沙坡头人工固沙区线虫群落对其栖居环境指示作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对沙坡头人工固沙区不同结皮、不同固沙年限、灌区与非灌区、不同固沙植物的线虫群落特征以及沙坡头人工固沙区线虫营养类群的空间异质性分布进行了研究,最后以红卫天然固沙区为参考点,对土壤线虫群落的演变趋势进行了探讨。本文的研究目的在于评价沙坡头土壤线虫群落对其栖居环境的指示作用,为继续加强固定沙丘的管理、保护和监测提供科学依据。
     结果表明:
     在沙坡人工固沙区,土壤线虫呈明显的表聚集,其主要食物源为微生物,且通常以细菌降解通路占优势,偶见以真菌降解通道占优势,如在秋季藻类结皮和藓类结皮的部分土壤样品。植食性线虫尤其是Rotylenchus在降雨后成为优势属。
     在沙坡头人工固沙区不同类型的结皮中,捕食者百分比、线虫数量,所鉴定的线虫属数和成熟度指数随结皮的发育而增高。主要响应曲线(PRC)揭示了土壤线虫群落沿早期结皮包括流动沙丘在内的物理结皮和藻类结皮向晚期结皮苔藓结皮演替的环境梯度发育,线虫群落的发育与生物结皮的发育平行。
     随着沙丘的固定,线虫丰度,食真菌线虫、杂食性线虫和捕食性线虫的百分比、成熟度指数、香农指数、均匀度指数和结构指数受沙丘固定年限的影响,这些指标同土壤物理化学性质呈不同程度的相关。冗余分析(RDA)显示了两个明显的环境梯度:沙丘的固定初始和沙丘固定的早晚。沙丘的初始固定效应可以由人工植被的输入得到解释;而沙丘固定的早晚效应则由维管束植物和隐花植物的演替以及固定沙丘土壤物理化学性质的不断变化得到解释。
     沙坡头人工固沙区的灌区与非灌区,线虫总数、植食性和杂食性线虫相对丰度、cp类群和多样性指标受有无植被输入或有无灌溉添加的不同程度的影响;主成分分析(PCA)得到了沿第一轴有无植被输入的环境梯度和沿第二轴有无灌溉添加的环境梯度。土壤线虫可以指示沙丘固定方法,即有无人工植被输入和灌溉添加与否。聚类分析结果按照植被输入的有无将线虫群落划分为二个主要的类群。这表明植被的输入比灌溉添加对线虫群落发育更为重要。
     在沙坡头26龄和51龄人工固沙区,线虫总数和各营养类群空间异质性分布特征为上层土壤(0-10cm)强于下层土壤(10-20cm)。除植食者外,较晚固定沙丘线虫总数和营养类群的空间异质性高于较早固定的沙丘。线虫群落本身内在的固有性质和植被的介导作用是导致土壤线虫空间分布格局的原因。
     人工固沙植物的种类和功能类群分别介导了其下土壤线虫群落的差异。与浅根系的油蒿相比,深根系的柠条和花棒下0-10cm土层线虫的Fu和Fu%,Pr,线虫通路比值,多样性指标存在显著差异:不同种类的人工固沙植物引起其下的土壤线虫群落在0-10cm土层线虫的营养类群多样性不同,10-20cm土层各线虫属线虫的数量、线虫分类单元总数、P1、Om和丰富度指数在柠条和油蒿之间存在显著差异。固沙植物的功能类群比其种类的不同在某种程度上对线虫群落有更大的影响。
     沙坡头人工固沙区在0-10cm土壤深度,随着固沙年限的延长,栖居其下的土壤线虫群落有与红卫天然固沙参考点有趋同的倾向,而在10-20cm土壤深度,沙坡头人工固沙区土壤线虫群落与红卫天然固沙参考点的土壤线虫群落相差很大。结皮的盖度、植被的组成和土壤物理化学性质的恢复状态是解释沙坡头人工固沙区土壤线虫群落趋同存异的因素。
     由于固定沙丘仍然尚处于其早期发育阶段,成熟度指数的敏感度不足以显示土壤环境变化。或者说,土壤环境的差异在成熟度指数的检测限以下。成熟度指数仅在春季采集的土壤样品中藓类结皮显著高于藻类结皮;较晚固定的沙丘和较早固定的沙丘间相比差异不显著;在灌区和非灌区也不受灌溉或植被输入的影响,它在本研究体系中不是一个灵敏的指标。结构指数同时考虑了线虫营养类群和生活史,这一指数随固定沙丘年限的延长而显著升高。在评价沙丘固定年限过程中比成熟度指数灵敏,它可以有效地指示固定沙丘的演替。
     PRC,RDA,PCA和聚类分析在分析土壤线虫群落对不同类型的结皮、不同年限的固定沙丘、灌区与非灌区人工固定沙丘中的响应时,它们给出了满意的结果。以线虫群落的种属组成为数据基础的群落分类与排序方法是反映沙坡头人工固沙区线虫群落对其栖居环境变化的灵敏方法。
The characteristics of nematode communities and their composition were investigated under various crusts, in artificial vegetation belt with or without irrigation, along an age sequence after sand dunes stabilized, under assisted re-vegetation plant of Caragana korshinskii Kom., Hedysarum scoparium Fisch. and Artemisia ordosica Krasch. at Shapotou in the Tengger Desert. In contrast to native vegetation sites at Hongwei, evolution characteristics of the nematode communities were also investigated. Additionally, spatial distribution of nematode trophic groups was also studied in stabilized sand dunes at early and late stage. The objective is to evaluate whether nematodes could be as an indicator of their inhabitats during ecological reclaimation after sand dunes stabilized at Shapotou.
     Our results showed that soil nematodes distributed mainly at the upper soil layer in sand dunes at Shapotou, and bacterivores and fungivores were dominant in our system, indicating that the principal food source for nematodes was microbial. Especially, bacterivores were predominant in most observed sites, it suggested decomposition processes in our system were often bacterial based energy channel, occasionally fungal based channel in algal crusts and moss crusts in autumn, althougy they were dependent ultimately on the plants. In addition, plant feeders i.e. Rotylenchus could get dominant after rainfall.
