紫花苜蓿(Medicago sativa L.)秋眠性差异的光合生理机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
紫花苜蓿是一种全球性栽培、适应性广、营养价值高、适口性优良的饲料作物,有“牧草之王”的美誉。近年来,我国随着农业产业结构调整、退耕还林还草工程、社会主义新农村建设,以及畜牧业的快速发展,使苜蓿产业化进程不断推进,其重要作用日益增加,在中国乃至世界的农牧业发展和生态环境建设中,有着越来越重要的作用。栽培苜蓿的目的在于获得高产,苜蓿生产本质上是光能驱动的一种生理活动。苜蓿秋眠性则是苜蓿秋季刈割后对短日照的反应,它与生产性能有着直接的关系,开展苜蓿光合生理研究有着重要的生产价值和理论意义。
     本试验对11个标准秋眠级苜蓿品种的光合特性进行了比较分析,探讨了其光合作用与环境因子的关系以及光合作用过程中资源利用状况,在此基础上研究不同秋眠等级苜蓿品种大田自然光周期过程中生长反应和控制条件下的光合响应,并对不同秋眠级苜蓿光合色素含量与吸收光谱进行了研究,结果表明:
     (1)极非秋眠型苜蓿净光合速率日变化曲线与其他秋眠型不同,春、夏、秋三个季节净光合速率日变化都呈“单峰”曲线,午后净光合速率下降的原因均为非气孔限制。其余秋眠型苜蓿净光合速率日变化表现出“单峰”,“双峰”等不同的变化趋势,日变化曲线类型因秋眠级、季节和生态因素而异。午间净光合速率下降的原因既有气孔限制的调节,也有非气孔限制的调节。
     (2)苜蓿净光合速率与气孔导度呈正相关,与胞间CO_2浓度负相关。影响苜蓿净光合速率日变化的主要生理因子是气孔导度和蒸腾速率。
     (3)不同秋眠级苜蓿光合作用对光、温、水存在季节差异。秋季对苜蓿净光合速率影响程度为光照强度>温度>空气湿度,春季对苜蓿净光合速率影响程度为光照强度>空气湿度>温度,夏季对苜蓿净光合速率影响程度为光照强度>温度>空气湿度。秋季光、温、水对不同秋眠型影响顺序是秋眠型:光照强度>空气湿度>温度;半秋眠型:光照强度>温度>空气湿度;非秋眠型:光照强度>温度>空气湿度;极非秋眠型:光照强度>温度>空气湿度。
     (4)秋季与春、夏季光能、水分利用效率日变化曲线一致,呈现先降低后升高的趋势。光能利用效率:春季>秋季>夏季。水分利用效率:春季>夏季>秋季。秋眠级间苜蓿生长季日同化量的差异显著,11个秋眠级苜蓿单位面积日同化量为春季>夏季>秋季。秋眠型间苜蓿日同化量顺序为极非秋眠型>非秋眠型>半秋眠型>秋眠型。秋眠级间苜蓿生长季日蒸腾效率的差异显著,春季的蒸腾效率最高,秋季的蒸腾效率最低,且春季的蒸腾效率远高于夏季和秋季。整个生长季节中极非秋眠型的日同化量最大、蒸腾效率最高,非秋眠型次之,说明与秋眠、半秋眠型相比,极非秋眠、非秋眠型生长优势明显。
     (5)秋季11个秋眠级苜蓿光饱和点(LSP)变动范围为1178到1843μmol·m~(-2)·s~(-1),光补偿点(LCP)的变动范围为25-69μmol·m~(-2)·s~(-1)。苜蓿光补偿点、光饱和点、表观量子产量较高,具有显著的阳生植物的光合作用特点。光饱和点大小顺序是,极非秋眠型>非秋眠型>半秋眠型>秋眠型;秋眠型间光补偿点无一定明显规律。不同秋眠型苜蓿品种CO_2饱和点大小顺序为:UC-1465>Pierce>Archer>Maverick。4个不同秋眠型苜蓿品种对CO_2的利用范围不同,UC-1465具有最宽的CO_2利用范围,其次是Pierce和Archer,Maverick对CO_2的利用范围最窄。
     (6)苜蓿存在明显的自然光周期规律。在春季光延长过程中,11个秋眠级苜蓿品种株高与春季日照长度呈极显著正相关,秋眠级间植株生长高度的差异不显著。秋季光长缩短过程中,11个秋眠级苜蓿品种再生株高与秋季日照长度呈显著或极显著负相关,秋眠级间植株再生高度的差异显著。不同秋眠型苜蓿的再生高度:极非秋眠型>非秋眠型>半秋眠型>秋眠型。
     (7)国内首次系统研究了11个标准秋眠级苜蓿品种秋季光合色素含量的变化规律与光合色素吸收光谱。研究表明,秋季11个秋眠等级苜蓿具有相同的叶片光合色素吸收光谱,都在440 nm和663nm有一个吸收高峰,不同秋眠级苜蓿的光合色素光密度分析可采用相同的方法。秋季刈割后,11个秋眠级苜蓿具有相同的光合色素变化趋势,光合色素秋眠级间含量差异不显著,各秋眠级叶绿素含量与日照长度呈负相关,类胡萝卜素含量与日照长度呈正相关,相关性均不显著。
Alfalfa is a global culture, wide adaptability, high nutritional value and excellent palatability of feed crops, the "king of grass" in the world. In recent years, along with the agricultural structure adjustment, returning farmland to pasture project, the building of new socialist countryside, as well as the rapid development of animal husbandry, so that alfalfa continuously push forward the industrialization process, its important role in increasing the agriculture and animal husbandry in China and the world industry development and ecological environment construction, has an increasingly important role. The purpose of cultivation is high-yielding .Alfalfa production is essentially a kind of light-driven physiological activity. The fall dormancy of alfalfa is a reflection for short daylength in autumn. It has a direct relationship in production performance. The reseach of photosynthetic physiology of alfalfa has an important significance in theory and production in autumn.
