基于磁性微球限进功能化的新型生物样品预处理技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着生物医药分析领域的不断发展,生物样品的预处理过程对建立一个可靠准确的药物分析方法至关重要。传统方法包括液液萃取和固相萃取法。近年来,磁性固相萃取以快速简便且易于实现自动化高通量操作的优势而得到快速发展。然而,生物样品中存在的大量内源性蛋白在磁性粒子表面发生的不可逆非特异性吸附作用,不仅会使磁性吸附剂对分析物的吸附能力降低,同时也容易使磁性粒子发生团聚而无法反复使用。
     为了消除生物样品基质中大分子蛋白质的干扰,近年来发展起来的限进性固相萃取在线联用技术具有一定优势,其主要特点在于吸附材料的外表面具有亲水性屏障,结合孔径排阻效应,消除了蛋白在表面吸附和孔道堵塞等问题,而孔内修饰的疏水或离子交换基团可直接从生物样品中富集目标物质,因此是一种被广泛应用于复杂生物样品及环境分析的生物样品预处理技术。然而其在线固相萃取的应用模式从富集到分析通常只能完成单个样品的操作,从而会导致机时利用率低,不能满足生物样品处理的高通量化要求。
     本论文着眼于满足当前高通量化的生物样品预处理需求和解决传统磁性固相吸附剂表面蛋白吸附的问题,将限进性概念结合到磁性分离技术中来,提出了基于限进性磁性固相萃取材料的制备策略。为此,本论文开发了基于不同磁性基质、内表面多样化的一系列磁性限进材料。具体研究成果如下所述:
     1.采用多孔γ-Fe_2O_3 @ SiO2磁性硅胶作为基质,经过二醇基表面键合、十八烷基转化以及脂肪酶选择性水解等步骤,制备了内表面疏水而外表面亲水的新型限进磁性材料。以牛血清白蛋白和甲氨蝶呤及其结构类似物亚叶酸钙、叶酸作为模型化合物证明了其外表面的亲水基团及适宜的孔径对大分子蛋白的排阻能力以及内表面的疏水基团对小分子物质的萃取能力。以其作为磁性限进固相吸附剂,对人血清基质中三种小分子治疗药物的萃取条件进行了优化,并结合反相-高效液相色谱建立了分析方法,其良好的特异性、线性以及重复性均体现出了新型磁性限进萃取材料的优越性和稳定性,为临床治疗药物监测及生物样品高通量自动化快速检测提供了潜在的应用前景。
     2.由于1中的材料与三种治疗药物的结合能力较弱,因此本章将1中的多孔磁性硅胶先进行环氧基修饰,然后采用粒径约为50μm聚合物酸将外表面的环氧基先开环形成二醇基,然后再以十八胺、亚硫酸氢钠及三乙胺盐酸盐分别与内表面残余的环氧基进行反应,最终可以得到内表面依次为十八烷基、磺酸基和季铵盐基而外表面为二醇基的新型磁性限进材料,避免了上一章节采取的脂肪酶水解法只能制备内表面为烷基基团的单一化类型。我们仍选择1中的四种物质作为模型,并通过Langmuir吸附等温曲线,比较了三种磁性限进吸附剂对它们的饱和吸附容量,其结果表明,外表面的二醇基可以起到排阻蛋白的作用,而且内表面为磺酸基和季铵盐基的磁性限进材料对小分子物质的吸附量要远远高于内表面为十八烷基的材料,说明甲氨蝶呤及两种结构类似物更适合采用阴离子或阳离子交换模式来萃取,同时也证明了聚合物酸开环法比脂肪酶水解法在内表面多样化修饰方面的可行性和优势。
     3.由于1和2中材料的孔径还不能满足对生物样品中具有功能性但分子量较大的多肽及蛋白质富集的要求,因此我们在上述6 nm孔径的磁性硅胶基础上,利用浸盐法对其进行扩孔处理,并通过形貌、晶型、磁性、比表面积变化来表征和筛选,最终确定300℃和400℃两个温度为最佳的扩孔条件。同样采用聚合物酸开环法制备了内表面为十八烷基外表面为二醇基的扩孔磁性限进材料,并通过对胸腺五肽、胰岛素以及牛血清白蛋白三种不同分子量模型物质的吸附证明了扩孔后的材料明显对后两者的吸附量增大,表明此法可以在不破坏磁性基质性质的基础上对不同分子量大小的生物分子具有不同程度的限进效果,使其在提取和富集复杂生物样品中分子量不同的功能性目标物时具有更高的选择性。
     4.为了进一步开发新方法来制备磁性限进材料,本章首先以模板法制备的多孔γ-Fe_2O_3作为磁核,再以十六烷基三甲基溴化铵为结构导向剂,利用sol-gel原理,采用层层包覆的方法将环氧基硅烷试剂作为外层亲水性二醇基的功能前体,以氨基、巯基、苯基以及羧基硅烷试剂作为修饰内层的功能单体,制备得到外表面为二醇基而内表面分别为氨基、磺酸基、苯磺酸基和羧基的核壳型磁性限进介质。我们以内表面为氨基的磁性限进介质作为模型材料,通过红外光谱、高倍透射电镜、荧光淬灭实验、磁滞回线等手段证明了在制备过程中模板的有效去除、表面壳层和其孔道结构的形成、孔道所具备的限进性以及磁性能的变化。对于其它三种基于离子交换分配原理的核壳型磁性限进材料,我们进一步以牛血清白蛋白及硫酸特布他林、硫酸沙丁胺醇和盐酸克伦特罗三种瘦肉精物质作为模型化合物,进行模型吸附实验来评价三种材料的限进性。其结果表明该方法可以将任意一种、或两种以上,甚至是整体功能化硅烷试剂直接修饰到内表面上,比脂肪酶水解及聚合物酸开环等制备方法的灵活性和选择性更强,这也为制备磁性限进材料提供了一条新的思路和途径。
With growing demand for fast analysis in the fields of pharmaceutical industry and biomedical research, the pretreatment of biological samples is of great importance in establishing a reliable and accurate analytical method. Magnetic solid phase extraction (MSPE) with the advantages of fast and simple procedures and being amenable to high-throughput operation has gradually taken the place of traditional technologies including liquid-liquid extraction (LLE) and solid-phase extraction (SPE). However, the fouling of proteins on the surface of magnetic particles gives rise to particles aggregation, leading to declined binding capacity for analytes and reusability of the particles.