     The abundance of nematodes (N), the proportion of predators, maturity index (MI), the number of nematode taxa identified (S) and Shannon index (H') were affected significantly by crust type. Bare soil, physical soil crusts, algal crusts and moss crusts also were comprised of differing community composition as indicated by principal response curves (PRC) analysis. These results indicate that nematode communities develop parallel to crust development during the assisted re-vegetation of migrating sand dunes.
     N, the proportion of fungivores, omnivores and predator, MI, H', evenness and structure index were affected significantly by the age of stabilized sand dunes, and were correlated with soil physical and chemical properties on different degrees. There were differences on N, the proportion of fungivores, H' and evenness between the shifting dunes and the stabilized dunes, but not within the different succession stages of the stabilized dunes. The result of redundancy analysis (RDA) using data on nematode community composition showed that shifting sand dunes were clearly separated from stabilized sand dunes, and younger sand dunes stabilized for 16 years and 26 years were also separated from older dunes stabilized for 43 years and 51 years to a lesser degree. Those results indicated that changes on nematode communities could predict the initial sand dune stabilization due to the planting of artificial vegetation, and clearly differentiate sand dune succession accompanied by the vegetation succession and the variation of soil properties.
     In bare soil between vegetation and soil under the vegetation in Shapotou, N, the relative abundance of plant feeders, S, species richness (SR) and cp groups responded to vegetation. The relative abundance of omnivores, S, H', dominance, SR, cp3-5 were significantly affected by irrigation supplements. Principal component analysis (PCA) revealed that a vegetation gradient from bare soil between vegetation to soil under vegetation along the first axis, while an irrigation gradient along the second axis. Similarly, classification analysis based on all cased involved indicated that two-main group of nematodes was distinguished by their habitats under vegetation from bare soil. Those results suggested that vegetation input might play a more important role on nematode community composition than irrigation supplements for stabilization of shifting sand dunes.
     The abundance of nematode and trophic groups aggregated stronger in depth of 0-10 cm than that in depth of 10-20 cm in sand dune stabilized for 26 years and 51 years. Nematode communities were more spatial heterogenous in late than in early successional sand dunes since stabilization except plant feeders. The spatial heterogenous distribution patterns can be explained by the intrinsic nematode population process and mediated by vegetation patterns.
     Assisted re-vegetation plant species and function groups affect nematode communities. The abundance of fungivores and predators, relative abundance of fungivores, nematode channel ratio and diversity index diffentiated significantly between shallow rooted shrub of Artemisia ordosica and deep rooted shrub of Caragana korshinskii and Hedysarum scoparium at 0-10 cm soil depth. The plant species induced trophic diversity different significantly at upper soil layer, and the abundance of nematode genera, plant feeders, omnivores, S and SR at lower soil layer. Assisted re-vegetation plant function groups may play a more important role than plant species.
     Nematode communities along dune age at 0-10 cm soil depth in Shapotou region developed towards the level of a reference site of Hongwei native vegetation region. However, nematode communities at 10-20 cm soil depth differentiated significantly between those two region. Those could be due to crust coverage, plant vegetation and the reclamation status of soil physical and chemical characteristics.
     MI was only higher significantly under moss crusts than beneath algal crusts in April, it was affected by age for sand dune stabilization, irrigation and plant input. MI may be a poor indicator of changes in nematode communities under various inhabitat in our system. Whereas structure index increased significantly with dune age and it could act as robust indicators of stabilized sand dune succession. Multivariate methods of PRC, RDA, PCA and classtification analysis could be discriminatory for subtle differences, and these methods are sensitive to respond changes in nematode inhabitat conditions in Shapotou.
引文
白学良,王瑶,徐杰,李新荣,张景光,2003.沙坡头地区固定沙丘结皮层藓类植物的繁殖和生长特性研究[J].中国沙漠23,171-173.
    陈国康,曹志平,2005.土壤生物的生态学研究[J].土壤通报36,259-264.
    冯金朝,陈荷生,1994.宁夏沙坡头地区人工固沙植被种间水分竞争的初步研究[J].生态学报 14,260-265.
    贾晓红,周海燕,李新荣,2004.无灌溉人工固定沙区土壤有机碳及氮含量变异的初步结论[J].中国沙漠24,437-441.
    蒯国锋,刘新民,2004.沙坡头地区人工植被条件下土壤蜘蛛群落特征的研究[J].内蒙古师范大学学报33,304-307.
    兰州沙漠研究所沙坡头沙漠科学研究站,包兰铁路沙坡头段流沙固定原理与措施[M].银川:宁夏人民出版社,1991.
    李守中,2005.沙坡头人工植被固沙区生物结皮的生态水文功能研究.中国科学院寒区与旱区环境与工程研究所,博士论文,P33-36.
    李新荣,2005.干旱沙区土壤空间异质性变化对植被恢复的影响[J].中国科学D辑35,361-370.
    李新荣,肖洪浪,刘立超,张景光,王新平.2005.腾格里沙漠沙坡头地区固沙植被对生物多样性恢复的长期影响[J].中国沙漠25,173-181.
    李新荣,张景光,王新平,刘立超,肖洪浪,2000.干旱沙漠区土壤生物结皮及其对固沙植被影响的研究[J].植物学报42,965-970.
    李玉娟,吴纪华,陈慧丽,陈家宽,2005.线虫作为土壤健康指示生物的方法及应用[J].应用生态学报16,1541-1546.
    梁文举,史奕,Steinberger,Y.,2000.农业生态系统线虫多样性研究进展[J].应用生态学报11(增刊),113-116.
    刘立超,李守中,宋耀选,张志山,李新荣,2005.沙坡头人工植被区微生物结皮对地表蒸发影响的试验研究[J].中国沙漠25,191-195.