     This test compares with the photosynthetic characteristics of 11 standard fall dormancy rate varieties of alfalfa. It is discussed the relationship of photosynthesis coupled with environmental factors and the resource utilization situation of their photosynthesis .On this basis ,it is studied that the different fall dormancy rate of afalfa grows response in field during natural light cycle and artificial photosynthetic responses under controlled conditions. The photosynthetic pigment content and absorption spectra have been studied in different fall dormancy rate of alfalfa .It results showed that:
     (1) The net photosynthetic rate daily change of the extreme non- fall dormancy type of alfalfa is "single peak" curve in spring, summer and autumn. The decline causes of the net photosynthetic rate is non-stomatal limitation. The change shown by the "single peak", 'Twin Peaks"and the different trends in the net photosynthetic rate of the others fall dormancy type. Diurnal variation curves are different for different type fall dormancy, seasonal and ecological factors. The midday decline causes of the net photosynthetic rate are both the regulation of stomatal limitation and the regulation of non-stomatal limitation.
     (2) The net photosynthetic rate of alfalfa and stomatal conductance is positively correlated and is negative correlation for the intercellular CO_2 concentration. The main physiological factorsof the affecting the diurnal variation of net photosynthetic rate are stomatal conductance and transpiration rate.
     (3)The photosynthesis of different fall dormancy rate alfalfa exists seasonal differences on the light, temperature, water coupling effect. Autumn on the net photosynthetic rate of alfalfa impact: light intensity>temperature>air humidity ;spring: light intensity>humidity>temperature;summer: light intensiry>temperature>air humidity temperature. In autumn ,the order of light, temperature, water coupling of different typeseffection, fall dormancy type: light intensity>humidity> temperature; semi-dormancy type:light intensity>temperature>air humidity;non-fall dormancy type: light intensity>temperature>air humidity; extreme non-fall dormancy type: light intensity>temperature> air humidity.
     (4) LUE and WUE are the same curve in fall,spring and summer, showing the rising trend after the first reduction.LUE:spring (0.107)>autumn (0.035) > Summer (0.0335). WUE: spring (10.05) >Summer (2.25) >autumn (1.67). Different fall dormancy rate is a significant difference in the amount of assimilation. 11 fall dormancy rate of alfalfa on assimilation capacity per unit area : spring >summer> autumn.. Different fall dormancy type of assimilation : extreme non-fall dormancy type >non-autumn dormancy type>semi-dormancy type >fall dormancy type. Different fall dormancy rate is a significant difference for transpiration efficiency in the growing season . The highest transpiration efficiency is spring and autumn the least .Transpiration efficiency in spring is much higher than in summer and autumn. Throughout the growing season, extreme non-fall dormancy type is the largest amount of assimilation and the highest transpiration efficiency,followed by the non-autumn dormancy type. It descriptioned that the growth of the extreme non-fall dormancy type, the non-fall dormancy type have obvious advantages comparing dormancy, semi-dormancy type.
