沙尘气溶胶输送及其辐射反馈效应的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先基于中国气象科学研究院研发的GRAPES_DAM沙尘气溶胶模式,结合Goddard短波辐射参数化方案,利用我国沙漠地区最新的辐射特性参数,对沙尘气溶胶模式实时输出的沙尘空间分布进行辐射参数化,把沙尘短波辐射效应引起的大气温度变化同步反馈到天气模式中,从而初步建立了GRAPES_2W_SDM天气-沙尘双向模式。
    然后根据天气系统的典型性、局地持续时间长短、范围大小等,主要选取了造成我国沙尘天气的典型天气过程,分别为2006年3月南疆东灌冷锋和2002年3月蒙古气旋两次沙尘天气过程。通过对比考虑(RAD)与未考虑(CTL)沙尘短波辐射效应的两组试验,分析比较沙尘短波辐射效应对天气系统及沙尘输送的影响,进而对沙尘气溶胶短波辐射的反馈效应有了进一步的认识,得出以下主要结论:
    (1)GRAPES_DAM模式在未考虑沙尘辐射时,在72h内对天气形势场、地面大风及沙尘输送的模拟较为理想,为考虑沙尘辐射的试验提供了理想的基础。
    (2)沙尘辐射效应影响到达地面短波辐射量、短波辐射加热率、温度、风及边界层特征量等的变化。在沙尘浓度定量模拟较为理想的条件下,考虑沙尘辐射效应对沙尘区内地面气温、气压的模拟较好。
    (3)沙尘辐射效应影响沙尘模块的起沙、输送、沉降等。在特殊的地形、气象场下,沙尘辐射效应的累积可能会引起风向的变化,使堆积的沙尘重新逆着原方向输送。
    (4)沙尘辐射效应对天气-沙尘的综合影响可以对沙尘体的不同区域分别进行讨论,本文主要将沙尘体分为中上部、中下部、移动前沿和中心底层四个区域。除了起沙外,同时可以结合沙尘输送、沉降来考虑沙尘辐射反馈效应。通过模拟发现并提出一个沙尘辐射引起的正反馈机制:沙尘加热爬升效应。即沙尘体中上部吸收太阳短波辐射增大,产生加热效应,使温度升高,温度升高使得沙尘体中上部的向上垂直速度加强,气团将较大沙尘浓度的空气向上输送,使得中上部沙尘浓度增大。该机制在沙尘体中上部随着短波辐射的累积,逐步使沙尘浓度和垂直速度共同增大;机制随着短波辐射的消失而消失。该机制主要发生在沙尘体中上部的弱上升运动区。
    (5)沙尘辐射效应对蒙古气旋海平面气压影响程度不大,主要表现在对蒙古气旋路径和强度的影响不大。只有当沙源处于蒙古气旋中心后部、沙尘有条件向气旋中心输送时,其对强度的影响才显著。
To study the radiative effect of dust aerosols on synoptic-scale system and the dusttransport, an interactive weather-dust model (GRAPES_2W_SDM) was developed. Themodel based on the GRAPES_DAM dust aerosol model which developed by CAMS,including the shortwave radiative transfer scheme for dust aerosols, and the dust aerosolparameterization. Based on the dust aerosol concentration which output from dust aerosolmodel, and using the new Chinese desert parameter, the radiative effects of dust aerosol wascalculated. The change of temperature caused by radiative effect of dust aerosol was returnedto the weather model on-line.
    According to the representative of synoptic-scale systems which caused dust weather, theduration, and the range of the dust weather process, two case happened in China were chose,one caused by the cold front happened in south of Xinjiang, the other caused by the Mongoliacyclone. Two parallel simulation, one including the radiative effects of dust aerosol (RAD)and the other without them (CTL). A comparison of the two experiments shows that:
    (1) GRAPES_DAM model which didn't consider radiative effects of dust aerosol, cansimulated the synoptic situation, the surface wind, and the dust aerosol transport very wellduring the 72h. It established a good foundation for the RAD experiment.
    (2) Radiative effects of dust aerosol impacted the solar radiation flux arrived the floor,solar heating rate, temperature, wind, and the physic quantity of boundary layer. If the dustaerosol concentration simulate very well, the experiment which consider the radiative effectsof dust aerosol can simulate the surface temperature and the pressure much better.