    刘新民,陈海燕,乌宁,郭砺,2002.腾格里沙漠生态系统不同固沙方式下昆虫群落的生态位分异研究[J].中国沙漠22,566-570.
    刘新民,刘永江,郭砺,雍世鹏,1999a.腾格里沙漠生态系统土壤动物多样性比较研究[J].中国沙漠(增刊)19,185-190.
    刘新民,郭砺,刘永江,雍世鹏,1999b.腾格里沙漠生态系统土壤动物季节动态研究[J].中国沙漠(增刊)19,185-190.
    刘新民,杨吉,2005.沙坡头地区人工固沙植被演替中大型土壤动物生物指示作用研究[J].中国沙漠25,40-44.
    马风云,李新荣,张景光,李爱霞,2005.沙坡头固沙植被若干土壤物理因子的空间异质性研究[J].中国 沙漠 25,207-215.
    马风云,李新荣,张景光,李爱霞,2006.沙坡头人工固沙植被土壤水分空间异质性[J].应用生态学报17.789-795.
    邵玉琴,赵吉,2004.不同固沙区结皮中微生物生物量和数量的比较研究[J].中国沙漠24,68-71.
    石莎,2004.沙坡头地区人工植被群落结构及动态[D].中央民族大学硕士论文.
    石莎,马风云,刘立超,周宜君,冯金朝,2004.沙坡头地区不同植被结构对沙地土壤水分的影响[J].中央民族大学学报13,137-145.
    唐海萍,史培军.2001.沙坡头地区不同配置格局油蒿和柠条水分生态位适宜度研究[J].植物生态学报25,6-10.
    田桂泉,白学良,徐杰,张建升,2005,固定沙丘生物结皮层藓类植物形态结构及其适应性研究[J].中国沙漠 25,249-255.
    佟富春,2003.长白山北坡土壤动物群落时空格局与动态研究[D].中国科学院水生生物研究所博士论文.
    吴纪华,1999.中国淡水和土壤线虫的研究[D].中国科学院水生生物研究所博士论文.
    肖洪浪,李新荣,段争虎,李涛,李守中,2003.流沙固定过程中士壤-植被系统演变[J].中国沙漠23,606-611.
    肖洪浪,李新荣,段争虎,李涛,李守中,2003b.流沙固定过程中土壤-植被系统演变对水环境的影响[J].土壤学报40,809-814.
    徐杰,白学良,杨持,张萍,2003.固定沙丘结皮层藓类植物多样性及固沙作用研究[J].植物生态学报27.545-551.
    尹文英,1998.中国土壤动物图鉴[M].北京:科学出版社.
    张薇,宋玉芳,孙铁珩,宋雪英,周启星,2004.土壤线虫对环境污染的指示作用[J].应用生态学报15,1973-1978.
    于云江,林庆功,石庆辉,刘家琼,2002.包头铁路沙坡头段人工植被区生境与植被变化研究[J].生态学报22,433-437.
    王新平,李新荣,张景光,周海燕,Berndtsson,R.,2002.沙坡头地区人工固沙植被对土壤温度与土壤导温率的影响[J].中国沙漠22,344-349.
    汪政权,1999.地统计学及在生态学中的应用[M].北京:科学出版社.
    赵志模,郭依泉,1990.群落生态学原理与方法[M].重庆:科学技术文献出版社重庆分社.
    张春祥,武辉,2000.试论我国“水危机”[J].发展研究5,58-61.
    中国土壤学会农业化学专业委员会编,土壤农业化学常规分析方法[M].科学出版社,1983.
    邹本功,丛自立,刘世建,1981.沙坡头地区风沙流的基本特征及其防治效应的初步观测[J].中国沙漠1.33-39.
    Alon,A.,Steinberger,Y.,1999a.Effect of nitrogen amendments on microbial biomass,above-ground biomass and nematode population in the Negev Desert soil[J].J.Arid Environ.41,429-441.
    Alon,A.,Steinberger,Y.,1999b.Response of the soil microbial biomass and nematode population to a wetting event in nitrogen-admended Negev desert plots[J].Biol.Fert.Soil 30,147-152.
    Alphei,J.,Bonkowski,M.,Scheu,S.,1996.Protozoa,nematode and Lumbricidae in the rhizosphere of
    Hordelymus europaeus (Poaceae): faunal interactions, response of microorganisms and effects on plant growth [J]. Oecologia 106, 111-126.
    Anderson, R.V., Coleman, D.C., 1981. Population development and interaction between two species of bacteriophagic nematodes [J]. Nematologica 27, 6-19.
    Anderson, R.V., Gould, W.D., Woods, L.E., Cambardella, C., Ingham, R.E., Coleman, D.C., 1983. Organic and inorganic nitrogenous losses by microbivorous nematodes in soil [J]. Oikos 40, 75-80.
    Bakonyi, G., Nagy, P., Kovács-Láng, E., Kovács, E., Barabás, S., Répási, V., Seres, A., 2007. Soil nematode community structure as affected by temperature and moisture in a temperate semiarid shrubland [J]. Appl. Soil Ecol. 37, 31-40.
    Bardgett, R.D., Leemans, D.K., Cook, R., Hobbs, P.J., 1997. Seasonality of soil biota of grazed and ungrazed hill grasslands [J]. Soil Biol. Biochem. 29, 1285-1294.
    Bardgett, R.D., Cook, R., 1998. Functional aspects of soil animal diversity in agricultural grasslands [J]. Appl. Soil Ecol. 10,263-276.
    Bardgett, R.D., Cook, R.,Yeates, G.W., Denton, C.S., 1999. The influence of nematodes on below-ground processes in grassland ecosystems [J]. Plant Soil 212, 23-33.
    Beare, M.H., Parmelee, R.W., Hendrix, P.F., Cheng, W., Coleman, D.C., Crossley, D.A.JR., 1992. Microbial and faunal interactions and effects on litter nitrogen and decomposition in agroecosystems [J]. Ecol. Monogr. 62, 569-591.