     (5)It changes that the LSP range of 1178 to 1843μmol.m~(-2).s~(-1) and the LCP range of 25-69μmol.m~(-2).s~(-1) in 11 fall dormancy rate of alfalfa. It is a significant photosynthetic characteristics of sun plants for higher LSP and LCP. the LSP law, extreme non-fall dormancy type > non-autumn dormancy type > Semi-fall dormancy type > fall dormancy type; The LCP of different fall dormancy-type is not the necessarily law. Extreme non-fall dormancy type ,non-fall dormancy type of performance have always been a high quantum efficiency. It indicated that their ability of high light intensity use is higher than fall dormancy type, semi-dormancy types.There are different CO_2 use scopes for 4 FD varieties.CSP:UC-1465> Pierce> Archer> Maverick. UC-1465 has the widest range of CO_2 use scopes, followed by Pierce and Archer. There is the narrowest scope of the use of CO_2 for Maverick.
     (6)There exists an obvious natural light cycle of alfalfa. The process of Light extend in spring, 11 fall dormancy varieties growth height are highly significant positive correlation to the length of the spring sunshine. Renewable height of differenent fall dormancy rate is significant differenent. 11 fall dormancy varieties growth height are highly significant negative correlation to the length of the fall sunshine.
     The renewable heightof different fall dormancy types of alfalfa: Extreme non-fall dormancy type> Non-autumn dormancy type > Semi-fall dormancy type > Fall dormancy type.
     (7) The first time, photosynthetic pigment content changes and absorption spectra is systematic studied in the 11 standard fall dormancy for fall dormancy period .Studies have shown that after mowing in autumn, 11 fall dormancy rate of alfalfa have the same trend of photosynthetic pigments. Photosynthetic pigment content of diffemt fall dormancy rate is no significant Thlorophyll content of different fall dormancy rate is negatively correlated with the length of sunshine. Carotenoid of different fall dormancy rate is positively correlated with the length of sunshine. Correlations are not significant. 11 fall dormancy rate of alfalfa leaf photosynthetic pigments have the same absorption spectrum and different photosynthetic pigment optical density analysis can be used the same method.
引文
1.安渊,胡雪华,陈凡毅等.半秋眠和非秋眠紫花苜蓿生长规律及再生性研究[J]中国草地,2003,25(5):43-47.
    2.毕玉芬,车伟光.新疆北部地区(北疆)苜蓿属植物秋眠性的研究[J].安徽农业大学学报,2002,29(4):383-386.
    3.蔡楚雄,邓雄,曹洪麟,等.8个芒果品种的光合作用比较研究[J].广东农业科学,2003.(2):13-16.
    4.蔡时青,许大全.大豆叶片CO_2补偿点和光呼吸的关系[J].植物生理学报,2000,26(6):545-550.
    5.曹慧,兰彦平,高峰,等.土壤水分胁迫对短枝型苹果树光合速率的影响[J].山西农业大学学报,2000,20(4):356-359.
    6.曹慧,许雪峰,韩振海,等.水分胁迫下抗旱性不同的两种苹果属植物光合特性的变化[J].园艺学报,2004,31(3):285-290.
    7.曹慧.土壤水分胁迫对短枝型苹果树光合速率的影响[J].山西农业大学学报,2005,20(4):356-359.
    8.陈绍光,李燕南,王沙生.空气和土壤干旱对不同杨树种类无性系生长及光合的影响[J].北京林业大学学报,1966,18(3):36-41.
    9.陈玉香,周道玮.玉米、苜蓿间作的产草量及光合作用[J].草地学报,2004,12(2):107-111.
    10.陈四龙,孙宏勇,陈素英等.不同冬小麦品种(系)叶绿素荧光差异分析[J].麦类作物学报,2005,25(3):57-62.
    11.崔国文.紫花苜蓿不同品种低温胁迫反应及适应性研究[D].东北农业大学博士学位论文.2005.
