美洲商陆抗病毒蛋白cDNA的克隆及其转化番茄
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
美洲商陆抗病毒蛋白(Pokeweed Antiviral Protein,PAP)是从美洲商陆(Phytolacca americana)叶片或种子分离出的一类碱性蛋白,分子量29-31KD。PAP是典型的单链核糖体失活蛋白,它可以催化水解原核和真核核糖体的大rRNA3’-端茎环结构(stem-loop)中的腺嘌呤残基,导致核糖体失活。PAP可以有效抑制若干种非相关病毒,包括植物病毒和动物病毒,利用PAP基因可以通过转单基因获得对多种病毒具有广谱抗性的转基因植株。成熟的PAP有262个氨基酸,其中靠C端的25个氨基酸为毒性区,PAP的C端缺失突变体PAP-c没有毒性区域,它的细胞毒性很低,但仍具有较强的抗病毒活性。
     本研究采用PCR技术获得PAP和PAP-c的cDNA,同时利用番茄叶片特异表达启动子rbcS-3A,构建不同的植物表达载体,通过农杆菌介导的遗传转化体系将PAP和PAP-c基因转入番茄自交系TP002,获得转基因植株,是植物抗病毒基因工程研究领域一次新的探索;获得的转基因番茄植株对TMV和CMV病毒具有抗性,可以作为番茄育种的一个新的抗源材料。
     主要研究结果如下:
     1.采用PCR技术,分离并克隆到美洲商陆抗病毒蛋白cDNA(PAP)和C-端缺失突变体cDNA(PAP-c)。克隆到的PAP编码区为940bp,与Genebank中的序列同源率为99.7%;克隆到的PAP-c编码区为775bp,与相应的序列同源率为99.6%。
     2.采用PCR技术,从番茄基因组中分离并克隆到rbcS-3A启动子。测序结果表明,克隆到的基因为1150bp(包括酶切位点),与Genebank中的核苷酸序列同源率为99%,具有完整的TATA box和CAAT box,在增强子、沉默子和启动子功能区域与Genebank中的相应序列同源率为100%。
     3.利用克隆到的基因和植物表达载体pBI121,成功构建了3个美洲商陆抗病毒蛋白的植物表达载体:pBPAP,pBPAP-c,pB-rbc-PAP-c。其中,pB-rbc-PAP-c为植物特异表达载体,启动子为番茄rbcS-3A启动子,在叶片中受光诱导表达,具有组织特异性。
     4.通过农杆菌介导的遗传转化体系分别将2个植物表达载体pBPAP和pB-rbc-PAP-c导入番茄,经PCR检测和Southern检测,得到3株转基因番茄植株。RT-PCR检测结果表明,在CaMV 35S启动子的作用下,PAP基因在转基因番茄(9#植株)叶片和果实中均可以表达;在rbcS-3A启动子的作用下,PAP-c基因只在转基因番茄(6#植株)叶片中表达而不在果实中表达。人工接种病毒结果显示,与对照植株相比,5#和9#转基因植株对TMV具有抗性,6#转基因植株对TMV和CMV具有抗性。
Pokeweed antiviral protein(PAP), isolated from leaves and seeds of Phytolacca americana, are single-chain ribosome-inactive proteins(RIPs) with molecular mass of 29 to 31KD, which can inhibit translation by catalytically removing a specific adenine residue from a highly conserved, surface-exposed, stem-loop structure in the large rRNA of eukaryotic and prokaryotic ribosomes. PAP displays broad-spectrum antiviral activity against a number of different viruses, including plant and animal viruses. The property of PAP provides a way to produce multiple-virus-resistant transgenic plants by introducing and expressing a single gene. The C-terminal deletion mutant, PAP-c, which loses 25 amino acids near C-terminus comparing to the mature PAP of 262 amino acids, has lower cytotoxicity and shows resistance to viruses. These 25 amino acids near C-terminus is
    necessary for toxicity but not for antiviral activity, suggesting that antiviral activity of PAP can be dissociated from its toxicity. Expression of PAP-c in transgenic plants will be safer than that of wild-type of PAP.