    Belnap, J. 1995. Surface disturbances: their role in accelerating desertification [J]. Environ. Monit. Assess. 37, 9-57.
    
    Belnap, J., 2003. The world in your feet: desert biological soil crusts [J]. Front. Ecol. Environ. 1, 181-189.
    Belnap, J., Budel, B., Lange, O.L., 2001b. Biological soil crusts: characteristics and distribution. In: Belnap, J., Lange, O.L. (eds) Biological soil crusts: structure, function, and management [M]. Springer-Verlag, Berlin, Heidelberg, pp.3-30.
    Belnap, J., Gardner, J.S., 1993. Soil microstructure in soils of the Colorado Plateau: the role of the cyanobacterium Microcoleus vaginatus [J]. Great Basin Nat. 53, 40-47.
    Belnap, J., Gillette, D.A., 1997. Disturbance of biological soil crusts: impacts on potential wind erodibility of sandy desert soils in southeastern Utah [J]. Land Degrad. Dev. 8, 355-362.
    Belnap, J., Hawkes, C.V., Firestone, M.K., 2003. Boundaries in miniature: two examples from soils [J]. Bioscience 53, 739-749.
    Belnap, J, Prasse, R., Harper, K.T., 2001a. Influence of biological soil crusts on soil environments and vascular plants. In: Belnap, J., Lange, O.L. (eds) Biological soil crusts: structure, function, and management [M]. Springer-Verlag, Berlin, Heidelberg, pp. 281-300.
    Bever, J.D., 1994. Feedback between plants and their soil communities in an old field community [J]. Ecology 75, 1965-1977.
    Bever, J.D., Westover, K.M., Antonovics, J., 1997. Incorporating the soil community into plant population dynamics: the utility of the feedback approach [J]. J. Ecol. 85, 561-573.
    Bongers, T., 1990. The maturity index: an ecological measure of environmental disturbance based on nematode species composition [J]. Oecologia 83, 14-19.
    Bongers, T., De Goede, R.G.M., Korthals, G.W., Yeates, G.W., 1995. Proposed changes of c-p classification for nematodes [J]. Russian J. Nematol. 3, 61-62.
    Bongers, T., Van der Meulen, H., Korthals, G., 1997. Inverse relationship between the nematode maturity index and plant parasite index under enriched nutrient conditions [J]. Appl. Soil Ecol. 6, 195-199.
    Bongers, T., Bongers, M., 1998. Functional diversity of nematodes [J]. Appl. Soil Ecol. 10, 239-251.
    Bongers, T., Ferris, H., 1999. Nematode community structure as a bioindicator in environmental monitoring [J]. Trends Ecol. Evol. 14, 224-228.
    Briar, S.S., Grewal, P.S., Somasekhar, N., Stinner, D., Miller, S.A., 2007. Soil nematode community, organic matter, microbial biomass and nitrogen dynamics in field plots transitioning from conventional to organic management [J]. Appl. Soil Ecol. Doi:10.1016/j.apsoil.2007.08.004.
    Brimecombe, M.J., De Leij, F.A.A.M., Lynch, J.M., 2001. Nematode community structure as a sensitive indicator of mictobial perturbations induced by a genetically modified pseudomonas fluorescens strain [J]. Biol. Fertl. Soil 34, 270-275.
    Darby, B.J., Neher, D.A., Belnap, J., 2007. Soil nematode communities are ecologically more mature beneath late- than early- successional stage biological soil crusts [J]. Appl. Soil Ecol. 35, 203-212.
    De Goede, R.G.M., Georgieva, S.S., Verschoor, B.C., Kamerman, J.W., 1993a. Changes in nematode community structure in a primary succession of blown-out areas in a drift sand landscape [J]. Fundam. Appl. Nematol. 16,501-513.
    De Goede, R.G.M., Verschoor, B.C., Georgieva, S.S., 1993b. Nematode distribution, trophic structure and biomass in a primary succession of blown-out areas in a drift sand landscape [J]. Fundam. Appl. Nematol. 16,525-538.
    De Goede, R.G.M., Bongers, T., Ettema, C., 1993. Graphical presentation and interpretation of nematode community structure: c-p triangles [J]. Med. Fac. L andbouww. Gent. 58, 743-750.
    De Goede, R.G.M., 1996. Effects of sod-cutting on the nematode community of a secondary forest of Pinus sylvestris L. [J]. Biol. Fert. Soils 22, 227-236.
    De Ruiter, P.C., Moore, J.C., Zwart, K.B., Bouwman, L.A., Hassink, J., Bloem, J., De Vos, J. A., Marinissen, J.C.Y., Didden, W.A.M., Lebrink, G., Brussaard, L., 1993. Stimulation of nitrogen mineralization in the belowground food webs of two winter wheat fields [J]. J. Appl. Ecol. 30, 95-106.
    Dmowska, E., Krassimira, I., 2006. Secondary succession of nematodes in power plant ash dumps reclaimed by covering with turf [J]. Eur. J. Soil Biol. 42, S164-S170.
    Duan, Z.H., Xiao, H.L., Li, X.R., Dong, Z.B., Wang, G., 2004. Evolution of soil properties on stabilized sands in the Tengger Dersert, China [J]. Geomorphology 59, 237-246.
    Ekschmitt, K., Bakonyi, G., Bongers, M., Bongers, T., Bostrom, S., Dogan, H., Harrison, A., Nagy, R, O'Donnell, A.G., Papatheodorou, E.M., Sohlenius, B., Stamou, G.P., Wolters, V, 2001. Nematode community structure as indicator of soil functioning in European grassland soils [J]. Eur. J. Soil Biol. 37, 263-268.
    Ettema, C.H., Coleman, D.C., Vellidis, G., Lowrance, R.L., Rathbun, S.L. 1998. Spatiotemporal distributions of bacterivorous nematodes and soil resources in a restored riparian wetland [J]. Ecology 79, 2721-2734.