    12.邓蓉,向清华,陈武,等.紫花苜蓿秋眠性的研究[J].草业科学,2005,22(2):2-3.
    13.董静华,卢欣石.半秋眠和非秋眠紫花苜蓿品种在华北地区生长适应性评价[J].北方园艺,2008,7:12-16
    14.董志新.不同苜蓿品种光合特性研究[D].西北农林科技大学硕士学位论文.2007.
    15.窦春蕊,吴万兴,李文华,等.黄土高原地区3个大扁杏品种的光合特性日变化研究[J].干旱地区农业研究,2005,23(6):93-97.
    16.杜占池,杨宗贵,崔骁勇.草原植物光合生理生态研究[J].中国草地,1999,3:20-27.
    17.范晶.东北东部主要成林树种光合生理生态研究[D].黑龙江哈尔滨,东北林业大学博士学位论文,2002.
    18.冯长松,严秀将,卢欣石.北京地区不同秋眠型紫花苜蓿叶片光合色素的比较研究[J].草业科学,26(5):95-98.
    19.冯建灿,胡秀丽,苏金乐,等.保水剂对干早胁迫下刺槐叶绿素a荧光动力学参数的影响[J].西北植物学报,2002,22(5):1144-1149.
    20.冯建灿,张玉洁.柿树光合速率日变化及其影响因子的研究[J].林业科学,2002,38(4):34-39.
    21.高战武.紫花苜蓿对复合盐碱胁迫的适应性响应[D].东北师范大学硕士学位论文。2006.
    22.葛滢,常杰,陈增鸿.石栎净光合作用与环境因子的关系[J].浙江林业科学,1999,19(2): 30-35.
    23.耿华珠.中国苜蓿[D].北京:农业出版社,1995.
    24.巩擎柱,吕金印,徐炳成,等.水分胁迫和种植方式对小麦叶绿素荧光参数及水分利用效率的影响[J].西北农林科技大学学报(自然科学版),2006,34(5):83-87,92.
    25.郭江,郭新宇,王纪华,等.不同株型玉米光响应曲线的特征参数研究[J].西北植物学报,2005,25(8):1612-1617.
    26.郭连旺,沈允钢.高等植物光合机构避免强光破坏的保护机制[J].植物生理学通讯,1996,32(1):1-8.
    27.韩瑞宏,田华,张亚光,等.北京地区公农1号紫花苜蓿叶片光合作用日变化特征[J].草业科学,2008,25(6):34-37.
    28.洪绂曾.苜蓿科学[M].北京:中国农业出版社,2009.
    29.何文兴,易津,李洪梅.根茎禾草乳熟期净光合速率日变化的比较研究[J].应用生态学报,2004,15(2):205-209.
    30.何云,刘圈炜,王成章,王彦华,潘俊良,陈继红.苜蓿秋眠性研究进展[J].草业科学,2005,22(11):25-29.
    31.胡文海,喻景权.低温弱光对番茄叶片光合作用和叶绿素荧光参数的影响[J].园艺学报 2001,28(1):41-46.
    32.黄成林,傅松玲,梁淑云.5种植物光照与光合特性关系的研究[J].应用生态学报,2004,15(7):1131-1134.
    33.黄有总,张国平.叶绿素荧光测定技术在麦类作物耐盐性鉴定中的应用[J].麦类作物学报.2004,24(3):114-116.
    34.蹇洪英,邹寿青.地毯草的光合特性研究[J].广西植物,2003,23(2):181-184.
    35.姜恕.植物生理生态学的发展动态与任务,中国生态学发展战略研究(第一集)[M].中国经济出版社,1992.
    36.姜小文,易干军,张秋明.果树光合作用研究进展[J].湖南环境生物职业技术学院学报,2003,9(4):302-308.
    37.蒋高明,何维明.一种在野外自然光照条件下快速测定光合作用-光响应曲线的新方法[J].植物学通报,1999,16(6):712-718.
    38.兰小中,廖志华,王景升.西藏高原濒危植物西藏巨柏光合作用日进程[J].生态学报,2005,25(12):3172-3175.
    39.李长缨.光强对黄瓜光合特性及亚适温下生长的影响[J].园艺学报,1997,24(1):97-99.
    40.李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.
