]Tsukamoto Y, Kato J, Ikeda H. Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae[J]. Nature, 1997,388(6645):900-903.
    [62]Carmen A A, Milne L, Grunstein M. Acetylation of the yeast histone H4 N terminus regulates its binding to heterochromatin protein SIR3[J]. J Biol Chem,2002,277(7):4778-4781.
    [63]Cuperus G, Shafaatian R, Shore D. Locus specificity determinants in the multifunctional yeast silencing protein Sir2[J]. EMBO J, 2000,19(11):2641-2651.
    [64]Donze D, Adams C R, Rine J, et al. The boundaries of the silenced HMR domain in Saccharomyces cerevisiae[J]. Genes Dev,1999,13(6):698-708.
    [65]Sun F L, Elgin S C. Putting boundaries on silence[J]. Cell, 1999,99(5):459-462.
    [66]Kellum R, Schedl P. A position-effect assay for boundaries of higher order chromosomal domains[J]. Cell,1991,64(5):941-950.
    [67]Kellum R, Schedl P. A group of scs elements function as domain boundaries in an enhancer-blocking assay[J]. Mol Cell Biol, 1992,12(5):2424-2431.
    [68]Gaszner B, Nyitrai M, Hartvig N, et al. Replacement of ATP with ADP affects the dynamic and conformational properties of actin monomer[J]. Biochemistry,1999,38 (39):12885-12892.
    [69]Corces V G, Geyer P K. Interactions of retrotransposons with the host genome:the case of the gypsy element of Drosophila[J]. Trends Genet, 1991,7(3):86-90.
    [70]West A G, Huang S, Gaszner M, et al. Recruitment of histone modifications by USF proteins at a vertebrate barrier element[J]. Mol Cell, 2004,16(3):453-463.
    [71]West J B. Comparative physiology of the pulmonary blood-gas barrier: the unique avian solution[J]. Am J Physiol Regul Integr Comp Physiol, 2009,297(6):R1625-R1634.
    [72]West M R, Ferguson D J, Hart V J, et al. Maintenance of the epithelial barrier in a bronchial epithelial cell line is dependent on functional E-cadherin local to the tight junctions[J]. Cell Commun Adhes,2002,9(1):29-44.
    [73]Sun F L, Elgin S C. Putting boundaries on silence[J]. Cell, 1999,99(5):459-462.
    [74]Sun F L, Haynes K, Simpson C L, et al. cis-Acting determinants of heterochromatin formation on Drosophila melanogaster chromosome four[J]. Mol Cell Biol,2004,24(18):8210-8220.
    [75]Bi X, Broach J R. UASrpg can function as a heterochromatin boundary element in yeast[J]. Genes Dev,1999,13(9):1089-1101.
    [76]Fourel G, Revardel E, Koering C E, et al. Cohabitation of insulators and silencing elements in yeast subtelomeric regions[J]. EMBO J, 1999,18 (9):2522-2537.
    [77]Ishii K, Arib G, Lin C, et al. Chromatin boundaries in budding yeast: the nuclear pore connection[J]. Cell,2002,109(5):551-562.
    [78]Bi X, Yu Q, Sandmeier J J, et al. Regulation of transcriptional silencing in yeast by growth temperature[J]. J Mol Biol,2004,344(4):893-905.
    [79]Chesnokov I N. Multiple functions of the origin recognition complex [J]. Int Rev Cytol,2007,256:69-109.
    [80]Nguyen V Q, Co C, Li J J. Cyclin-dependent kinases prevent DNA re-replication through multiple mechanisms[J]. Nature, 2001,411(6841):1068-1073.
    [8l]Archambault V, Ikui A E, Drapkin B J, et al. Disruption of mechanisms that prevent rereplication triggers a DNA damage response [J]. Mol Cell Biol, 2005,25(15):6707-6721.
    [82]Gibson D G, Bell S P, Aparicio 0 M. Cell cycle execution point analysis of ORC function and characterization of the checkpoint response to ORC inactivation in Saccharomyces cerevisiae[J]. Genes Cells,2006,11 (6):557-573.