     (3) Radiative effects of dust aerosol also impacted the dust production, transport, and thedeposition. In the special terrain and weather case, radiative effects of dust aerosol can changethe wind direction, and transport the dust back.
    (4)The impact on weather-dust which caused by the radiative effects of dust aerosolshould be divided into different areas to discussed. In this paper, four areas was chose todiscuss, including the upper of dust body, the lower of the dust body, foreside of the dust bodyand the bottom of the dust body. Besides the dust production, it should also include the dusttransport and deposition.The simulation also shows that it existed a positive feedback mechanism caused by theradiative effects of dust aerosol: dust heating and raising effect. The mechanism happened inthe middle and upper of the sand-dust body, if there have a weak raising area. The dustaerosol over there absorbed the solar radiation, heated the layer, and then improved the raisingvertical velocity. The increase of raising vertical velocity raised more dust into the upper areain turn. Finally, both the raising vertical velocity and dust aerosol concentration increased.Along with the solar radiation cumulating, the mechanism also enhanced;and along with thesolar radiation disappearing, the mechanism also disappeared.
    (5) The impact on sea level pressure of Mongolia cyclone which caused by the radiativeeffects of dust aerosol not remarkable, including the route and the intensity of the cyclone.Only when there were some dust source behind the Mongolia cyclone, and the dust cantransport into the center of the cyclone, the impact would be remarkable.
引文
1.王式功,董光荣,陈惠忠.沙尘暴研究的进展.中国沙漠,2000,20(4):349~356
    2.杨得保,尚可政,王式功.沙尘暴.北京: 气象出版社,2003:83~104
    3.石广玉,赵思雄.沙尘暴研究中的若干科学问题.大气科学,2003,27(3):592~606
    4.徐国昌,陈敏连,吴国雄.甘肃省特大沙尘暴分析.气象学报, 1979,37 (4): 26~35
    5.周自江. 近 45 年中国扬沙和沙尘暴天气.第四纪研究,2001,21(1):9~17
    6.杨东贞,纪湘明,徐晓斌.一次黄沙天气过程的分析.气象学报,1991,49(3):334~342
    7.方宗义,张运刚,郑新江等. 用气象卫星遥感监测沙尘暴的方法和初步结果.第四纪研究,2001,21(1):48~55
    8.董治宝,董光荣,陈广庭. 风沙物理学研究进展与展望.大自然探索. 1995,14(53): 30~38
    9. 程麟生,马艳.“93.5”黑风暴发展结构及不同模式分辨率的数值试验. 应用气象学报,1996,7(4):385~395
    10. 吴国雄.“核冬天”理论及气溶胶的短波吸收作用.成都气象学院学报,1987,1:6~10
    11. Chen Shou-Jun, Ying-Hwa Kuo, Wei Ming, et al. The Effect of Dust Radiative Heating on Low Level Frontogenesis. J. Atoms. Sci. , 1995,52:1414~1420
    12. 胡隐樵,光田宁.强沙尘暴发展与干飑线-黑风暴形成的一个机理分析. 高原气象, 1996, 15(2) : 178~185
    13. 胡隐樵,光田宁.强沙尘暴微气象特征和局地触发机制.大气科学,1997,21(5):581~589
    14. 邵亚平.沙尘天气的数值预报.气候与环境研究,2004,9(1): 127~138
    15. 王炜,方宗义.沙尘暴天气及其研究进展综述.应用气象学报,2004,15(3):366~380
    16. Gillette, D. A., R. Passi. Modeling dust emission caused by wind erosion. J.Geophys.Res., 1988, 93:14233~14242.
    17. Marticorena B., Bergametti G.. Modeling the atmospheric dust cycle:1.design of a soil-derived dust emission scheme. J.Geophys.Res.,1995,100:415~430.
    18. Marticorena, B., G. Bergametti, B. Aumont. Modeling the atmospheric dust cycle: 2. Simulation of Saharan dust sources, J. Geophys. Res., 1997,102: 4387~4404.
    19. Shao Y. A model for predicting aeolian sand drift and dust entrainment on scales from paddock to region. Aust. J. Soil Res.,1996,34:309~342.