     Recently, restricted access SPE has been developed to be as a type of on-line extraction technology enabling the direct enrichment of analytes while eliminating macromolecules from biological fluids. One of major advantages over traditional SPE is that the external surface of restricted access meterials (RAMs) has hydrophilic groups combined with limited pore size as barriers which prevent surface adsorption and pore channel blocking. The interior surface modified with hydrophobic and ion-exchange groups can directly extract low weight targets from biological samples. Therefore, the RAM has been widely applied for pretreatment technology in the fields of biological and environmental analysis. However, the only single biological sample can be treated from enrichment to analysis under this kind of on-line extraction mode, which will cause the low availability of the instrument and cannot satisfy the requirement of high-throughput in biological fluids.
     In order to meet the need of high-throughput of biological samples and to provide solutions for the particle fouling due to protein adsorption on the surface, efforts have been made in this thesis to develop preparation methods by which the restricted access properties are incorporated into the magnetic separation materials so as to provide novel restricted access materials for magnetic solid-phase extraction.
     The major results presented in this thesis are outlined as follows:
     1. The magnetic silica particles served as scaffolds were first modified with diol groups, which were then converted to octadecyl esters through reaction with stearoyl chloride. In the second step, the octadecyl esters on the exterior surface were hydrolyzed by the action of lipase to yield magnetic RAM particles with hydrophobic reverse-phase ligands on the inner surface and biocompatible diol groups on the outer surface. The restricted access behavior of the resulting materials was confirmed by differential binding of small molecules such as methotrexate (MTX), calcium folinate (CF), and folic acid (FA) relative to bovine serum albumin (BSA). While the three model drugs were bound to the magnetic particles with high affinity, the adsorption of the proteins was markedly reduced due to size exclusion effect. The utility of the magnetic particles for sample preparation was tested in solid-phase extraction of MTX, CF and FA from spiked human serum and the effects of the SPE conditions on the recovery of the analytes were systematically studied. Moreover, the magnetic particle-based sample preparation procedures coupled with reversed-phase liquid chromatography analysis were developed and validated. This dual functionality material may be adapted in automated and high-throughput protocols for routine analysis of a large volume of clinical samples.
     2. Owing to the weak binding strength between three model drugs and the materials from above method, porous magnetic silica was first modified with epoxy groups, which were reacted with polymeric acid with particle size 50μm to yield only diol groups at the outer surface. In the second step, three compounds, octadecylamine, sodiumhydrogensulfite and triethylamine hydrochloride, respectively, were reacted with epoxy groups at the inner surface to give rise to magnetic RAM particles with octadecyl, sulfonic and quaternary ammonium on the inner surface and diol groups on the outer surface. This synthesis method can avoid the single type with only modified into alkyl groups on the inner surface aboved as lipase hydrolysis. The model molecules above mentioned were still used to compare the binding capacity of three magnetic RAMs through Langmuir adsorption isotherm curves. The results showed that the adsorption amount of materials with sulfonic and quaternary ammonium on the inner surface was significantly higher than that with octadecyl groups, implying that MTX and its structural analogs can be extracted more efficiently by ion exchange model. Furthermore, the open-ring methods based on polymeric acid has more advantageous in the interior versatilities over that based on lipase hydrolysis.
     3. In order to enhance adsorptive capacity on biological polypeptides with high molecule weight, the salt impregnation was carried out and followed by calcination at different temperatures to produce wide poreγ-Fe_2O_3@SiO2 magnetic silica. The optimal wide pore conditions were defined at the temperature of 300℃and 400℃ through the characterization of morphology, crystallization, magnetism and surface area of magnetic silica particles. The wide-pore material was then further modified into RAM particles with octadecyl groups on the inner surface and diol groups on the outer surface by the open-ring reaction of polymeric acid. Three kinds of different molecule weight of biological polypeptides, including Thymopentin (TP-5)、Insulin and BSA, were chosen as model compounds to perform the adsorption, which indicated that the wide pore materials were higher binding capacity on Insulin and BSA, and the ability of exclusion with different degree. This also offers the potential high selectivity for extraction and enrichment of different molecule weight of functional targets from complex biological fluids.
     4. In order to develop novel methods to prepare magnetic RAM, porousγ-Fe_2O_3 microspheres were chosen as magnetic core, cetyltrimethylammonium bromide (CTAB) as structure direction agent, and layer by layer coating method based on sol-gel principles was adopted to modify through different types of silanes with functional groups, which yielded core-shell magnetic RAM particles with amino, sulfonic, phenylsulfonic or caroxyl groups at the inner surface and diol groups at the outer surface. First, the magnetic RAMs with amino groups at the inner surface was used as model material, all kinds of characterization tools including FT-IR, HRTEM, and fluorescence quenching and magnetism curves had been used to confirm that the template was removed effectively to form surface shell and porous channel together with restricted access properties. The adsorption experiments of macromolecules BSA and basic model small weight compounds such as Terbutaline (TER), Salbutamol (SAL) and Clenbuterol (CLB) were chosen to exhibit the dual surface functional properties from the latter three core shell magnetic RAMs based on ion-exchange principles. The results indicated that the one kind, or over two kinds and even the whole silanes agent could be directly grafted onto the inner surface of particles, which have more selective and versatile than above methods. This also provides a novel thought for preparation of magnetic RAMs.
引文
[1] Souverain, S.; Rudaz, S.; Veuthey, J. K., Restricted-access materials and large particle supports for on-line sample preparation: an attractive approach for biological fluids analysis. J. Chromatogr. B 2004, 801 (2): 141-156.
    [2] Dawidowicz, A. L.; Fornal, E.; Fijalkowska, A., Problems in the analysis of propofol in blood when protein precipitation is used in sample preparation. Chromatographia. 1998, 47 (9-10): 523-528.
    [3] Matuszewski, B. K., Standard line slopes as a measure of a relative matrix effect in quantitative HPLC-MS bioanalysis. J. Chromatogr. B 2006, 830 (2): 293-300.
    [4] Matuszewski, B. K.; Constanzer, M. L.; Chavez-Eng, C. M., Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal. Chem. 2003, 75 (13): 3019-3030.
    [5] Simon, S.; Jack, H., Liquid-Liquid extraction in the 96-well plate format with SRM LC/MS quantitative determination of methotrexate and its major metabolite in human plasma. Anal. Chem. 1999, 71 (13): 2340-2345.