    [83]Bowers J L, Randell J C, Chen S, et al. ATP hydrolysis by ORC catalyzes reiterative Mcm2-7 assembly at a defined origin of replication[J]. Mol Cell, 2004,16 (6):967-978.
    [84]Bowers J L, Randell J C, Chen S, et al. ATP hydrolysis by ORC catalyzes reiterative Mcm2-7 assembly at a defined origin of replication[J]. Mol Cell, 2004,16(6):967-978.
    [85]Triolo T, Sternglanz R. Role of interactions between the origin recognition complex and SIR1 in transcriptional silencing [J]. Nature, 1996,381 (6579):251-253.
    [86]Miyake T, Reese J, Loch C M, et al. Genome-wide analysis of ARS (autonomously replicating sequence) binding factor 1 (Abflp)-mediated transcriptional regulation in Saccharomyces cerevisiae[J]. J Biol Chem, 2004,279(33):34865-34872.
    [87]Beinoraviciute-Kellner R, Lipps G, Krauss G. In vitro selection of DNA binding sites for ABF1 protein from Saccharomyces cerevisiae[J]. FEBS Lett, 2005,579(20):4535-4540.
    [88]Rhode P R, Sweder K S, Oegema K F, et al. The gene encoding ARS-binding factor I is essential for the viability of yeast[J]. Genes Dev, 1989,3(12A):1926-1939.
    [89]Wiltshire S, Raychaudhuri S, Eisenberg S. An Abflp C-terminal region lacking transcriptional activation potential stimulates a yeast origin of replication[J]. Nucleic Acids Res,1997,25(21):4250-4256.
    [90]Pryde F E, Louis E J. Limitations of silencing at native yeast telomerest[J]. EMBO J,1999,18(9):2538-2550.
    [91]Loo S, Laurenson P, Foss M, et al. Roles of ABF1, NPL3, and YCL54 in silencing in Saccharomyces cerevisiae[J]. Genetics,1995,141(3):889-902.
    [92]Lascaris R F, Groot E, Hoen P B, et al. Different roles for abflp and a T-rich promoter element in nucleosome organization of the yeast RPS28A gene[J]. Nucleic Acids Res,2000,28(6):1390-1396.
    [93]Venditti P, Costanzo G, Negri R, et al. ABFI contributes to the chromatin organization of Saccharomyces cerevisiae ARS1 B-domain[J]. Biochim Biophys Acta,1994,1219(3):677-689.
    [94]Reed S H, Akiyama M, Stillman B, et al. Yeast autonomously replicating sequence binding factor is involved in nucleotide excision repair[J]. Genes Dev,1999,13(23):3052-3058.
    [95]Miyake T, Reese J, Loch C M, et al. Genome-wide analysis of ARS (autonomously replicating sequence) binding factor 1 (Abflp)-mediated transcriptional regulation in Saccharomyces cerevisiae[J]. J Biol Chem, 2004,279(33):34865-34872.
    [96]Yoo H Y, Jung S Y, Kim Y H, et al. Transcriptional control of the Saccharomyces cerevisiae ADH1 gene by autonomously replicating sequence binding factor 1[J]. Curr Microbiol,1995,31(3):163-168.
    [97]Chambers A, Stanway C, Tsang J S, et al. ARS binding factor 1 binds adjacent to RAP1 at the UASs of the yeast glycolytic genes PGK and PYK1[J]. Nucleic Acids Res,1990,18(18):5393-5399.
    [98]Brindle P K, Holland J P, Willett C E, et al. Multiple factors bind the upstream activation sites of the yeast enolase genes ENO1 and ENO2:ABFI protein, like repressor activator protein RAP1, binds cis-acting sequences which modulate repression or activation of transcription[J]. Mol Cell Biol, 1990,10(9):4872-4885.
    [99]Park H D, Scott S, Rai R, et al. Synergistic operation of the CAR2 (Ornithine transaminase) promoter elements in Saccharomyces cerevisiae[J]. J Bacteriol,1999,181(22):7052-7064.