    According to the published sequence of PAP, the cDNA encoding PAP and PAP-c were obtained by using PCR, respectively. The leaf specific expression promoter rbcS-3A, which confers light-inducible and organ-specific expression, was also amplified from tomato DMA by PCR. In order to transfer PAP or PAP-c gene into tomato, three plant-expression-vectors containing PAP or PAP-c were constructed with CaMV 358 promoter and rbcS-3A promoter respectively. Agrobacterium tumefaciens containing plant transformation vectors was used to transform tomato self-line TP002 by the leaf disc method.
    The results of this study are as follows:
    1 The cDNA encoding PAP and C-terminal deletion mutant PAP-c were obtained by using PCR. The PAP cDNA has an open reading frame of 940bp, which is 99.7% homologous to the published sequence. The PAP-c cDNA has an open reading frame of 775bp, which is 99.6% homologous to the corresponding sequence of the published PAP cDNA.
    2 The rbcS-3A promoter sequence was amplified from tomato genome DNA by using PCR. Sequencing results showed, the 1150bp fragment obtained in this study has 99% homology to the rbcS-3A promoter sequence published in GeneBank and contains intact TATA box and
    
    
    CAAT box. Its enhancer region, silencer region and promoter function region are 100% homologous to those of published rbcS-3A.
    3 Based on pBI121, three plant-expression-vectors containing PAP or PAP-c were constructed with CaMV 35S promoter and rbcS-3A promoter respectively. The pBPAP has PAP gene expressed from CaMV 35S promoter and pBPAP-c has PAP-c gene with the same promoter. The pB-rbc-PAP-c has PAP-c gene modulated by rbcS-3A promoter from tomato.
    4 By Agrobacterium tumefaciens mediated transformation, PAP and PAP-c gene were induced into tomato self-line(TP002) through two different plant expression vectors, pBPAP and pB-rbc-PAP-c, respectively. Three regenerated tomato plants were proved to be transgenic plants by PCR and Southern blotting. The results of RT-PCR for transgenic
    plants showed, PAP gene was expressed in both leaves and fruits of No.9 transgenic plant under CaMV 35S promoter, PAP-c gene was only expressed in the leaves not in the fruits of No.6 transgenic plant under rbcS-3A promoter. To test the resistance to virus of transgenic tomato plants, they were mechanically inoculated with TMV and CMV respectively. The results indicated , comparing to the non-transformed control plants, No.5 and No.9 plants displayed resistance to TMV, No.6 plant displayed resistance to TMV and CMV.
引文
1. Barbieri L. et al. 1993 Ribosome-inactivating proteins from plants Biochim Biophys Acta 1154:237-282
    2. Bass H.W. et al. 1992 A Maize Ribosome-Inactivating Protein Is Controlled by the Transcriptional Activator Opaque2 Plant Cell 4:225-234
    3. Barbieri L. et al. 1993 Ribosome-inactivating Proteins from Plants Biochim. Biophys Acta 1154: 237-282
    4. Bernard Vernooij, et al. 1994 Salicylic Acid Is Not the Translocated Signal Responsible for Inducing Systemic Acquired Resistance but Required in Singal Transduction The Plant Cell Vol.6:959-965