    [6] Liang, K.; Albert, J. L., Evaluation of Column Cleanup for Chlorobenzenes, Polychlorinated Biphenyls, Polychlorinated Dibenzo-p-dioxins, and Polychlorinated Dibenzofurans in MM5 Flue Gas Analysis. Anal. Chem. 1998, 70 (1): 191-198.
    [7] Rozemeijer, M. J. C.; Olie, K.; Voogt, P., Procedures for analysing phenolic metabolites of polychlorinated dibenzofurans, -dibenzo-p-dioxins and -biphenyls extracted from a microsomal assay: optimising solid-phase adsorption clean-up and derivatisation methods. J. Chromatogr. A 1997, 761 (1-2): 219-230.
    [8] Hakan, C.; Conny, O., Clean-up and analysis of carbazole and acridine type polycyclic aromatic nitrogen heterocyclics in complex sample matrices. J. Chromatogr. A 1997, 790 (1-2): 73-82.
    [9] Hennion, M. C.; Cau-Dit-Coumes, C.; Pichon, V, Trace analysis of polar organic pollutants in aqueous samples: Tools for the rapid prediction and optimisation of the solid-phase extraction parameters. J. Chromatogr. A 1998, 823 (1-2): 147-161.
    [10] Pichon, V.; Cau-Dit-Coumes, C.; Chen, L., et al., Solid phase extraction, clean-up and liquid chromatography for routine multiresidue analysis of neutral and acidic pesticides in natural waters in one run. Int. J. Environ. Anal. Chem. 1996, 65 (1-4): 11-25.
    [11] Delaunay, B. N.; Hennion, M. C., Immunoaffinity solid phase extraction for pharmaceutical and biomedical trace-analysis-coupling with HPLC and CE-perspectives. J. Pharm. Biomed. Anal. 2004, 34 (4): 717-736.
    [12] Delaunay, B. N.; Pichon, V.; Hennion, M. C., Immunoaffinity solid-phase extraction for the trace-analysis of low-molecular-mass analytes in complex sample matrices. J. Chromatogr. B 2000, 745 (1): 15-37.
    [13] David, S. H., Survey of recent advances in analytical applications of immunoaffinity chromatography. J. Chromatogr. B 1998, 715 (1): 3-28.
    [14] Farjam, A.; Brugman, A. E.; Soldaat, A., et al., Immunoaffinity precolumn for selective sample pretreatment in column liquid chromatography: immunoselective desorption. Chromatographia 1991, 31 (9-10): 469-477.
    [15] Farjam, A.; de Vries, R.; Lingeman, H., et al., Immuno precolumns for selective on-line sample pretreatment of aflatoxins in milk prior to column liquid chromatography. Int. J. Environ. Anal. Chem. 1991, 44 (3): 175-184.
    [16] Farjam, A.; van der Merbel, C.; Lingeman, H., et al., Non-selective desorption of immuno precolumns coupled on-line with column liquid chromatography: determination of aflatoxins. Int. J. Environ. Anal. Chem. 1991, 45 (2): 73-87.
    [17] Hosoya, K.; Shirasu, Y.; Kimata, K., et al., Molecularly Imprinted chiral stationary phase prepared with racemic template. Anal. Chem. 1998, 70 (5): 943-945.
    [18] Hosoya, K.; Yoshizako, K.; Sasaki, H., et al., Molecular recognition towards coplanar polychlorinated biphenyls based on the porogen imprinting effects of xylenes. J. Chromatogr. A 1998, 828 (1-2): 91-94.
    [19] Ramstrom, O.; Ye, L.; Krook, M.; et al., Applications of molecularly imprinted materials as selective adsorbents: Emphasis on enzymatic equilibrium shifting and library screening. Chromatographia 1998, 47 (7-8): 465-469.
    [20] Ramstrom, O.; Ye, L.; Gustavsson, P. E., Chiral recognition by molecularly imprinted polymers in aqueous media. Chromatographia 1998, 48 (3-4): 197-202.
    [21] Andersson, L. I., Application of molecular imprinting to the development ofaqueous buffer and organic solvent based radioligand binding assays for (S)-propranolol. Anal. Chem. 1996, 68 (1): 111-117.
    [22] Haupt, K.; Dzgoev, A.; Mosbach, K., Assay system for the herbicide 2, 4-dichlorophenoxyacetic acid using a molecularly imprinted polymer as an artificial recognition element. Anal. Chem. 1998, 70 (3): 628-631.
    [23] Haupt, K.; Mayes, A. G.; Mosbach, K., Herbicide assay using an imprinted polymer-based system analogous to competitive fluoroimmunoassays. Anal. Chem. 1998, 70 (18): 3936-3939.
    [24] Levo, R.; McNiven, S.; Piletsky, S. A., et al., Optical detection of Chloramphenicol using molecularly imprinted polymers. Anal. Chem. 1997, 69 (11): 2017-2021.
    [25] Sellergreen, B., Direct drug determination by selective sample enrichment on an imprinted polymer. Anal. Chem. 1994, 66 (9): 1578-1582.
    [26] Muldoon, M. T.; Stanker, L. H., Molecularly imprinted solid phase extraction of atrazine from beef liver extracts. Anal. Chem. 1997, 69 (5): 803-808.
    [27] Fritz, J. S.; Dumont, P. J.; Schmidt, L. W., Methods and materials for solid-phase extraction. J. Chromatogr. A 1995, 691 (1-2): 133-140.
    [28] Safarik. I.; Safarrikova, M.; Forsythe, S. F., The application of magnetic separations in applied microbiology. J. Appl. Bacteriol. 1995, 78 (6): 575-585.
    [29] Setchell, C. H., Magnetic separations in biotechnology---a review. J. Chem. Tech. Biotechnol. 1985, 35 (3): 175-182.
    [30] Safarik, I.; Safarikova, M.; Hafeli, U., et al., Scientific and Clinical Applications of Magnetic Carriers, Plenum Press, New York, 1997, p. 323
    [31] Han, Y, N.; Nishio, K.; Hatakeyama, M., et al., High-throughput bioscreening system utilization high-performance affinity magnetic carriers exhibiting minimal non-specific protein binding. J. Magn. Magn. Mater. 2009, 321 (10): 1625-1627.