    [100]Ozsarac N, Straffon M J, Dalton H E, et al. Regulation of gene expression during meiosis in Saccharomyces cerevisiae:SPR3 is controlled by both ABFI and a new sporulation control element [J]. Mol Cell Biol, 1997,17(3):1152-1159.
    [101]Gailus-Durner V, Xie J, Chintamaneni C, et al. Participation of the yeast activator Abfl in meiosis-specific expression of the HOP1 gene[J]. Mol Cell Biol,1996,16(6):2777-2786.
    [102]Loch C M, Mosammaparast N, Miyake T, et al. Functional and physical interactions between autonomously replicating sequence-binding factor 1 and the nuclear transport machinery[J]. Traffic,2004,5(12):925-935.
    [103]Cho G, Kim J, Rho H M, et al. Structure-function analysis of the DNA binding domain of Saccharomyces cerevisiae ABF1[J]. Nucleic Acids Res, 1995,23(15):2980-2987.
    [104]Miyake T, Loch C M, Li R. Identification of a multifunctional domain in autonomously replicating sequence-binding factor 1 required for transcriptional activation, DNA replication, and gene silencing[J]. Mol Cell Biol,2002,22 (2):505-516.
    [105]Beinoraviciute-Kellner R, Lipps G, Krauss G. In vitro selection of DNA binding sites for ABF1 protein from Saccharomyces cerevisiae [J]. FEBS Lett, 2005,579(20):4535-4540.
    [106]Upton T, Wiltshire S, Francesconi S, et al. ABF1 Ser-720 is a predominant phosphorylation site for casein kinase Ⅱ of Saccharomyces cerevisiae[J]. J Biol Chem,1995,270(27):16153-16159.
    [107]Loch C M, Mosammaparast N, Miyake T, et al. Functional and physical interactions between autonomously replicating sequence-binding factor 1 and the nuclear transport machinery[J]. Traffic,2004,5(12):925-935.
    [108]Pina B, Fernandez-Larrea J, Garcia-Reyero N, et al. The different (sur)faces of Rap1p[J]. Mol Genet Genomics,2003,268(6):791-798.
    [109]Lieb J D, Liu X, Botstein D, et al. Promoter-specific binding of Rapl revealed by genome-wide maps of protein-DNA association[J]. Nat Genet, 2001,28(4):327-334.
    [110]Morse R H. RAP, RAP, open up! New wrinkles for RAP1 in yeast [J]. Trends Genet,2000,16(2):51-53.
    [111]Lieb J D, Liu X, Botstein D, et al. Promoter-specific binding of Rap1 revealed by genome-wide maps of protein-DNA association[J]. Nat Genet, 2001,28(4):327-334.
    [112]Brindle P K, Holland J P, Willett C E, et al. Multiple factors bind the upstream activation sites of the yeast enolase genes ENO1 and ENO2:ABFI protein, like repressor activator protein RAP1, binds cis-acting sequences which modulate repression or activation of transcription[J]. Mol Cell Biol, 1990,10(9):4872-4885.
    [113]Berger S L. Histone modifications in transcriptional regulation[J]. Curr Opin Genet Dev,2002,12(2):142-148.
    [114]Becker P B, Horz W. ATP-dependent nucleosome remodeling[J]. Annu Rev Biochem,2002,71:247-273.
    [115]Strahl B D, Allis C D. The language of covalent histone modifications[J]. Nature,2000,403(6765):41-45.
    [116]de la Cruz X, Lois S, Sanchez-Molina S, et al. Do protein motifs read the histone code?[J]. Bioessays,2005,27(2):164-175.
    [117]Kingston R E, Narlikar G J. ATP-dependent remodeling and acetylation as regulators of chromatin fluidity[J]. Genes Dev,1999,13(18):2339-2352.
    [118]Clark M W, Zhong W W, Keng T, et al. Identification of a Saccharomyces cerevisiae homolog of the SNF2 transcriptional regulator in the DNA sequence of an 8.6 kb region in the LTE1-CYS1 interval on the left arm of chromosome I[J]. Yeast,1992,8(2):133-145.