    5. Bruening and Robert J. Shepherd 1973 A possible mechanism for the inhibition of plant viruses by a peptide from Phytolacca americana Virology, 56:390-393
    6. Carl J. Braun and Cynthia L. Hemenway 1992 Expression of Amino-Terminal Portions or Full-Length Viral Replicase Genes in Transgenic Plants Confers Resistance to Potato Virus X Infection The Plant Cell, Vol.4:735-744
    7. Chaddock J.A. et al. 1994 Pokeweed Antiviral Protein (PAP) Mutations which Permit E. coil Do not Eliminate Catalytic Activity Towards Prokaryotic Ribosomes Nucleic Acids Research, Vol.22(9):1536-1540
    8. Chen Z.C., et al. 1991 Effect of pokeweed antiviral protein(PAP)on the infection of plant viruses, Plant Pathology, 40:612-620
    9. Chen Z.C., et al. 1993 A Possible Mechanism for the Antiviral Activity of Pokeweed Antiviral Protein Physlol, Mol, Plant Pathol, 42:249-258
    10. Cliff Lawson, et al. 1990 Engineering Resistance to Mixed Virus Infection in a Commercial Potato Cultivar: Resistance to Potato Virus Y in Transgenic Russet Burbank Bio/Technology Vol.8:
    11. Daniel B. Golemboski, et al. 1990 Plants Transformed with a Tobacco Mosaic Virus Nonstructural Gene Sequence Are Resistant to the Virus Proc. Natl. Acad, Sci. USA Vol.87:6311-6315
    12. David M., Stark and Roger N. Beachy 1989 Protection against Potyvirus Infection in Transgenic Plants: evidence for Broad Spectrum Resistance Bio/Technology Vol.7:1257-1262
    13. Endo Y. et al. 1982 The Site of Action of Alpha-Sarcin on eukaryotic Ribosomes. The sequence at the Alpha-Sarcin Cleavage Site in 28S Ribosomal Ribonucleic Acid J. Biol. Chem. 257:9054-9057
    14. Endo Y. et al. 1987 The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes: the site and the characteristics of the modification in 28S ribosomal RNA caused by the toxins J.Biol.Chem. 262:5908-5912
    
    
    15. Endo Y. and Tsurugi K. 1987 RNA N-glycosidase activity of ricin A-chain: mechanism of action of the toxic lectin ricin on eukaryotic ribosomes J.Biol.Chem. 262:8128—8130
    16. Food and Agriculture Organization of the United Nations, 1992, FAO Yearbook, Vol. 45, Roma
    17. Guido Jach, et al 1995 Enhanced Quantitative Resistance against Fungal Disease by Combinatorial Expression of Different Barley Antifungal Proteins in Transgenic Tobacco The Plant Journal, 8(1):97-109
    18. Hartley M.R. et al. 1996 The Structure and Function of Ribosome-Inactivating Proteins Trends Plant Sci. 1:254-260
    19. Hudak K. A., Dinman J. D. and Tumer N. E. 1999 Pokeweed Antiviral Protein Accesses Ribosomes by Binding to L3 J. Biol. Chem. 274 (6): 3859-3864
    20. Hudak K. A., Wang P. and Tumer N. E. 2000 A Novel Mechanism for Inhibition of Translation by Pokeweed Antiviral Protein: Depurination of the Capped RNA template RNA 6:369-380
    21. Hey T.D., Hartley M., Walsh T.A. 1995 Maize Ribosome-Inactivating Protein(b-32): Homologs in Related Species, Effects on Maize Ribosomes, and Modulation of Activity by Pro-peptide Deletions Plant Physiology 107:1323-1332
    22. Irvin J.D. et al. 1992 Pokeweed Antiviral Protein: Ribosome Inactivation and. therapeutic Applications Pharma, Ther, 55:279-302