    [32] Lien, K. Y.; Liu, C. J.; Lin, Y. C., et al., Extraction of genomic DNA and detection of single nucletide polymorphism genotyping utilizing an integrated magnetic bead-based microfluidic platform. Microfluid Nanofluid. 2009, 6 (4): 539-555.
    [33] Guan, N. N.; Liu, C.; Sun, D. J., et al., A facile method to synthesize carboxyl-functionalized magnetic polystyrene nanospheres. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2009, 335 (1-3): 174-180.
    [34] Liu, X. Q.; Guan, Y. P.; Liu, H. Z., et al., Preparation and characterization of magnetic polymer nanospheres with high protein binding capacity. J. Magn. Magn. Mater. 2005, 293 (1): 111-118.
    [35] Liu, Z. L.; Ding, Z. H.; Yao, K. L., et al., Preparation and characterization of polymer-coated core–shell structured magnetic microbeads. J. Magn. Magn. Mater. 2003, 265 (1): 98-105.
    [36] Yu, S.; Chow, G. M., Carboxyl group (–CO2H) functionalized ferrimagnetic iron oxide nanoparticles for potential bio-applications. J. Mater. Chem. 2004, 14 (18): 2781-2786.
    [37] Musyanovych, A.; Rossmanith, R.; Tontsch, C., et al., Effect of hydrophilic comonomer and surfactant type on the colloidal stability and size distribution of carboxyl-and amino-functionalized polystyrene particles prepared by miniemulsion polymerization. Langmuir 2007, 23 (10): 5367-5376.
    [38] Shang, H.; Chang, W. S.; Kan, S. H., et al., Synthesis and characterization of paramagnetic microparticles through emulsion-templated free radical polymerization. Langmuir 2006, 22 (6): 2516-2522.
    [39] Zhu, Y.; Kaskel, S.; Shi, J., et al., Immobilization of trametes versicolor laccase on magnetically separable mesoporous silica spheres. Chem. Mater. 2007, 19 (26): 6408-6413.
    [40] Valdes-Solis, T.; Rebolledo, A. F.; Sevilla, M., et al., Preparation, characterization, and enzyme immobilization capacities of superparamagnetic silica/iron oxide nanocomposites with mesostructured porosity. Chem. Mater. 2009, 21 (9): 1806-1814.
    [41] Arruebo, M.; Galan, M.; Navascues, N., et al., Development of magnetic nanostructured silica-based materials as potential vectors for drug-delivery applications. Chem. Mater. 2006, 18 (7): 1911-1919.
    [42] Shi, R. B.; Wang, Y. C.; Hu, Y. L., et al., Preparation of magnetite-loaded silica microspheres for solid-phase extraction of genomic DNA from soy-based foodstuffs. J. Chromatogr. A 2009, 1216 (36): 6382-6386.
    [43] Chen, F.; Shi, R. B.; Xue, Y., et al., Templated synthesis of monodisperse mesoporous maghemite/silica microspheres for magnetic separation of genomic DNA. J. Magn. Magn. Mater. 2010, 322 (16): 2439-2445.
    [44] Yao, N.; Chen, H. M.; Lin, H. Q., et al., Enrichment of peptides in serum by C8 -functionalized magnetic nanoparticles for direct matrix-assissted laserdesorption/ionization time-of-fight mass spectrometry analysis. J. Chromatogr. A 2008, 1185 (1): 93-101.
    [45] Xu, X. Q.; Deng, C. H.; Gao, M. X., et al., Synthesis of magnetic microspheres with immobilization metal ions for enrichment and direct determination of phosphopeptides by matrix-assissted laser desorption ionization mass spectrometry, Adv. Mater. 2006, 18 (24): 3289-3293.
    [46] Zhou, W.; Yao, N.; Yao, G. P., et al., Facile synthesis of aminophenylboronic acid-functionalized magnetic nanoparticles for selective separation of glycopeptides and glycoproteins. Chem. Commun. 2008, 5577-5579.
    [47] Safarikova, M.; Safarik, I., Magnetic solid-phase extraction. J. Magn. Magn. Mater. 1999, 194 (1-3): 108-112.
    [48] Safarikova, M.; Kibrikova, I.; Ptackova, L., et al., Magnetic solid phase extraction of non-ionic surfactants from water. J. Magn. Magn. Mater. 2005, 293 (1): 377-381.
    [49] Li, J.; Zhao, X.; Shi, Y., et al., Mixed hemimicelles solid-phase extraction based on cetyltrimethylammonium bromide-coated nano-magnets Fe3 O4 for the determination of chlorophenols in environmental water samples coupled with liquid chromatography /spectrophotometry detection. J. Chromatogr. A 2008, 1180 (1-2): 24-31.
    [50] Liu, Y.; Li, H.; Lin, J.-M., Magnetic solid-phase extraction based on octadecyl functionalization of monodisperse magnetic ferrite microspheres for the determination of polycyclic aromatic hydrocarbons in aqueous samples coupled with gas chromatography-mass spectrometry. Talanta 2009, 77 (3): 1037-1042.
    [51] Zou, Z. Q.; Ibisate, Y.; Zhou, Y., et al., Synthesis and evaluation of superparamagnetic silica particles for extraction of glycopeptides in the microtiter plate format. Anal. Chem. 2008, 80 (4): 1228-1234.
    [52] Chang, J. H.; Lee, J. H.; Jeong, Y. H., et al., Hydrophobic partitioning approach to efficient protein separation with magnetic nanoparticles. Analytical Biochemistry. 2010, 405 (1): 135-137.
    [53] Villanueva, J.; Philip, J.; Entenberg, D., et al., Serum peptide profiling by magnetic particle-assisted, automated sample processing and MALDI-TOF mass spectrometry. Anal. Chem. 2004, 76 (6): 1560-1570.
    [54] Callesen, K.; Madsen, J. S.; Vach, W., et al., Serum protein profiling by solid phase extraction and mass spectrometry: A future diagnostics tool? Proteomics.2009, 9 (6): 1428-1441.
    [55] Vogeser, M.; Geiger, A.; Herrmann, R., et al., Preparation of plasma samples for chromatographic analyses using functionalized ferromagnetic micro-particles manipulated in a high pressure liquid system. Clin. Biochem. 2009, 42 (9): 915-918.
    [56] Hagestam, I. H.; Pinkerton, T. C., Internal surface reversed phase silica supports for liquid chromatography. Anal. Chem. 1985, 57 (8): 1757-1763.