    [119]Flaus A, Martin D M, Barton G J, et al. Identification of multiple distinct Snf2 subfamilies with conserved structural motifs [J]. Nucleic Acids Res,2006,34 (10):2887-2905.
    [120]Mizuguchi G, Shen X, Landry J, et al. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex[J]. Science, 2004,303(5656):343-348.
    [121]Papamichos-Chronakis M, Krebs J E, Peterson C L. Interplay between Ino80 and Swr1 chromatin remodeling enzymes regulates cell cycle checkpoint adaptation in response to DNA damage[J]. Genes Dev,2006,20(17):2437-2449.
    [122]Awad S, Ryan D, Prochasson P, et al. The Snf2 homolog Fun30 acts as a homodimeric ATP-dependent chromatin-remodeling enzyme[J]. J Biol Chem, 2010,285(13):9477-9484.
    [123]Neves-Costa A, Will W R, Vetter A T, et.al. The SNF2-family member Fun30 promotes gene silencing in heterochromatic loci[J]. PLoS One,2009, 4(12):e8111.
    [124]Mellor J, Morillon A. ISWI complexes in Saccharomyces cerevisiae[J]. Biochim Biophys Acta,2004,1677(1-3):100-112.
    [125]Gartenberg M R. The Sir proteins of Saccharomyces cerevisiae: mediators of transcriptional silencing and much more[J]. Curr Opin Microbiol, 2000,3(2):132-137.
    [126]Zou Y, Yu Q, Chiu Y H, et al. Position effect on the directionality of silencer function in Saccharomyces cerevisiae[J]. Genetics, 2006,174(1):203-213.
    [127]Southern E M. Detection of specific sequences among DNA fragments separated by gel electrophoresis[J]. J Mol Biol,1975,98(3):503-517.
    [128]Zou Y, Yu Q, Chiu Y H, et al. Position effect on the directionality of silencer function in Saccharomyces cerevisiae[J]. Genetics, 2006,174(1):203-213.
    [129]Gannoun-Zaki L, Jost A, Mu J, et al. A silenced Plasmodium falciparum var promoter can be activated in vivo through spontaneous deletion of a silencing element in the intron[J]. Eukaryot Cell,2005,4(2):490-492.
    [130]Seth K A, Majzoub J A. Repressor element silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) can act as an enhancer as well as a repressor of corticotropin-releasing hormone gene transcription [J]. J Biol Chem,2001,276(17):13917-13923.
    [131]Weber J M, Ehrenhofer-Murray A E. Design of a minimal silencer for the silent mating-type locus HML of Saccharomyces cerevisiae [J]. Nucleic Acids Res,2010.
    [132]Rivier D H, Ekena J L, Rine J. HMR-I is an origin of replication and a silencer in Saccharomyces cerevisiae[J]. Genetics,1999,151(2):521-529.
    [133]Lynch P J, Rusche L N. An auxiliary silencer and a boundary element maintain high levels of silencing proteins at HMR in Saccharomyces cerevisiae[J]. Genetics,2010,185(1):113-127.
    [134]Maillet L, Boscheron C, Gotta M, et al. Evidence for silencing compartments within the yeast nucleus:a role for telomere proximity and Sir protein concentration in silencer-mediated repression[J]. Genes Dev, 1996,10(14):1796-1811.
    [135]Boscheron C, Maillet L, Marcand S, et al. Cooperation at a distance between silencers and proto-silencers at the yeast HML locus[J]. EMBO J, 1996,15(9):2184-2195.
    [136]Lebrun E, Revardel E, Boscheron C, et al. Protosilencers in Saccharomyces cerevisiae subtelomeric regions[J]. Genetics, 2001,158(1):167-176.
    [137]van Leeuwen F, Gottschling D E. Assays for gene silencing in yeast [J]. Methods Enzymol,2002,350:165-186.