    20. Shao Y., Leslie L.M.. Wind erosion prediction over the Australian continent. J. Goephys. Res.,1997, 102:30091~0105.
    21. Jung E. ,Shao Y. , Sakai T. .A study on the effects of convective transport on regional-scale Asian dust storms in 2002. J. Goephys. Res.,2005, 110:D20201, doi:10.1029/2005JD005808.
    22. Wang Z., H. Akimoto , I. Uno. Neutralization of soil aerosol and its impact on the distribution of acid rain over East Asia: observations and model results. J.Geophy.Res., 2002, 107: 0.1029/2001JD001040
    23. 刘红年,蒋维楣. 沙尘表面非均相化学过程的气候效应的初步模拟研究. 地球物理学报,2004,47(3):417~422
    24. Tegen, I., I. Fung. Modeling of mineral dust in the Atmosphere: Sources transport and optical thickness, J. Geophys. Res.,1994, 99: 22897-22914.
    25. Uno, H.Amano, S.Emori, et al., Trans-Pacific yellow sand transport observed in April 1998: A numerical simulatin. J.Geophys. Res., 2001, 106,:18331-18344.
    26. Gong S. L., LB Barrie, M.Lazare, et al., Canadian Aerosol Module: A size-segregated simulation of atmospheric aerosol processes for climate and air quality models: 1. Module development, J.Geophys.Res., 2003,108(D1): 4007, doi:10.1029/ 2001JD002002
    27. Gong, S. L., X. Y. Zhang, T. L. Zhao, I. G. McKendry, D. A. Jaffe, and N. M. Lu, Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia: 2. Model simulation and validation, J. Geophys. Res., 2003,108: doi: 10.1029/2002JD002633
    28. 纪飞, 秦瑜. 东亚沙尘暴的数值模拟(模式建立). 北京大学学报(自然科学版), 1996, 32(3): 384~392
    29. 刘春涛, 程麟生. 黑风暴的沙尘形成与输送参数化及中尺度数值试验. 气象学报, 1997, 55(6): 726~738
    30. 刘毅, 张华,周明煜. 一次沙尘暴天气及沙尘输送过程的数值模拟. 南京气象学院学报, 1997, 20 (4): 511~517
    31. 黄美元,王自发. 东亚地区黄沙长距离输送模式设计.大气科学,1998, 22(4): 625~637
    32. 宋振鑫,邵亚平.中国大陆沙尘天气的业务数值预报.第九次全国数值天气预报会议,2004,乌鲁木齐
    33. 赵琳娜,孙建华,赵思雄. 一次引发华北和北京沙尘 (暴)天气起沙机制的数值模拟研究.气候与环境研究 ,2002 ,7(3 ) :279~294
    34. 孙建华,赵琳娜,赵思雄.一个适用于我国北方的沙尘暴天气数值预测系统及其应用试验.气候与环境研究,2003,8(2): 125~142.
    35. 周春红,孙明华,龚山陵等.气溶胶数值预报系统的研发和初步试验,第九次全国数值天气预报会议,2004,乌鲁木齐
    36. 程丛兰,王迎春,刘伟东等. 与动力场相耦合的区域沙尘分档模式及个例模拟.科学通报,2004,49(19):2007~2013
    37. 罗云峰,周秀骥,李维亮.大气气溶胶辐射强迫及气候效应的研究现状.地球科学进展,1998,13(6):572~581
    38. Duce, R.A.. Sources, distributions, and fluxes of mineral aerosols and their relationship to climate, in Aerosol Forcing of Climate, edited by R. J. Charlson and J. Heintzenberg,pp.43~72, John Widely, New York, 1995.
    39. Tegen, I., A. A. Lacis, I. Fung, The influence on climate forcing of mineral aerosols from disturbed soils, Nature, 1996, 380:419~422.
    40. Sokolik I.N., Toon, Oven B, et al.. Modeling the radiative characteristic of airborne mineral aerosols at infrared wavelengths, J. Geophy. Res., 1998, 103:D8:8813 –8826.
    41. Tegen, I., P. Hollrig, M. Chin, et al..Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results, J. Geophys. Res., 1997, 102:23,895~23,916.
    42. Jacobson, M.Z..Global direct radiative forcing of multicomponent anthropogenic and natural aerosol, J. Geophys. Res., 2001, 106:1551~1568.