    Ettema, C.H., Wardle, D.A., 2002. Spatial soil ecology [J]. Trends Ecol. Evol. 17,177-182.
    Ferris, H., Venette, R.C., van der Meulen, H.R., Lau, S.S., 1998. Nitrogen mineralization by bacterial-feeding nematodes: verification and measurement [J]. Plant Soil 203, 159-171.
    Ferris, H., Bongers, T., de Goede, R.G.M., 2001. A framework for soil food web diagnostics: extension of the nematode faunal analysis concept [J]. Appl. Soil Ecol.18, 13-29.
    Ferris, H., Venette, R.C., Scow, K.M., 2004. Soil management to bacterivore and fungivore nematode populations and their nitrogen mineralization function [J]. Appl. Soil Ecol. 25, 19-35.
    Fiscus, D.A., Neher, D.A., 2002. Distinguishing sensitivity of free-living soil nematode genera to physical and chemical disturbances [J]. Ecol. Appl. 12, 565-575.
    Freckman, D.W., Mankau, R., Ferris, H., 1975. Nematode community structure in desert soils: nematode recovery [J]. J. Nematol. 7, 343-346.
    Freckman, D.W., Kaplan, D.T., Van Gundy, S.D., 1977. A comparison of techniques for extraction and study of anhydrobiotic nematodes from dry soils [J]. J. nematol. 9, 176-181.
    Freckman, D.W., Whiteford, W.G., Steinberger, Y., 1987. Effects of irrigation on nematode population dynamics and activity in desert soils [J]. Biol. Fertil. Soils 3, 3-10.
    Freckman, D.A., Virginia, R.A., 1997. Low-diversity Antarctic soil nematode communities: distribution and response to disturbance [J]. Ecology 78, 363-369.
    Frouz, J., Prach, K., Pizl, V., Hanel, L., Srary, J., Tajovsky, K., Materna, J., Balík, V., Kalcík, J., Rehounková, K., 2007. Interactions between soil development, vegetation and soil fauna during spontaneous succession in post mining sites [J]. Eur. J. Soil Biol. Doi:10.1016/j.ejsobi.2007.09.002
    George, D.B., Roundy, B.A., ST. Clair, L.L., Johansen, J.R., Schaalje, G.B., Webb, B.L., 2003. The effects of microbiotic soil crusts on soil water loss [J]. Arid Land Res. Manag. 17, 113-125.
    Goralczyk, K., 1998. Nematodes in a coastal dune succession: indicators of soil properties? [J] Appl. Soil Ecol. 9, 465-469.
    Gorres, J.H., Savin M.C., Neher D.A., Weicht, T.R., Amador, J.A., 1999. Grazing in a porous environment: 1. effect of soil pore structure on C and N mineralization [J]. Plant Soil 212, 75-83.
    Griffiths, B.S., Ekelund, F., Ronn, R., Christensen, S., 1993. Protozoa and nematodes on decomposing barley roots [J]. Soil Biol. Biochem. 25, 1293-1295.
    Griffiths, B.S., 1994. Microbial-feeding nematodes and protozoa in soil: their effects on microbial activity and nitrogen mineralization in decomposition hotspots and the rhizosphere [J]. Plant soil 164, 25-33.
    Griffiths, B.S., Wheatley, R.E., Olesen, T., Henriksen, K., Ekelund, F., Ronn, R., 1998. Dynamics of nematodes and protozoa following the experimental addition of cattle or pig slurry to soil [J]. Soil biol. Biochem. 30, 1379-1387.
    Hanel, L., 2002. Development of soil nematode communities on coal-mining dumps in two different landscapes and reclamation practices [J]. Eur. J. Soil Bio. 38, 167-171.
    Hanel, L., 2003. Recovery of soil nematode populations from cropping stress by natural secondary succession to meadow land [J]. Appl. Soil Ecol. 22, 255-270.
    Hedlund, K., Ohrn, M.S., 2000. Tritrophic interactions in a soil community enhance decomposition [J]. Oikos 88,585-591.
    
    Herrera, C.M., 1976. A trophic diversity index for presence-absense food data [J]. Oecologia 25, 187-191.
    Hoherg, K., 2003. Soil nematode fauna of afforested mine sites: genera distribution, trophic structure and functional guilds [J]. Appl. Soil Ecol. 22, 113-126.
    Holtkamp, R., Kardol, P., van der Wal, A., Dekker, S.C., van der Putten, W.H., de Ruiter, P.C, 2008. Soil food web structure during ecosystem development after land abandonment [J]. Appl. Soil Ecol. 39, 23-34.
    Horiuchi, J., Prithiviraj, B., Bais, H.P., Kimball, B.A., Vivanco, J.M., 2005. Soil nematodes mediate positive interactions between legume plants and rhizobium bacteria [J]. Planta 222, 848-857.
    Housman, D.C., Powers, H.H., Collins, A.D., Belnap, J., 2006. Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert [J]. J. Arid Environ. 66, 620-634.
    Housman, D.C., Yeager, C.M., Darby, B.J., Sanford, R.L.Jr., Kuske, C.R., Neher, D.A., Belnap, J., 2007. Heterogeneity of soil nutrients and subsurface biota in a dryland ecosystem [J]. Soil Biol. Biochem. 39, 2138-2149. http://nematode.unl.edu/masterlist.htm.
    Ingham, R.E., Trofymow, J.A., Ingham, E.R. & Coleman, D.C., 1985. Interaction of bacteria, fungi, and their nematode grazers: Effects on nutrient cycling and plant growth [J]. Ecol. Monogr. 55, 119-140.
    Innes, L., Hobbs, P.J., Bardgett, R.D., 2004. The impacts of individual plant species on rhizosphere microbial communities in soils of different fertility [J]. Biol. Fert. Soils 40, 7-13.
    ISO (International Organisation for Standardisation), 2004. Soil quality. Part 4: sampling, extraction and identification of freeliving stages of terrestrial nematodes [Working draft]. ISO/CD 23611-4.