    [57] Cook, S. E.; Pinkerton, T. C., Characterization of internal surface reversed-phase silica supports for liquid chromatography. J. Chromatogr. 1986, 368: 233-248.
    [58] Nakagawa, T.; Shibukawa, A.; Shimono, N., et al., Retention properties of internal-surface reversed-phase silica packing and recovery of drugs from human plasma. J. Chromatogr. 1987, 420: 297-311.
    [59] Takeda, N.; Niwa, T.; Maeda, K., et al., Rapid assay for indoxyl sulphate in uremic serum by internal-surface reversed-phase high- performance liquid chromatography. J. Chromatogr. 1988, 431 (2): 418-23.
    [60] Mizobe, M.; Kondo, F.; Toyoshima, C., et al., Rapid analysis of four bilirubins in domestic animal sera using high-performance liquid chromatography. J. Vet. Med. Sci. 1996, 58 (6): 495-499.
    [61] Vielhauer, S.; Rudolphi, A.; Boos, K. S., et al., Evaluation and routine application of the novel restricted-access precolumn packing material Alkyl-Diol Silica: coupled-column high-performance liquid chromatographic analysis of the photoreactive drug 8-methoxypsoralen in plasma. J. Chromatigr. B 1995, 666 (2): 315-322.
    [62] van der Hoeven, R. A. M.; Hofte, A. J. P.; Frenay, M., et al., Liquid chromatography-mass spectrometry with on-line solid-phase extraction by a restricted-access C1 8 precolumn for direct plasma and urine injection. J. Chromatogr. A 1997, 762 (1-2):193-200.
    [63] Boos, K. S.; Rudolphi, A.; Vielhauer, S., et al., Alkyl-Diol-Silica (ADS): restricted access precolumn packings for direct injection and coupled-column chromatography of biofluids. Fresenius J. Anal. Chem. 1995, 352 (7-8): 684-690.
    [64] Rudolphi, A.; Vielhauer, S.; Boos, K. S., et al., Coupled-column liquid chromatographic analysis of epirubicin and metabolites in biological materialand its application to optimization of liver cancer therapy. J. Pharm. Biomed. Anal. 1995, 13 (4-5): 615-623.
    [65] Chiap, P.; Rbeida, O.; Christiaens, B., et al., Use of a novel cation-exchange restricted-access material for automated sample clean-up prior to the determination of basic drugs in plasma by liquid chromatography. J. Chromatogr. A 2002, 975 (1): 145-155.
    [66] Rbeida, O.; Christiaens, B.; Chiap, P., et al., Fully automated LC method for the determination of sotalol in human plasma using restricted access material with cation exchange properties for sample clean-up. J. Pharm. Biomed. Anal. 2003, 32 (4-5): 829-838.
    [67] Rbeida, O.; Christiaens, B.; Hubert, P., et al., Integrated on-line sample clean-up using cation exchange restricted access sorbent for the LC determination of atropine in human plasma coupled to UV detection. J. Pharm. Biomed. Anal. 2005, 36 (5): 947-954.
    [68] Rbeida, O.; Christiaens, B.; Hubert, P., et al., Evaluation of a novel anion-exchange restricted-access sorbent for on-line sample clean-up prior to the determination of acidic compounds in plasma by liquid chromatography. J. Chromatogr. A 2004, 1030 (1-2): 95-104.
    [69] Rbeida, O.; Chiap, P.; Lubda, D., et al., Development and validation of a fully automated LC method for the determination of cloxacillin in human plasma using anion exchange restricted access material for sample clean-up. J. Pharm. Biomed. Anal. 2005, 36 (5): 961-968.
    [70] Grimm, C. H.; Boos, K. S.; Apel, C., et al., Selective extraction of small proteins from biological samples using a novel restricted access column with cation exchange properties. Chromatographia. 2000, 52 (11-12): 703-709.
    [71] Yamamoto, E.; Sakaguchi, T.; Kajima, T., et al., Novel methylcellulose immobilized cation exchange precolumn for on-line enrichment of cationic drugs in plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2004, 807 (2): 327-334.
    [72] Yamamoto, E.; Takakuwa, S.; Kato, T., et al., Sensitive determination of aspirin and its metabolites in plasma by LC-UV using on-line solid-phase extraction with methylcellulose immobilized anion exchange restricted access media. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2007, 846 (1-2):132-138.
    [73] Mahony, J. O.; Nolan, K.; Smyth, M. R., et al., Molecularly imprinted polymerspotential and challenges in analytical chemistry. Anal. Chim. Acta. 2005, 534 (1): 31-39.
    [74] Baeyens, W. R. G.; Weken, V. G.; Haustraete, J., et al., Application of the restricted-access precolumn packing material alkyl-diol silica in a column-switching system for the determination of ketoprofen enantiomers in horse plasma. J. Chromatogr. A 2000, 871 (1-2): 153-161.
    [75] Haginaka, J., Molecularly imprinted polymers for solid-phase extraction. Anal. Bioanal. Chem. 2004, 379 (3): 332-334.
    [76] Haginaka, J.; Takekira, H.; Hosoya, K., et al., Uniform-sized molecularly imprinted polymer for (S)-naproxen selectively modified with hydrophilic external layer. J. Chromatogr. A 1999, 849 (2): 331-339.
    [77] Puoci, F.; Iemma, F.; Cirillo, G., et al., New restricted access materials combined to molecularly imprinted polymers for selective recognition/release in water media. European. Polymer. Journal. 2009, 45 (6): 1634-1640.
    [78] Haginaka, J.; Sanbe, H., Uniform-sized molecularly imprinted polymers for 2-arylpropionic acid derivatives selectively modified with hydrophilic external layer and their applications to direct serum injection analysis. Anal. Chem. 2000, 72 (21): 5206-5210.
    [79] Sanbe, H.; Haginaka, J., Restricted access media-molecularly imprinted polymer for propranolol and its application to direct injection analysis ofβ-blockers in biological fluids. Analyst 2003, 128 (6): 593-597.
    [80] Sanbe, H.; Hoshina, K.; Haginaka, J., Molecularly imprinted polymers for triazine herbicides prepared by multi-step swelling and polymerization method: Their application to the determination of methylthiotriazine herbicides in river water. J. Chromatogr. A 2007, 1152 (1-2): 130-137.
    [81] Sellergren, B.; Ruckert, B.; Hall, A. J., Layer-by-layer grafting of molecularly imprinted polymers via iniferter modified supports. Adv. Mater. 2002, 14 (17): 1204-1208.