    43. 王宏. 东亚-北太平洋地区沙尘气溶胶的辐射强迫及其对大气热力结构的影响 :[博士学位论文].北京:中国科学院大气物理研究所,2004
    44. 吴涧,蒋维楣,王卫国等. 我国春季大气沙尘气溶胶分布和短波辐射效应的数值模拟.中国科学技术大学学报,2004,34(1):116~125
    45. Carlson, T. N., S. Benjamin. Radiative heating rates for Sahara dust, J. Atmos. Sci.,1980, 37:193-197.
    46. 尹宏,韩志刚.气溶胶大气对太阳辐射的吸收.气象学报,1989,47:118-123
    47. 段建军, 陈受钧, 郑用生.对大气气溶胶的辐射效应的数值实验.北京大学学报(自然科学版), 2000,36(1):95-101
    48. Brazel A J .Nicking W C. The relationship of weather types to dust storm generation in Arizona. J. Climatology, 1986, 6(3):255~275.
    49. 申绍华,陈受钧.沙尘暴辐射强迫的锋生过程.气象学报,1993,51(3):283~149
    50. Saad Mohalfi, H. S. Bedi, T. N. Krishnamurti,et al.. Impact of Shortwave Radiative Effects of Dust Aerosols on the Summer Season Heat Low over Saudi Arabia. Mon.Wea. Rev.,1998,126:3153~3168
    51. Rodwell. The local and global impact of the recent change in model aerosol climatology. ECMWF Newsletter 2005,105:17~23
    52. Tanre,D.,J-F. Geleyn, J.M Slingo . First result of the introduction of an advanced aerosol-radiation interaction in the ECMWF low resolution global model. In Aerosol and Their Climatic Effect . H.E.Gerber and A .Deepak,Eds., A. Deepak Publ. ,Hampton, val ,1984:133~177
    53. Zhang Xiao-Ling, Cheng Lin-Sheng, Chung Yong-Shung. Development of a severe sand-dust storm model and its application to northwest China. Water, Air, and Soil Pollution.2003,Focus 3: 173~190
    54. Nickovic S., G. Pejanovic, E. Ozsoy, etal., Interactive Radiation-Dust Model: A Step to Further Improve Weather Forecasts, 2004, 北京国际沙尘暴研讨会
    55. 刘景涛,钱正安,姜学恭等. 中国北方特强沙尘暴的天气系统分型研究.高原气象,2004,23(4),540~547.
    56. 陆均天,邹旭恺,王锦贵. 近 3 年我国沙尘天气较频繁发生的原因分析. 气候与环境研究,2003 ,8 (1) :107~113.
    57. 朱乾根, 林锦瑞,寿绍文. 天气学原理和方法. 北京:气象出版社,1981.
    58. 方宗义,朱福康,江吉喜等. 中国沙尘暴研究. 北京:气象出版社, 1997. 31~36
    59. 薛纪善,陈德辉等.新一代数值预报系统(GRAPES)研究与应用 北京,2005
    60. 伍湘君,金之雁,黄丽萍等.GRAPES 模式软件框架与实现.应用气象学报,2005,16(4):539~546.
    61. Staniforth A , Coté J. Semi-lagrangian integration schemes for atmospheric models: a review. Mon. Wea. Rev. 1991, 119:2206–2223
    62. Mlawer, E. J., S. J. Taubman, P. D. Brown, et al.. Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J. Geophys. Res., 1997,102( D14):16663-16682.
    63. Lacis, A. A., J. E. Hansen. A parameterization for the absorption of solar radiation in the earth's atmosphere. J. Atmos. Sci., 1974,31: 118-133.
    64. Morcrette, J.-J.Description of the radiation scheme in the ECMWF model. ECMWF Tech. Memo. No. 165, European Centre for Medium-Range Weather Forecasts, Reading, England, 1989: 26 pp.