    23. Jeffery L. Dangl, Robert A. Dietrich and Michael H. Richberg 1996 Death Don't Have No Mercy: Cell Death Programs in Plant-Microbe Interactions The Plant Cell .8:1793-1807
    24. J. Logemann, G. Jach, H.Tommerup, et al. 1992 Expression of a Barley Ribosome-Inactivating Protein Leads to Increased Fungal Protection in Transgenic Tobacco Plants Bio/Technology 10:305-308
    25. Jennifer K. Lodge, et al 1993 Broad-spectrum virus resistance in transgenic plants expressing pokeweed antiviral protein Proc. Natl. Aoad. Sci. USA, 90:7089-7093
    26. Kataoka J. et al. 1991 DNA Sequence of Mirabilis Antiviral Protein (MAP), a Ribosome- Inactivating Protein with an Antiviral Property, from Mirabilis jalapa L. and Its Expression in Escherichia coli J. Biol. Chem. 266:8426-8430
    27. Kerr, E.A.,1983,Breeding for Stable Resistance to Diseases, HortScience,18(1): 27-30
    28. Kim E. Hammond-Kosack and Jonathan D. G. Jones 1996 Resistance Gene- Dependent Plant Defense Responses The Plant Cell 8:1773-1791
    29. Kirsten Nielsen and Rebeca S Boston, 2001, Ribosome-Inactivating Proteins: A Plant Perspective Annual Reviews of Plant Physiology and Plant Molecule Biology, 52:785-812
    
    
    30. Kumon K. et al. 1990 Interaction Between Tobacco Mosaic Virus, Pokeweed Antiviral Proteins, and Tobacco Cell Wall Phytopathology 80:636-641
    31. Lee-Huang S. et al. 1994 Human Immunodeficiency Virus Type 1 (HIV-1) Inhibition, DNA-Binding, RNA-Binding, and Ribosome Inactivating Activities in the N-terminal Segments of the Plant Anti-HIV Protein GAP31 Proc. Natl. Acad. Sci. USA 91:12208-12212
    32. Liu ZB, et al. 1994 Soybean GH3 Promoter Contains Multiple Auxin-Inducibla Elements The Plant Cell 6(5): 645-657
    33. Lord J.M. and Robert L.M. 1996 The Intracellular Transport of Ricin: Why Mammalian Cells Are Killed and How Ricinus Cells Survive Plant Physlol. Biochem. 34:253-261
    34. Massiah A.J., Hartley M.R. 1995 Wheat Ribosome-Inactivating Proteins: Seed and Leaf Forms with Different Specificities and Cofactor Requirements Planta 197:633-640
    35. Milton Zaitlin and Peter Palukaitis 2000 Advances in Understanding Plant Viruses and Viruses Diseases Annu. Rev. Phytopathol. 38:117-143
    36. Monzingo A.F et al. 1993 The 2.5 Structure of Pokeweed Antiviral Protein J. Mol. Biol. 233: 705-715
    37. Mundy J., et al. 1994 Genes Encoding Ribosome-Inactivating Proteins Plant Mol. Biol, Rep. 12: 60-62
    38. Nelson R.R., 1973, Breeding Plants For Disease Resistance—Concepts and Applications, The Pennsylvania State University Press
    39. Nelson R., et al 1998 Virus Tolerance, Plant Growth, and Field Performance of Transgenic Tomato Plants Expressing Coat Protein from Tomato Mosaic Virus Blotechnology 6:403-409
    40. N.Yalpani, et al. 1993 Endogenous Salicylic Acid Levels Correlate with Accumulation of Pathogenesis-Related Proteins and Virus Resistance in Tobacco Phytopathology, Vol.83(7):702-708
    41. Oleg Zoubenko, Fatih Uckun Yoonkang Hur, et al. 1997 Plant Resistance to Fungal Infection Induced by Nontoxic Pokeweed Antiviral Protein Mutants Nature Biotechnology, Vol. 15:992-996