    [82] Ruckert, B.; Hall, A. J.; Sellergren, B., Molecularly imprinted composite materials via iniferter-modified supports. J. Mater. Chem. 2002, 12 (8): 2275-2280.
    [83] Tamayo, F. G.; Titirici, M. M.; Martin-Esteban, A., et al., Synthesis and evaluation of new propazine-imprinted polymer formats for use as stationary phases in liquid chromatography. Anal.Chim. Acta 2005, 542 (1): 38-46.
    [84] Xu, W. J.; Su, S. F. ; Jiang, P., et al., Determination of sulfonamides in bovine milk with column-switching high performance liquid chromatography using surface imprinted silica with hydrophilic external layers as restricted access and selective extraction material. J. Chromatogr. A 2010, 1217 (46): 7198-7207.
    [85] Yu, Z.; Westerlund, D.; Boos, K. S., Evaluation of liquid chromatographic behavior of restricted-access media precolumns in the course of direct injection of large volumes of plasma samples in column-switching systems. J. Chromatogr. B 1997, 704 (1-2): 53-62.
    [86] Yu, Z.; Westerlund, D., Direct injection of large volumes of plasma in a column-switching system for the analysis of local anaesthetics I. Optimization of semi-permeable surface precolumns in the system and characterization of some interference peaks. J. Chromatogr. A 1996, 725 (1): 137-147.
    [87] Peng, S. X.; Strojnowski, M. J.; Bornes, D. M., Direct determination of stability of protease inhibitors in plasma by HPLC with automated column-switching. J. Pharm. Biomed. Anal. 1999, 19 (3-4): 343-349.
    [88] Capka, V.; Xu, Y., Simultaneous determination of enantiomers of structurally related anticholinergic analogs in human serum by liquid chromatography- electrospray ionization mass spectrometry with on-line sample cleanup. J. Chromatogr. B 2001, 762 (2): 181-192.
    [89] Van Zijtveld, J.; Van Hoogdalem, E. J., Application of a semipermeable surface column for the determination of amoxicillin in human blood serum. J. Chromatogr. B 1999, 726 (1-2): 169-174.
    [90] Haque, A.; Stewart, J. T., Direct injection HPLC method for the determination of phenylbutazone and oxyphenylbutazone in serum using a semipermeable surface column. J. Pharm. Biomed. Anal. 1997, 16 (2): 287-293.
    [91] Furuta, I.; Kitahashi, T.; Kuroda, T., et al., Rapid serum vancomycin assay by high-performance liquid chromatography using a semi-permeable surface packing material column. Clin. Chim. Acta. 2000, 301 (1-2): 31-39.
    [92] Hermansson, J.; Grahn, A., Determination of drugs by direct injection of plasma into a biocompatible extraction column based on a protein-entrapped hydrophobic phase. J. Chromatogr. A 1994, 660 (1-2): 119-129.
    [93] Hermansson, J.; Grahn, A., Direct injection of large volumes of plasma/serum on a new biocompatible extraction column for the determination of atenolol, propranolol and ibuprofen: Mechanisms for the improvement ofchromatographic performance. J. Chromatogr. A 1998, 797 (1-2): 251-263.
    [94] Kanda, T.; Kutsuna, H.; Ohtsu, Y., et al., Synthesis of polymer-coated mixed-functional packing materials for direct analysis of drug-containing serum and plasma by high-performance liquid chromatography. J. Chromatogr. A 1994, 672 (1-2): 51-57.
    [95] Haginaka, J.; Wakai, J.,β-cyclodextrin-bonded silica for direct injection analysis of drug enantiomers in serum by liquid chromatography. Anal. Chem. 1990, 62 (10): 997-1000.
    [96] Pretorius, V.; Smuts, T. W., Turbulent Flow Chromatography: A new approach to faster analysis. Anal. Chem. 1966, 38 (2): 274-281.
    [97] Martin, M.; Guichon, G., Influence of retention on band broadening in turbulent-flow liquid and gas chromatography. Anal. Chem. 1982, 54 (9): 1533-1540.
    [98] Bonfiglio, R.; King, R. C.; Olah, T. V., et al., The effects of sample preparation methods on the variability of the electrospray ionization response for model drug compounds. Rapid Commun. Mass. Spectrom. 1999, 13 (12): 1175-1185.
    [99] Choi, B. K.; Hercules, D. M.; Gusev, A. I., Effect of liquid chromatography separation of complex matrices on liquid chromatography-tandem mass spectrometry signal suppression. J. Chromatogr. A 2001, 907 (1-2): 337-342.
    [100] Fu, I.; Woolf, E. J.; Matuszewski, B. K., Effect of the sample matrix on the determination of indinavir in human urine by HPLC with turbo ion spray tandem mass spectrometric detection. J. Pharm. Biomed. Anal. 1998, 18 (3): 347-357.
    [101] Jemal, M.; Xia, Y. Q., The need for adequate chromatographic separation in the quantitative determination of drugs in biological samples by high performance liquid chromatography with tandem mass spectrometry. Rapid Commun. Mass. Spectrom. 1999, 13 (2): 97-106.
    [102] Jemal, M.; Ouyang, Z; Xia, Y. Q., et al., A versatile system of high-flow high performance liquid chromatography with tandem mass spectrometry for rapid direct-injection analysis of plasma samples for quantitation of aβ-lactam drug candidate and its open-ring biotransformation product. Rapid Commun. Mass. Spectrom. 1999, 13 (14): 1462-1471.
    [103] Majors, R. E.; Boos, K. S.; Grimm, C. H., et al., Practical guidelines for HPLC-integrated sample preparation using column switching. LC-GC. 1996, 14(7): 554-560.
    [104] Ackermann, B. L.; Murphy, A. T.; Berna, M. J., Recent advances in use of LC/MS /MS for quantitative high-throughput bioanalytical support of drug discovery. Am. Pharm. Rev. 2002, 2 (1): 53-66.
    [105] Campins-Falco, P.; Herraez-Hernandez, R.; Sevilano-Cabeza, A., Column- switching techniques for high-performance liquid chromatography of drugs in biological samples. J. Chromatogr. 1993, 619 (2): 177-190.
    [106] Imai, H.; Masujima, T.; Morita-Wada, I., et al., On-line sample enrichment and clean up for high performance liquid chromatography with column switching technique. Anal. Sci. 1989, 5 (4): 389-393.