    Jenkinson, D.S., 1977. The soil biomass [J]. N. Z. Soil News 25, 213 - 218.
    Jiang, D., Li Q., Liu, F., Jiang, Y., Liang, W., 2007. Vertical distribution of soil nematodes in an age sequence of Caragana microphylla plantations in the Horqin Sandy Land, Northeast China [J]. Ecol. Res. 22, 49-56.
    Kardol, P., Bezemer, T.M., van der Wai, A., van der Putten, W.H., 2005. Successional trajectories of soil nematode and plant communities in a chronosequence of ex-aralbe lands [J]. Biol. Conserv. 126, 317-327.
    Karimi, M., Van Montagu, M., Gheysen, G., 2000. Nematodes as vectors to introduce Agrobacterium into plant roots [J]. Mol. Plant Pathol. 1, 383-387.
    Keith, A.M., Van der Wal, R., Brooker, R.W., Osier, G.H.R., Chapman, S.J., Burslem, D.F.R.P., 2006. Birch invasion of heather moorland increases nematode diversity and trophic complexity [J]. Soil Biol. Biochem. 38, 3421-3430.
    Knox, O.G.G., Killham, K., Mullins, C.E., Wilson, M.J., 2003. Nematode-enhanced microbial colonization of the wheat rhizosphere [J]. FEMS Microbiol. Lett. 225, 227-233.
    Lazarova, S.S., de Goede, R.G.M., Peneva, V.K., Bongers, T., 2004. Spatial patterns of variation in the composition and structure of nematode communities in relation to different microhabitats: a case study of Quercus dalechampii Ten. Forest [J]. Soil Biol. Biochem. 36, 701-712.
    Lenz, R., Eisenbeis, G., 2000. Short-term effects of different tillage in sustainable farming system on nematode community structure [J]. Biol Fertil. Soil 31, 237-244.
    Li, X.R., Wang, X.P., Li T., Zhang, J.G., 2002. Microbiotic soil crust and its effect on vegetation and habitat on artificially stabilized desert dunes in Tengger Desert, North China [J]. Biol. Fert. Soils 35, 147-154.
    Li, X.R., Zhou, H.Y., Wang, X.P., Zhu, Y.G., O'Conner, P.J., 2003. The effects of sand stabilization and revegetation on cryptogam species diversity and soil fertility in the Tengger Desert, Northern China [J]. Plant Soil 251, 237-245.
    Li, X.R., Feng, Y.M., Xiao, H.L., Wang, X.P., Kim, K.C., 2004a. Long-term effects of revegetation on soil water content of sand dunes in arid region of Northern China [J]. J. Arid Environ. 57, 1-16.
    Li, X.R., Xiao, H.L., Zhang, J.G., Wang, X.P., 2004b. Long-term ecosystem effects of sand-banding vegetation in the Tengger Dersert, Northern China [J]. Restor. Ecol. 12, 376-390.
    Li, X.R., He, M.Z., Duan, Z.H., Xiao, H.L., Jia, X.H., 2007. Recovery of topsoil physicochemical properties in revegetated sites in the sand-burial ecosystems of the Tengger Desert, northern China [J]. Geomorphology 88, 254-265.
    Liang, W., Steinberger, Y., 2001. Temporal changes in nematode community structure in a desert ecosystem [J]. J. Arid environ. 48, 267-280.
    Liang, W., Mouratov, S., Pinhasi-Adiv, Y., Avigad, P., Steinberger, Y, 2002. Seasonal variations in the nematode communities associated with two halophytes in a desert ecosystem [J]. Pedobiologia 46, 63-74.
    Liang, W., Jiang, Y., Li, Q., Liu, Y., Wen, D., 2005. Spatial distribution of bacterivorous nematodes in a Chinese Ecosystem Research Network (CERN) site [J]. Ecol. Res. 20,481-486.
    L iang, W., Li, Q., Jiang, Y., Neher, D.A., 2005b. Nematode faunal analysis in an aquic brown soil fertilized with slow-release urea, Northeast China [J]. Appl. Soil Ecol. 29, 185-192.
    Liu, L., Li, S.Z., Duan, Z.H., Wang, T., Zhang, Z.S., Li, X.R., 2006. Effect of microbiotic crusts on dew deposition in the restored vegetation area at Shapotou, northwest China [J]. J. Hydrol. 328, 331-337.
    López-Fando, C., Bello., A., 1995. Variability in soil nematode populations due to tillage and crop rotation in semi-arid Mediterranean agrosystems [J]. Soil Till. Res. 36, 59-72.
    Mao, X.F., Hu, F., Griffiths, B.S., Li, H.X., 2006. Bacterial-feeding nematodes enhance root growth of tomato seedlings [J]. Soil Biol. Biolchem. 38, 1615-1622.
    McSorley, R., Frederick, J.,1996. Nematode community structure in rows and between rows of a soybean field [J]. Fund. Appl. Nematol. 19, 251-261.
    McSorley, R., Frederick, J., 2004. Effect of extraction method on perceived composition of the soil nematode community [J]. Appl. Soil Ecol. 27, 55-63.
    Moore, J.C., De Ruiter, P.C., 1991. Temporal and spatial heterogeneity of trophic interactions within below-ground food webs [J]. Agr. Ecosyst. Environ. 34, 371-397.
    Mulder, C., Schouten, A.J., Hund-Rinke, K., Breure, A.M., 2005. The use of nematodes in ecological soil classification and assessment concepts [J]. Ecotox. Environ. Safe 62, 278-289.
    Neher, D.A., Campbell, C.L., 1994. Nematode communities and microbial biomass in soils with annual and perennial crops [J]. Appl. Soil Ecol. 1, 17-28.
    Neher, D.A., Campbell, C.L., 1996. Sampling for regional monitoring of nematode communities in agricultural soils [J]. J. Nematol. 28, 196-208.