    [138]Bi X, Broach J R. DNA in transcriptionally silent chromatin assumes a distinct topology that is sensitive to cell cycle progression[J]. Mol Cell Biol,1997,17(12):7077-7087.
    [139]Mellor J, Morillon A. ISWI complexes in Saccharomyces cerevisiae[J]. Biochim Biophys Acta,2004,1677(1-3):100-112.
    [140]Bi X, Broach J R. DNA in transcriptionally silent chromatin assumes a distinct topology that is sensitive to cell cycle progression [J]. Mol Cell Biol,1997,17(12):7077-7087.
    [141]Cheng T H, Li Y C, Gartenberg M R. Persistence of an alternate chromatin structure at silenced loci in the absence of silencers[J]. Proc Natl Acad Sci U S A,1998,95(10):5521-5526.
    [142]Bi X, Broach J R. UASrpg can function as a heterochromatin boundary element in yeast[J]. Genes Dev,1999,13(9):1089-1101.
    [143]Yu Q, Kuzmiak H, Olsen L, et al. Saccharomyces cerevisiae Esc2p interacts with Sir2p through a small ubiquitin-like modifier (SUMO)-binding motif and regulates transcriptionally silent chromatin in a locus-dependent manner[J]. J Biol Chem,2010,285(10):7525-7536.
    [144]Yu Q, Kuzmiak H, Zou Y, et al. Saccharomyces cerevisiae linker histone Hholp functionally interacts with core histone H4 and negatively regulates the establishment of transcriptionally silent chromatin[J]. J Biol Chem, 2009,284(2):740-750.
    [145]Zou Y, Yu Q, Bi X. Asymmetric positioning of nucleosomes and directional establishment of transcriptionally silent chromatin by Saccharomyces cerevisiae silencers[J]. Mol Cell Biol,2006,26(20):7806-7819.
    [146]Zou Y, Yu Q, Chiu Y H, et al. Position effect on the directionality of silencer function in Saccharomyces cerevisiae[J]. Genetics, 2006,174(1):203-213.
    [147]Boscheron C, Maillet L, Marcand S, et al. Cooperation at a distance between silencers and proto-silencers at the yeast HML locus [J]. EMBO J, 1996,15(9):2184-2195.
    [148]Lebrun E, Revardel E, Boscheron C, et al. Protosilencers in Saccharomyces cerevisiae subtelomeric regions[J]. Genetics,2001,158(1): 167-176.
    [149]Fourel G, Lebrun E, Gilson E. Protosilencers as building blocks for heterochromatin[J]. Bioessays,2002,24(9):828-835.
    [150]Reimer S K, Buchman A R. Yeast silencers create domains of nuclease-resistant chromatin in an SIR4-dependent manner[J]. Chromosoma, 1997,106(3):136-148.
    [151]Yarragudi A, Miyake T, Li R, et al. Comparison of ABF1 and RAP1 in chromatin opening and transactivator potentiation in the budding yeast Saccharomyces cerevisiae[J]. Mol Cell Biol,2004,24(20):9152-9164.
    [152]Lipford J R, Bell S P. Nucleosomes positioned by ORC facilitate the initiation of DNA replication[J]. Mol Cell,2001,7(1):21-30.
    [153]Nikolaou C, Althammer S, Beato M, et al. Structural constraints revealed in consistent nucleosome positions in the genome of S. cerevisiae[J]. Epigenetics Chromatin,2010,3(1):20.
    [154]Buchberger J R, Onishi M, Li G, et al. Sir3-nucleosome interactions in spreading of silent chromatin in Saccharomyces cerevisiae[J]. Mol Cell Biol, 2008,28(22):6903-6918.
    [155]Boscheron C, Maillet L, Marcand S, et al. Cooperation at a distance between silencers and proto-silencers at the yeast HML locus[J]. EMBO J, 1996,15(9):2184-2195.
    [156]Dillon N. Heterochromatin structure and function[J]. Biol Cell, 2004,96 (8):631-637.
    [157]Bassett A R, Cooper S E, Ragab A, et al. The chromatin remodelling factor dATRX is involved in heterochromatin formation[J]. PLoS One, 2008,3(5):e2099.