    [107] Mallet, C. R.; Mazzeo, J. R.; Neue, U., Evaluation of several solid-phase extraction liquid chromatography/tandem mass spectrometry on-line configurations for high-throughput analysis of acidic and basic drugs in rat plasma. Rapid Commun Mass. Spectrom. 2001, 15 (13): 1075-1083.
    [108] Georgi, K.; Boos, K. S., Control of matrix effects in bioanalytical MS-MS using on-line multidimensional solid-phase extraction. LC-GC North America. 2005, 23 (4): 396-402.
    [109] Boos, K. S.; Fleischer, C. T., Multidimensional on-line solid-phase extraction (SPE) using restricted-access materials (RAM) in combination with molecular imprinted polymers (MIP). Fresenius J Anal Chem. 2001, 371 (1): 16-20.
    [110] Machtejevas, E.; John, H.; Wagner, K., et al., Automated multi-dimensional liquid chromatography: sample preparation and identification of peptides from human blood filtrate. J. Chromatogr. B 2004, 803 (1): 121-130.
    [111] Schrader, M.; Knappe, P. S., Peptidomics technologies for human body fluids. J Trends Biotechnol. 2001, 19 (10): S55-S60.
    [112] Knappe, P. S.; Zucht, H. D.; Heine, C., et al., Peptidomics: the comprehensive analysis of peptides in complex biological mixtures. Comb. Chem. High Throughput Screen. 2001, 4 (2): 207-217.
    [113] Schulte, L.; Tammen, H.; Selle, H., et al., Peptides in body fluids and tissues as markers of disease. Expert Rev. Mol. Diagn. 2005, 5 (2): 145-157.
    [114] Petricoin, E. F.; Belluco, C.; Araujo, R. P., et al., The blood peptidome: a higher dimension of information content for cancer biomarker discovery. Nat. Rev. Cancer. 2006, 6 (12): 961-967.
    [115] Hu, L. H.; Ye, M. L.; Zou, H. F., Recent advances in mass spectrometry-basedpeptidome analysis. Expert Rev. Proteomics. 2009, 6 (4): 433-447.
    [116] Zheng, X. Y.; Baker, H.; Hancock, W. S., Analysis of the low molecular weight serum peptidome using ultrafiltration and a hybrid ion trap-Fourier transform mass spectrometer. J. Chromatogr. A 2006, 1120 (1-2): 173-184.
    [117] Polson, C.; Sarkar, P.; Incledon, B., et al., Optimization of protein precipitation based upon effectiveness of protein removal and ionization effect in liquid chromatography-tandem mass spectrometry. J. Chromatogr. B 2003, 785 (2): 263-275.
    [118] Zhang, N.; Doucette, A.; Li, L., Two-layer sample preparation method for MALDI mass spectrometric analysis of protein and peptide samples containing sodium dodecyl sulfate. Anal. Chem. 2001, 73 (13): 2968-2975.
    [119] Brockman, A. H.; Dodd, B. S.; Orlando, N., A desalting approach for MALDI-MS using on-probe hydrophobic self assembled monolayers. Anal. Chem. 1997, 69 (22): 4716-4720.
    [120] Chen, H. M.; Deng, C. H.; Zhang, X. M., Synthesis of Fe3 O4 @SiO2@PMMA Core-Shell magnetic microspheres for highly efficient enrichment of peptide/protein and MALDI-TOF MS analysis. Angew. Chem. Int. Ed. 2010, 122 (3): 617-621.
    [121] Chen, H. M.; Deng, C. H.; Li, Y., et al., A facile synthesis approach to C8-functionalized magnetic carbonaceous polysaccharide microspheres for the highly efficient and rapid enrichment of peptides and direct MALDI-TOF-MS analysis. Advanced. Materials. 2009, 21 (21): 2200-2205.
    [122] A. Bee.; R. Massart.; S. Neveu., et al., Synthesis of very fine maghemite particles. J. Magn. Magn. Mater. 1995, 149 (1-2): 6-9.
    [123] C. T. Yavuz.; J. T. Mayo.; W. W. Yu., et al., Low-Field magnetic separation of monodisperse Fe 3O4 nanocrystals. Colvin, Science 2006, 314 (10): 964-967.
    [124] Chen, F.; Shi, R. B.; Xue, Y., et al., Templated synthesis of monodisperse mesoporous maghemite/silica microspheres for magnetic separation of genomic DNA. J. Magn. Magn. Mater. 2010, 322 (16): 2439-2445.
    [125] S. H. Chang.; K. M. Gooding.; F. E. Regnier., et al., Use of oxiranes in the preparation of bonded phase supports. J. Chromatogr. A 1976, 120 (2): 321-333.
    [126] Ascah, T. L.; Kallury, K. M R.; Szafranski, C. A., Characterization and high performance liquid chromatographic evaluation of a new amide-functionalized reversed phase column. J. Liq. Chromatogr. 1996, 19 (17-18): 3049-3073.
    [127] Boos, K. S.; Rudolphi, A.; Vielhauer, S., et al., Alkyl-Diol Silica (ADS): restricted access precolumn packings for direct injection and coupled-column chromatography of biofluids. Fresenius J Anal Chem. 1995, 352 (7-8): 684-690.
    [128] Lucas, L. H.; Yan, J.; Larive, C. K., et al., Transferred Nuclear Overhauser Effect in Nuclear Magnetic Resonance Diffusion Measurements of Ligand-Protein Binding. Anal. Chem. 2003, 75 (3): 627-634.
    [129] Lambert, J. P.; Mullett, W. M.; Kwong, E., Stir bar sorptive extraction based on restricted access material for the direct extraction of caffeine and metabolites in biological fluids. J. Chromatogr. A 2005, 1075 (1-2): 43-49.
    [130] Aboleneen, H.; Simpson, J.; Backes, D., Determination of methotrexate in serum by high-performance liquid chromatography. J. Chromatogr. B 1996, 681 (2): 317-322.
    [131] Guo, Z.; Xu, S. Y.; Zou, H. F., et al., Immobilized metal-ion chelating capillary microreactor for peptide mapping analysis of proteins by matrix assisted laser desorption/ionization-time of fight-mass spectrometry. Electrophoresis 2003, 24 (21): 3633-3639.