    Neher, D.A., Easterling, K.N., Fiscus, D., Campbell, C.L., 1998. Comparison of nematode communities in agriculture soils of north Carolina and Nebraska [J]. Ecol. Appl. 8, 213-223.
    Neher, D.A., Weicht, T.R., Mary, S., Gorres, J.H., Amador, J.A., 1999. Grazing in a porous environment. 2. Nematode community structure [J]. Plant Soil 212, 85-99.
    
    Neher, D.A., 2001. Role of nematodes in soil health and their use as indicator [J]. J. Nematol. 33, 161-168.
    Neher, D.A., Wu, J., Barbercheck, M.E., Anas, O., 2005. Ecosystem type affects interpretation of soil nematode community measures [J]. Appl. Soil Ecol. 30, 47-64.
    Okadam, H., Harada, H., 2007. Effects of tillage and fertilizer on nematode communities in a Japanese soybean field [J]. Appl. Soil Ecol. 35, 582-598.
    Olff, H., Hoorens, B., De Goede, R.G.M., Van der Putten, W.H., Gleichman, J.M, 2000. Small-scale shfting mosaics of two dominant grassland species: the possible role of soil-borne pathogens [J]. Oecologia 125, 45-54.
    Pavao-Zuckerman, M.A., Coleman, D.C., 2007. Urbanization alters the functional composition, but not taxonomic diversity, of the soil nematode community [J]. Appl. Soil Ecol. 35, 329-339.
    Pen-Mouratov, S., Rakhimbaev, M., Steinberger, Y., 2003. Seasonal and spatial variation in nematode communities in a Negev desert ecosystem [J]. J. Nematol. 35, 157-166.
    Pen-Mouratov, S. He, X.L., Steinberger, Y., 2004a. Spatial distribution and trophic diversity of nematode population under Acacia raddiana along a temperature gradient in the Negev Desert ecosystem [J]. J. Arid Environ. 56, 339-355.
    Pen-Mouratov, S., Rakhimbaev, M., Barness, G., Steinberger, Y., 2004b. Spatial and temporal dynamics of nematode populations under Zygophyllum dumosum in arid environments [J]. Eur. J. Soil Biol. 40, 31-46.
    Pen-Mouratov, S., Steinberger, Y., 2005. Spatio-temporal dynamic heterogeneity of nematode abundance in a desert ecosystem [J]. J. Nematol. 37, 26-36.
    Ploeg, A.T., Asjes, C.J., Brown, D.J.F., 1991. Tobacco rattle virus serotypes and associated nematode vector species of Trichodoridae in the bulb-growing areas in the Netherlands [J]. Eur. J. Plant Pathol. 97, 311-319.
    
    Poils, G.A., Strong, D.R., 1996. Food web complexity and community dynamics [J]. Am. Nat. 147, 813-846.
    Poinar, Jr.G.O., 1983. The natural history of nematodes. Prentice-Hall, Englewood Cliffs, NJ.
    Popovici, I., 1992. Nematodes as indicators of ecosystem disturbances due to pollution [J]. Stud Univ Babes-Royal Biol. 37, 15-27.
    Popovici, I., Ciobanu, M., 2000. Diversity and distribution of nematode communities in grasslands from Romania in relation to vegetation and soil characteristics [J]. Appl. Soil Ecol. 14, 27-36.
    Porazinska, D.L., McSorley, R., Duncan, L.W., Graham, J.H., Wheaton, T.A., Parsons, L.R., 1998. Nematode community composition under various irrigation schemes in a citrus soil ecosystem [J]. J. Nematol. 30, 170-178.
    Raty, M., Huhta, V., 2003. Earthworms and pH affect communities of nematodes and enchytraeids in forest soil [J]. Biol. Fertil. Soils 38, 52-58.
    Ritz, K., Trudgill, D.L., 1999. Utility of nematode community analysis as an intefrated measure of the functional state of soils: perspectives and challenges [J]. Plant Soil 212, 1-11.
    Robertson, G.P., Freckman, D.W., 1995. The spatial distributions of nematode trophic groups across a cultivated ecosystem [J]. Ecology 76, 1425-1432.
    Sanchez-Moreno, S., Navas, A., 2007. Nematode diversity and food web condition in heavy metal polluted soils in ariver basin in southern Spain [J]. Eur. J. Soil Biol. Doi: 10.1016/j.ejsobi.2007.01.002.
    Shannon, C.E., 1949. The mathematical theory of communication. In Shannon, C.E., Weaver, W. (eds) The Mathematical Theory of Communication [M], Urbana, IL: University of Illinois Press.
    Sohlenius, B., Wasilewska, L., 1984. Influence of irrigation and fertilization on the nematode community in a Swedish pine forest soil [J]. J. Appl. Ecol. 21, 327-342.
    Steinberger, Y., Loboda, I., Garner, W., 1989. The influence of autumn dewfall on spatial and temporal distribution of nematodes in the desert ecosystem [J]. J. Arid Environ. 16, 177-183.
    Steinberger, Y., Loboda, I., 1991. Nematode population dynamics and trophic structure in a soil profile under the canopy of the desert shrub Zygophyllum dumosum [J]. Pedobiologia 35, 191-197.
    Steinberger, Y., Sarig, S., 1993. Response by soil nematode populations in the soil microbial biomass to a rain episode in the hot, dry Negev Desert [J]. Biol. Fert Soils 16, 188-192.
    Steinberger, Y., Liang, W.J., Savkina, E., Meshi, T., Bamess, G., 2001. Nematode community composition and diversity associated with a topoclimatic transect in a rain shadow desert [J]. Eur. J. Soil Biol. 37, 315-320.
    Taylor, C.E., Alphey, T.J.W., Brown, D.J.F., 1978. The distribution of nematode virus-vectors in Great Britain. In: Scott, P. R., Bainbridge, A. (eds) Plant disease epidemiology [M]. Blackwell, London, pp265-273.