    [158]Corona D F, Siriaco G, Armstrong J A, et al. ISWI regulates higher-order chromatin structure and histone H1 assembly in vivo[J]. PLoS Biol, 2007,5(9):e232.
    [159]Lejeune E, Bortfeld M, White S A, et al. The chromatin-remodeling factor FACT contributes to centromeric heterochromatin independently of RNAi[J]. Curr Biol,2007,17(14):1219-1224.
    [160]Suzuki G, Yamaguchi I, Ogata H, et al. A nation-wide survey on indoor radon from 2007 to 2010 in Japan [J]. J Radiat Res (Tokyo),2010,51 (6):683-689.
    [161]Ravindra A, Weiss K, Simpson R T. High-resolution structural analysis of chromatin at specific loci:Saccharomyces cerevisiae silent mating-type locus HMRa[J]. Mol Cell Biol,1999,19(12):7944-7950.
    [162]Yu Q, Elizondo S, Bi X. Structural analyses of Suml-lp-dependent transcriptionally silent chromatin in Saccharomyces cerevisiae [J]. J Mol Biol, 2006,356 (5):1082-1092.
    [163]Rusche L N, Kirchmaier A L, Rine J. The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae[J]. Annu Rev Biochem,2003,72:481-516.
    [164]Ng H H, Ciccone D N, Morshead K B, et al. Lysine-79 of histone H3 is hypomethylated at silenced loci in yeast and mammalian cells:a potential mechanism for position-effect variegation[J]. Proc Natl Acad Sci U S A, 2003,100(4):1820-1825.
    [165]Liou G G, Tanny J C, Kruger R G, et al. Assembly of the SIR complex and its regulation by O-acetyl-ADP-ribose, a product of NAD-dependent histone deacetylation[J]. Cell,2005,121(4):515-527.
    [166]Rusche L N, Kirchmaier A L, Rine J. The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae[J]. Annu Rev Biochem,2003,72:481-516.
    [167]Moazed D. Enzymatic activities of Sir2 and chromatin silencing[J]. Curr Opin Cell Biol,2001,13(2):232-238.
    [168]Carmen A A, Milne L, Grunstein M. Acetylation of the yeast histone H4 N terminus regulates its binding to heterochromatin protein SIR3[J]. J Biol Chem,2002,277(7):4778-4781.
    [169]Bi X, Braunstein M, Shei G J, et al. The yeast HML I silencer defines a heterochromatin domain boundary by directional establishment of silencing [J]. Proc Natl Acad Sci U S A,1999,96(21):11934-11939.
    [170]Bi X, Broach J R. DNA in transcriptionally silent chromatin assumes a distinct topology that is sensitive to cell cycle progression [J]. Mol Cell Biol,1997,17(12):7077-7087.
    [171]Miller A M, Nasmyth K A. Role of DNA replication in the repression of silent mating type loci in yeast[J]. Nature,1984,312(5991):247-251.
    [172]Park E C, Szostak J W. Point mutations in the yeast histone H4 gene prevent silencing of the silent mating type locus HML[J]. Mol Cell Biol, 1990,10 (9):4932-4934.
    [173]Thompson J S, Johnson L M, Grunstein M. Specific repression of the yeast silent mating locus HMR by an adjacent telomere[J]. Mol Cell Biol, 1994,14(1):446-455.
    [174]Neves-Costa A, Will W R, Vetter A T, et al. The SNF2-family member Fun30 promotes gene silencing in heterochromatic loci[J]. PLoS One, 2009,4(12):e8111.
    [175]Mellor J, Morillon A. ISWI complexes in Saccharomyces cerevisiae[J]. Biochim Biophys Acta,2004,1677(1-3):100-112.
    [176]Deweese J E, Osheroff M A, Osheroff N. DNA Topology and Topoisomerases: Teaching a "Knotty" Subject [J]. Biochem Mol Biol Educ,2008,37(1):2-10.