    [132] Olsvik, O.; Popovic, T.; Skjerve, E.; et al., Magnetic separation techniques in diagnostic microbiology. Clin. Microbiol. Rev. 1994, 7 (1): 43-54.
    [133] Safarikova, M.; Safarik, I., Magnetic solid-phase extraction. J. Magn. Magn. Mater. 1999, 194 (1-3): 108-112.
    [134] Safarikova, M.; Kibrikova, I.; Ptackova, L., et al., Magnetic solid phase extraction of non-ionic surfactants from water. J. Magn. Magn. Mater. 2005, 293 (1): 377-381.
    [135] Li, J.; Zhao, X.; Shi, Y., et al., Mixed hemimicelles solid-phase extraction based on cetyltrimethylammonium bromide-coated nano-magnets Fe3 O4 for the determination of chlorophenols in environmental water samples coupled with liquid chromatography /spectrophotometry detection. J. Chromatogr. A 2008, 1180 (1-2): 24-31.
    [136] Liu, Y.; Li, H.; Lin, J.-M., Magnetic solid-phase extraction based on octadecyl functionalization of monodisperse magnetic ferrite microspheres for the determination of polycyclic aromatic hydrocarbons in aqueous samples coupled with gas chromatography–mass spectrometry. Talanta 2009, 77 (3): 1037-1042.
    [137] Zou, Z. Q.; Ibisate, M.; Zhou, Y., et al., Synthesis and evaluation of superparamagnetic silica particles for extraction of glycopeptides in themicrotiter plate format. Anal. Chem. 2008, 80 (4): 1228-1234.
    [138] Callesen, K.; Madsen, J. S.; Vach, W., et al., Serum protein profiling by solid phase extraction and mass spectrometry: A future diagnostics tool? Proteomics 2009, 9 (6): 1428-1441.
    [139] Boos, K.-S.; Rudolphi, A.; Vielhauer, S., et al., Alkyl-Diol Silica (ADS): restricted access precolumn packings for direct injection and coupled-column chromatography of biofluids. Fresenius J. Anal. Chem. 1995, 352 (7-8): 684-690.
    [140] Kamen, B., Folate and antifolate pharmacology. Semin. Oncol. 1997, 24 (5 Suppl 18): S18-30-S18-39.
    [141] Robien, L., Folate during antifolate chemotherapy: what we know... and do not know. Nutr. Clin. Pract. 2005, 24 (4): 411-422.
    [142] Cai, Y. Q.; Mou, S. F., Progress of restricted access matrix solid phase extraction. Chinese Journal of Analytical Chemistry. 2005, 33 (11): 1647-1652.
    [143] Sing, K. S. W.; Everett, D. H.; Haul, R. A. W., et al., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure. Appl. Chem. 1985, 57 (4): 603-619.
    [144] Flores, J. R.; Penalvo, G. C.; Mansilla, A. E., et al., Capillary electrophoretic determination of methotrexate, leucovorin and folic acid in human urine. J. Chromatogr. B 2005, 819 (1): 141-147.
    [145] Mohan, D.; Rajput, S.; Singh, V. K., et al., Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent. J. Hazardous Mater. 2011, 188 (1-3): 319-333.
    [146] Liu, X.; Liu, J.; Huang, Y., et al., Determination of methotrexate in human serum by high-performance liquid chromatography combined with pseudo template molecularly imprinted polymer. J. Chromatogr. A 2009, 1216 (44): 7533-7538.
    [147] Vogeser, M.; Geiger, A.; Herrmann, R., et al., Sample preparation for liquid chromatography-tandem mass spectrometry using functionalized ferromagnetic micro-particles. Clin. Biochem. 2008, 41 (16-17): 1417-1419.
    [148] Vogeser, M.; Geiger, A.; Herrmann, R., et al., Preparation of plasma samples for chromatographic analyses using functionalized ferromagnetic micro-particles manipulated in a high pressure liquid system. Clin. Biochem. 2009, 42 (9): 915-918.
    [149] Tartaj, P.; Gonzalez-Carreno, T.; Serna, C. J., Synthesis of nanomagnets dispersed in colloidal silica cages with applications in chemical separation. Langmuir. 2002, 18 (12): 4556-4558.
    [150] Chen, F.; Shi, R. B.; Xue, Y., et al., Templated synthesis of monodisperse mesoporous maghemite/silica microspheres for magnetic separation of genomic DNA, J. Magn. Magn. Mater. 2010, 322: 2439-2445.
    [151]付英,于水利,杨园晶,卢艳,聚硅酸铁(PSF)混凝剂硅铁反应过程研究。环境科学,2007,28 (3): 569-577.
    [152] Xu, X. Q.; Deng, C. H.; Gao, M. X., et al., Synthesis of magnetic microspheres with immobilized metal ions for enrichment and direct determination of phosphopeptides by matrix-assisted laser desorption ionization mass spectrometry. Adv. Mater. 2006, 18 (24): 3289-3293.
    [153] Li, Y.; Yan, B.; Deng, C. H., et al., Efficient on-chip proteolysis system based on functionalized magnetic silica microspheres. Proteomics 2007, 7 (14): 2330-2339.
    [154] Levy, L.; Sahoo, Y.; Kim, K.-S., et al., Nanochemistry: synthesis and characterization of multifunctional nanoclinics for biological applications. Chem. Mater. 2002, 14 (9): 3715-3721.
    [155] Johnannes, K.; Karin, M.; Thomas, B., Colloidal suspensions of functionalized mesoporous silica nanoparticles. ACS Nano 2008, 2 (4): 791-799.
    [156] Valentina, C.; Axel, S.; Johann, K., et al., Multiple core-shell functionalized colloidal mesoporous silica nanoparticles. J. Am. Chem. Soc. 2009, 131 (32): 11361-11370.
    [157] Deng, Y. H.; Qi, D. W.; Zhao, D. Y., et al., Superparamagnetic high- magnetization microspheres with an Fe3O4 @SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J. Am. Chem. Soc. 2008, 130 (1): 28-29.
    [158] Zhao, W. R.; Gu, J. L.; Zhang, L. X., et al., Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure. J. Am. Chem. Soc. 2005, 127 (25): 8916-8917.
    [159] Teng, Z. G.; Li, J.; Yan, F., et al., Highly magnetizable superparamagnetic iron oxide nanoparticles embedded mesoporous silica spheres and their application for efficient recovery of DNA from agarose gel. J. Mater. Chem. 2009, 19: 1811-1815.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700