    65. Dudhia, J.. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 1989,46: 3077-3107.
    66. Chou M.-D., M. J. Suarez. An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 1994:104606, 3, 85pp.
    67. Iversen,J.D., B.R,White. Saltation threshold on Earth, Mars and Venus. Sedimentology, 1982,29:111~119
    68. Fe′can, F., B. Marticorena, G. Bergametti. Parameterization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas, Ann. Geophys., 1999,17: 149~157
    69. White B.R, Soil transport by winds on Mars, J. Geophys. Res,1979, 84: 4643-4651
    70. Alfaro, S. C., A. Gaudichet, L. Gomes, et al.. Modeling the size distribution of a soil aerosol produced by sandblasting, J. Geophys. Res., 1997,102:11239–11249
    71. Alfaro, S. C., L. Gomes. Modeling mineral aerosol production by wind erosion: Emission intensities and aerosol size distribution in source areas, J. Geophys. Res., 2001,106: 18075–18084
    72. Shao Y,M.R..Raupach,P.A.Findlater.The effect of saltation bombardment on the environment of dust by wind,J Geophys Res,1993,98:12719~12726.
    73. Alfaro, S. C., A. Gaudichet, L. Gomes, et al..Mineral aerosol production by wind erosion: Aerosol particle sizes and binding energies, Geophys. Res. Lett., 1998,25: 991– 994,
    74. Bermejo,Staniforth,The Conversion of Semi-Lagrangian Advection Schemes to Quasi-Monotone Schemes. Mon.Wea.Rev., 1992,54:2622–2632
    75. Giorgi, F., W. L. Chameides. Rainout lifetimes of highly soluble aerosols and gases as inferred from simulations with a general circulation model, J. Geophys. Res., 1986, 91: 14367–14376
    76. Slinn, W. G. N., Precipitation scavenging, in Atmospheric Science and Power Production, edited by D. Randerson, Doc. DOE/TIC-27601, pp. 466 – 532, Tech. Inf. Cent., Off. of Sci. and Tech. Inf., U.S. Dep. of Energy, Washington, D. C., 1984.
    77. Gong, S. L., L. A. Barrie, J.-P. Blanchet. Modeling sea-salt aerosols in the atmosphere, 1, Model development, J. Geophys. Res., 1997, 102: 3805–3818
    78. 中国科学院, 中国沙漠地图,资源环境数据库, 北京:1998.
    79. Hseung, Y., The Soil Atlas of China, Cartographic Publ., Beijing, 1984.
    80. Pielke, R. A., Mesoscale Meteorological Modeling, Academic, San Diego, Calif., 1984.,612pp
    81. Chou M D , Suarez M J. A solar radiation parameterization for atmospheric studies. 1999.NASA Tech. Memo. 10460, 15. http : / / climate. gsfc. nasa. gov/~chou
    82. Penner, J. E., Andreae, M., Annegarn, H. et al. .Radiative forcing of climate change, in IPCC 2001, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2001.
    83. Lindberg, J. D., Gillespie, J.B., Hinds, B.D. . Measurements of the refractive indices of atmospheric particulate matter from a variety of geographic locations. In: Proceeding of the international symposium on radiation in the atmosphere, Garmisch-Partenkirchen [Bolle, H.J., (ed.)]. Science Press, New York,1976.
    84. Wiscombe, W. .Improved Mie scattering algorithms. Appl. Opt., 1980, 19: 1505 -1509.
    85. Wiscombe W. . MIE Scattering Calculations: Advances in Technique and Fast, Vector-Speed Computer Codes. NCAR/TN-140+STR, NCAR TECHNICAL NOTE June 1979 (edited/revised August 1996).
    86. 申绍华.沙尘的辐射效应及其对环流系统的强迫:[博士学位论文].北京:北京大学,1989
    87. Shao Yaping, YangYan, Wang Jianjie, et al., Northeast Asian dust storms: Real-time numerical prediction and validation, J. Geophys. Res., 2003,108(D22),4691, doi:10.1029/2003JD003667
    88. 薛建军,刘月巍,牛若芸等.2002 年 3 月 18~22 日强沙尘暴过程分析.气象,2004,30 (9) :39~44.
    89. 肖贤俊,刘还珠,宋振鑫等.2002 年 3 月 19 日沙尘暴爆发条件分析.应用气象学报,2004,15(1):1~9
    90. 赵琳娜,赵思雄.一次引发华北和北京沙尘暴天气的快速发展气旋的诊断研究.大气科学,2004,28(5):722~735
    91. 姜学恭,沈建国,刘景涛等.地形影响蒙古气旋发展的观测和模拟研究.应用气象学报,2004,15(5):601~611

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700