    42. Oleg Zoubenko, Katalina Hudak and Nilgun E.Tumer 2000 A Non-toxic Pokeweed Antiviral Protein Mutant Inhibits Pathogen Infection via A Novel Salicylic Acid-Independent Pathway Plant Molecular Biology 44:219-229
    43. Poyet J L, et al 1994 Isolation and Characterization of a cDNA Clone Encoding the Pokeweed Antiviral Protein Ⅱ from Phytolacca Americana and Its Expression in E. coli FEBS Lett 347(2-3):268-272
    
    
    44. Q. Lin, Z. C. Chen, J. F. Antoniw, et al. 1991 Isolation and Characterization of a cDNA Clone Encoding the Anti-viral Protein from Phytolacca ameicana Plant Molecular Biology, 17:609-614
    45. Ready M. et al. 1991 Site-Directed Mutagenesis of Ricin A-Chain and Implications for the Mechansim of Action Proteins 10:270-278
    46. Reinbothe S., et al. 1994 JIPs and RIPs: the Regulation of Plant Gene Expression by Jasmonates in Response to Environmental Cues and Pathogens Plant Cell 6:1197-1209
    47. Reinbothe S., et al. 1994 JIP60, A Methyl Jasmonate-Induced Ribosome-Inactivating Protein Involved in Plant Stress Reactions Proc. Natl. Acad. Sci. USA 91: 7012-7016
    48. Robert A. Owens, George Bruening and Robert J. Shepherd, 1973 A Possible Mechanism for the Inhibition of Plant Viruses by a Peptide from Phytolacca ameicana Virology, 56:390-393
    49. Roland Beffa, Marta Szell, Philippe Meuwly, et al 1995 Cholera Toxin Elevates Pathogen Resistance and Induces Pathegenesis-Related Gene Expression in Tobacco The EMBO Journal, Vol.14(23):5753-5761
    50. Sally Taylor, Andrea Massiah, George Lomonossoff, et al. 1994 Correlation Between the Activities of five Ribosome-Inactivating Proteins in Depurination of the Tobacco Ribosomes and Inhibition of Tobacco Mosaic Virus Infection The Plant Journal, 5(6):827-835
    51. Smirnov S. et al. 1997 Expression of Pokeweed Antiviral Protein in Transgenic Plants Induces Virus Resistance in Grafted Wild-Type Plants Independently of Salicylic Acid Accumulation and Pathogenesis-Related Protein Synthesis Plant Physiology 114:1113-1121
    52. Sperti S. et al. 1991 Requirements for the Inactivation of Ribosomes by Gelonin Blochem. J. 227: 281-284
    53. Stevens W.A. 1981 Effect of Inhibitors of Protein Synthesis from Plants on Tobacco Mosaic Virus Infection Experientia 37:257-259
    54. Stirpe F., et al. 1992 Ribosome-inactivating proteins from plants: present status and future prospects Bio/Technology, 10:405-412
    55. Stirpe F., et al. 1996 Activities Associated with the Presence of Ribosome-inactivating proteins Increase in Senescent and Stressed Leaves FEBS Lett 382:309-312
    56. Strauss J.H., et al. 1988 Evolution of RNA Viruses Annu. Rev. Mlcrobiol. 42:657-683
    57. Takashi Ueda, et al. 1989 Level of Expression of the Tomato rbcS-3A Gene Is Modulated by a Far Upstream Promoter Element in a Developmentally Regulated Manner The Plant Cell Vol. 1:217-227
    58. Tomlinson J.A. et al. 1974 The Inhibition of Infection by Cucumber Mosaic Virus and Influenza Virus by Extracts from Phytoiacca americana J. Gen. Virol. 22:225-232
    
    