    Thornton, C.W., Matlack, G.R., 2002. Long-term disturbance effects in the nematode communities of South Mississippi Woodlands [J]. J. Nematol. 34, 88-97.
    Todd, T.C., Blair, G.A., Milliken, G.A., 1999. Effects of altered soil-water availability on a tallgrass prairie nematode community [J]. Appl. Soil Ecol. 13, 45-55.
    Todd, T.C., Powers, T.O., Mullin, P.G., 2006. Sentinel nematodes of land-use change and restoration in tallgrass prairie [J]. J. Nematol. 38, 20-27.
    Twinn, D.C., 1974. Nematodes. In: Dickinson et al., (eds.) Biology of plant litter decomposition [M]. London: Academic Press, pp 412-465.
    Van der Putten, W.H., Petters, B.A.M., 1997. How soil-borne pathogens may affect plant competition [J]. Ecology 78, 1785-1795.
    Verhoeven, R., 2002. The structure of the microtrophic system in a development series of dune soils [J]. Pedobiologia 46, 75-89.
    Veste, M., 2005. Importance of biological soil crusts for rehabilitation of degraded arid and semi-arid ecosystems [J]. Sci. Soil Water Conserv. Sin. 3,42-47.
    Viketoft, M., Palmborg, C, Sohlenius, B., Kerstin, H.D., Bengtsson, J., 2005. Plant species effects on soil nematode communities in experimental grasslands [J]. Appl. Soil Ecol. 30,90-103.
    Viketoft, M., 2007. Plant induced spatial distribution of nematodes in a semi-natural grassland [J]. Nematology 9, 131-142.
    Wall, J.W., Skene, K.R., Neilson, R., 2002. Nematode community and trophic structure along a sand dune succession [J]. Biol. Fertil. Soil 35, 293-301.
    Wang, X.P., Li, X.R., Xiao, H.L., Pan, Y.X., 2006. Evolutionary characteristics of the artificially revegetated shrub ecosystem in the Tengger Desert, northern China [J]. Ecol Res. 21, 415-424.
    Wanner, M., Dunger, W., 2002. primary immigration and succession of soil organisms on reclaimed opencast coal mining areas in eastern Germany [J]. Eur. J. Soil Biol. 38, 137-143.
    Wardle, D.A., Yeates, G.W., Watson, R.N., Nicholson, K.S., 1995. Development of the decomposer food-web, trophic relationships, and ecosystem properties during a three-year primary succession in sawdust [J]. Oikos 73, 155-166.
    Wasilewska, L., Webster, J.M., 1975. Free living nematodes as disease factors of man and his crops [J]. Int. J. Envrion. Stud. 7, 201-204.
    Wasilewska, L., 1994. The effect of age of meadows on succession and diversity in soil nematode communities [J].Pedobiologia 38,1-11.
    Whitford,W.G.,1996.The importance of the biodiversity of soil biota in arid ecosystems[J].Biodivers.Conserv.5,185-195.
    Whitehead,A.G.,Hemming J.R.,1965.A comparison of some quantitative methods of extracting small vermiform nematodes from soil[J].Ann.Appl.Biol.55,25-38.
    Whittaker,R.H.,1972.Evolution and measurement of species diversity[J].Taxon.21,213-251.
    Whittaker,R.H.,1978.Ordination of Plant Communities[M].(王伯荪译,科学出版社,1986)
    Wu,J.H.,Fu,C.Z.,Chen,S.S.,Chen,J.K.,2002.Soil faunal response to land use:effect of estuarine tideland reclamation on nematode communities[J].Appl.Soil Ecol.21,131-147.
    Wu,J.H.,Fu,C.Z.,Lu,F.,Chen,J.K.,2005.Changes in free-living nematode community structure in relation to progrssive land reclamation at an intertidal marsh[J].Appl.Soil Ecol.,29,47-58.
    Yeates,G.W.,Bongers,T.,de Goede,R.G.M.,Freckman,D.W.,Georgieva,S.S.,1993.Feeding habit in soil nematode families and genera:an outline for soil ecologists[J].J.Nematol.25,315-331.
    Yeates,G.W.,1994.Modification and qualification of the nematode maturity index[J].Pedobiologia 38,97-101.
    Yeates,G.W.,King,K.L.,1997.Soil nematodes as indicators of the effect of management in grasslands in the New England Tablelands(NSW):comparison of native and improved grasslands[J],Pedobiologia 41,526-536.
    Yeates,G.W.,Bongers,T.,1999.Nematode diversity in agroecosystems[J].Agr.Ecosyst.Environ.74,113-135.
    Yeates,G.W.,Dando,J.L.,Sheperd,T.G.,2002.Pressure plate studies to determine how moisture affects access of bacterial-feeding nematode to food in soil[J].Eur.J.Soil Sci.53,355-365.
    Yeates,G.W.,2003.Nematodes as soil indicators:functional and biodiversity aspects[J].Biol.Fertil.Soils 37,199-210.
    Yeates,G.W.,Boag,B.,2004.Background for nematode ecology in the 21~(st) century,in Nematology vol.1Nematode morphology,physiology and ecology[M].In Chen,Z.X.,Chen,S.Y.and Dickson,D.W.ISBN7-302-06312-5,Tsinghua University Press.
    Young,I.M.,Griffiths,B.S.,Robertson,W.M.,McNicol,J.W.,1998.Nematode(Caenorhabditis elegans)movement in sand as affected by particle size,moisture and the presence of bacteria(Eseherichia coli)[J].Eur.J.Soil Sci.49,237-241.
    Zhao,L.J.,Xiao,H.L.,Liu,X.H.,2006.Variations of foliar carbon isotope discrimination and nutrient concentrations in Artemisia ordosica and Caragana korshinskii at the southeastern margin of China's Tengger Desert[J].Environ.Geol.50,285-294.
    Zullini,A.,Loop,P.A.A.,Bongers,T.,2002.Free-living nematodes from nature reserves in Costa Rica.2.Mononchina[J].Nematology 4,1-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700