    [177]Marko J F. Linking topology of large DNA molecules[J]. Physica A, 2010,389(15):2997-3001.
    [178]Simpson R T, Thoma F, Brubaker J M. Chromatin reconstituted from tandemly repeated cloned DNA fragments and core histones:a model system for study of higher order structure[J]. Cell,1985,42(3):799-808.
    [179]Norton V G, Imai B S, Yau P, et al. Histone acetylation reduces nucleosome core particle linking number change[J]. Cell,1989,57(3):449-457.
    [180]Bi X, Broach J R. UASrpg can function as a heterochromatin boundary element in yeast[J]. Genes Dev,1999,13(9):1089-1101.
    [181]Yu Q, Elizondo S, Bi X. Structural analyses of Sum1-1p-dependent transcriptionally silent chromatin in Saccharomyces cerevisiae[J]. J Mol Biol, 2006,356(5):1082-1092.
    [182]Dillon N. Heterochromatin structure and function[J]. Biol Cell, 2004,96 (8):631-637.
    [183]Murakami Y. [Heterochromatin as a dynamic higher order chromatin structure][J]. Tanpakushitsu Kakusan Koso,2009,54(4 Suppl):488-495.
    [184]Bassett A R, Cooper S E, Ragab A, et al. The chromatin remodelling factor dATRX is involved in heterochromatin formation[J]. PLoS One, 2008,3(5):e2099.
    [185]Corona D F, Siriaco G, Armstrong. J A, et al. ISWI regulates higher-order chromatin structure and histone H1 assembly in vivo[J]. PLoS Biol, 2007,5(9):e232.
    [186]Cuperus G, Shore D. Restoration of silencing in Saccharomyces cerevisiae by tethering of a novel Sir2-interacting protein, Esc8[J]. Genetics, 2002,162(2):633-645.
    [187]Dror V, Winston F. The Swi/Snf chromatin remodeling complex is required for ribosomal DNA and telomeric silencing in Saccharomyces cerevisiae[J]. Mol Cell Biol,2004,24(18):8227-8235.
    [188]Neves-Costa A, Will W R, Vetter A T, et al. The SNF2-family member Fun30 promotes gene silencing in heterochromatic loci[J]. PLoS One, 2009,4(12):e8111.
    [189]Awad S, Ryan D, Prochasson P, et al. The Snf2 homolog Fun30 acts as a homodimeric ATP-dependent chromatin-remodeling enzyme [J]. J Biol Chem, 2010,285 (13):9477-9484.
    [190]Bi X, Yu Q, Sandmeier J J, et al. Formation of boundaries of transcriptionally silent chromatin by nucleosome-excluding structures [J]. Mol Cell Biol,2004,24(5):2118-2131.
    [191]Katan-Khaykovich Y, Struhl K. Heterochromatin formation involves changes in histone modifications over multiple cell generations[J]. EMBO J, 2005,24(12):2138-2149.
    [192]Costa-Nunes P, Pontes O, Preuss S B, et al. Extra views on RNA-dependent DNA methylation and MBD6-dependent heterochromatin formation in nucleolar dominance[J]. Nucleus,2010,1(3):254-259.
    [193]Maison C, Quivy J P, Probst A V, et al. Heterochromatin at Mouse Pericentromeres:A Model for De Novo Heterochromatin Formation and Duplication during Replication[J]. Cold Spring Harb Symp Quant Biol,2011.
    [194]Lau A, Blitzblau H, Bell S P. Cell-cycle control of the establishment of mating-type silencing in S. cerevisiae[J]. Genes Dev,2002,16(22): 2935-2945.
    [195]Clapier C R, Cairns B R. The biology of chromatin remodeling complexes[J]. Annu Rev Biochem,2009,78:273-304.
    [196]Hurley J H, Lee S, Prag G. Ubiquitin-binding domains[J]. Biochem J, 2006,399(3):361-372.
    [197]de la Cruz X, Lois S, Sanchez-Molina S, et al. Do protein motifs read the histone code?[J]. Bioessays,2005,27(2):164-175.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700