    59. Tumer N.E., et al. 1997 C-terminal deletion mutant of pokeweed antiviral protein inhibits viral infection but does not depurinate host ribosomes Proc. Natl. Acad. Sci. USA, 94:3866-3871
    60. Tumer N.E., et al. 1999 Pokeweed Antiviral Protein and Its Applications Curr. Top. Microbiol, Immunol. 240:139-158
    61. Vladimir Shulaev, Jose Leon and liya Raskin 1995 Is Salicylic Acid a Translocated Signal of Systemic Acquired Resistance in Tobacco? The Plant Cell, Vol.7:1691-1701
    62. Wang P. and Tumer N.E. 2000 Virus Resistance Mediated by Ribosome Inactivating Proteins Advances in Virus Research 55:325-355
    63. Wang P. et al 1998 Reduced Toxicity and Broad Spectrum Resistance to Viral and Fungal Infection in Transgenic Plants Expressing Pokeweed Antiviral Protein Ⅱ Plant Mol. Biol. 38(6):957-964
    64. Yoonkang Hur, Duk-Ju Hwang, Oleg Zoubenko, et al. 1995 Isolation and characterization of pokeweed antiviral protein mutations in Saccharomyces cerevisiae: Identification of residues important for toxicity Proc. Natl. Acad. Sci. USA, 92:8448-8452
    65.Borojevise S.编著,郑彦平 主译,1992,作物育种原理与方法,北京:农村读物出版社
    66.程玉忠,1991,植物基因工程进展,遗传,13(4):45-48
    67.董汉松,1995,植物诱导抗病性,北京:科学出版社
    68.董金皋,黄梧芳,1994,植物的形态结构与抗病性,植物病理学报,25(1):1-3
    69.樊金献,薛洁,董建寅,1995,药用有毒植物商陆与美洲商陆,植物杂志,5:21
    70.樊龙江,周雪平,2001,转基因作物安全性争论与事实,北京:中国农业出版社
    71.方中达编著,1998,植病研究方法(第三版),北京:中国农业出版社
    72.傅荣昭,孙勇如,贾士荣,1994,植物遗传转化技术手册,北京:中国科学技术出版社
    73.顾红雅等,1995,植物基因与分子操作,北京:北京大学出版社
    74.黄绍兴,阎隆飞,1995,植物发育过程中特异性基因的表达,31(3):161-166
    75,贾士荣,曹冬孙,1992,转基因植物,植物学通报,9(2):3-15
    76.贾士荣,邓燕华,1993,农业生物技术进展与展望,合肥:中国科学技术大学出版社
    77.蒋国勇,1994,天花粉蛋白转化番茄的研究,植物学报,41(3):334-336
    78.J.萨姆布鲁克,E.F.弗里奇等,1996,分子克隆实验指南(金冬雁等译),北京:科学出版社
    79.康俊根,1997,植物抗病毒基因工程研究进展,生物技术,7(2):4-7
    80.李继红,1997,几丁质酶和β-1,3-葡聚糖酶基因的克隆及转化番茄的研究,华南热带农业大学博士研究生学位论文
    
    
    81.李一琨,王金发,1998,高等植物启动子研究进展,植物学通报,15(增刊):1-6
    82.刘后利,1993,作物育种研究进展(第一集),北京:农业出版社
    83.刘迎芳,王春霞,赵进东等,1999,美洲商陆中新发现的一种抗真菌蛋白基因的克隆和表达,植物学报,41(10):1036-1040
    84.刘志毅等,1995,基因表达的转录调控的研究进展,生命科学,7(2):22-26
    85.鲁德全,1995,中国商陆属植物的校订,武汉植物学研究,13(1):27-29
    86.P.B.沃斯,S.G.布利克斯特主编,刘秉华等译,1993,植物育种的现代基础,北京:农业出版社
    87.单丽波,贾旭,2000,核糖体失活蛋白及其在植物抗真菌病基因工程中的应用,生物工程进展,20(6):74-78
    88.施曼玲,薛宝娣,1999,转CMV-CP基因番茄植株的抗病性表现,浙江农业科学,6:276-279
    89,杨荣昌,1995,表达黄瓜花叶病毒外壳蛋白的转基因番茄及其对CMV的抗性,江苏农业学报,11(1):40-44
    90.王得元,何晓明,王鸣,2002,蔬菜生物技术概论,北京:中国农业出版社
    91.王关林,方宏筠,1998,植物基因工程原理与技术,北京:科学出版社
    92.王海廷,王鸣,李长年,1988,番茄育种,上海:上海科学技术出版社
    93.王金生,1995,植物抗病性分子机制,植物病理学报,25(4):289-295
    94.王军,1994,植物诱导抗病性的研究进展·,华南农业大学学报,15(4):121-126
    95.王莉江,安成才,陈章良,2000,核糖体灭活蛋白在植物中的应用,生物技术通报,2:1-4
    96.奚正德,1995,核糖体失活蛋白及相关毒素的生物学活性研究进展,生命科学,7(3):18-21
    97.夏兰芹等,2000,外源基因在转基因植物中的表达与稳定性,生物技术通报,3:8-12
    98.余诞年,吴定华,陈竹君,1999,番茄遗传学,长沙:湖南科学技术出版社
    99.俞德超 1993,抗病毒基因工程的研究进展及评估 植物生物学通讯 29(2):141-147
    100.张德水,陈受宜,1997,植物抗病性的分子生物学研究进展,植物病理学报,27(2):97-103
    101.张海燕,刘桂珍,陈正华,1999,商陆抗病毒蛋白cDNA的克隆、测序及其植物表达载体的构建,植物学报41(2):226-228
    102.张增艳,孔凡晶,辛志勇,2000,植物抗病基因克隆的进展,生物技术通报,2:8-11
    103.曾士迈,张树榛,1998,植物抗病育种的流行学研究,北京:科学出版社

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700