    41.李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2003.
    42.李美茹,王以柔,刘鸿先,等.光照强度调控4种亚热带森林植物叶片的抗氧化能力[J].植物生态学报,2001,25.460-464.
    43.李少昆.作物光合作用的研究方法[J].石河子大学学报,2000,4:35-37.
    44.李向林,万里强.苜蓿秋眠性及其与抗寒性和产量的关系[J].草业学报,2004,13(3):57-61.
    45.林金科.茶树光合作用的年变化[J].福建农业大学学报,1999,28(1):38-42.
    46.刘克礼,盛晋华.春玉米叶片叶绿素含量与光合速率的研究[J].内蒙古农牧学院学报,1998, 19(2):48-51.
    47.刘宇锋,萧浪涛,童建华,等.非直线双曲线模型在光合光响应曲线数据分析中的应用[J].中国农学通报,2005,21(8):76-79.
    48.刘玉华,贾志宽,史纪安,等.旱作条件下不同苜蓿品种光合作用的日变化[J].生态学报,2006,26(5):1468-1477.
    49.刘玉华,贾志宽.苜蓿秋眠性的研究进展[J].陕西农业科学,2002,(7):20-22.
    50.刘玉华,史纪安,贾志宽,等.旱作条件下紫花苜蓿光合蒸腾日变化与环境因子的关系[J].应用生态学报,2006,17(10):811-814.
    51.刘贞琦.不同株型水稻光合产量因子的研究[J].贵州农业科学,1985,4:12-16
    52.卢欣石,何琪.中国苜蓿品种资源遗传多样性研究[J].中国草地,1997,(6):1-8.
    53.卢欣石,申玉龙.苜蓿秋眠性的研究与应用[J].国外畜牧业-草原与牧草,1991,(1):1-4.
    54.卢欣石.美国苜蓿秋眠性研究与利用[M].兰州大学出版社,1992.
    55.卢欣石.中国苜蓿秋眠性、适宜引种与生态区划[A].首届中国苜蓿发展大会论文集[c].中国草原学会.北京.2000.18-20.
    56.卢欣石.中国苜蓿审定品种秋眠性研究[J].中国草地,1998,16(3):1-5
    57.卢欣石.中国苜蓿遗传多样性及基因生态类型研究[D].兰州:甘肃农业大学,1997.
    58.吕建林,陈如凯,张木清,等.甘蔗净光合速率、叶绿素和比叶重的季节变化[J].福建农业大学学报,1995,27(3):285-290.
    59.马成仓,高玉葆,王金龙等.内蒙古高原甘蒙锦鸡儿光合作用和水分代谢的生态适应性研究[J].植物生态学报,2004.28(3):305-311.
    60.马全林,王继和,纪永福,等.固沙树种梭梭在不同水分梯度下的光合生理特征[J].西北植物学报 2003,23(12):2120-2126.
    61.南志标,李春杰,王韵文等.苜蓿褐斑病对牧草质量光合速率的影响及田间抗病性[J].草业学报,2001,10(1):26-34
    62.阮成江,李代琼.黄土丘陵区沙棘林几个水分生理生态特征研究[J].林业科学研究,2002,15(1):47-53.
    63.沈允钢,施教耐,许大全.动态光合作用[D].北京,科学出版社,1998.
    64.时晓霞,王建光,郭树梅,等.不同休眠级苜蓿的光合特性比较[J].内蒙古林业科,2007,33(1):4-6.
    65.苏培玺,赵爱芬,张立新,等.荒漠植物梭梭和沙拐枣光合作用、蒸腾作用及水分利用效率特征[J].西北植物学报,2003,23(1):11-17.
    66.孙艳,黄炜,田霄鸿,等.黄瓜嫁接苗生长状况、光合特性及养分吸收特性的研究[J].植物营养与肥料学报,2002,8(2):181-185.
    67.孙艳,徐伟君,范爱丽.高温强光下水杨酸对黄瓜叶片叶绿素荧光和叶黄素循环的影响[J].应用生态学报,2006,17(3):399-402.
    68.孙艳.两种黄瓜接穗在同一砧木上对生长状况影响的研究[J].西北植物学报,2002,22(1):163-167.
    69.陶俊.银杏光合特性的研究[J].园艺学报,1999,26(3):157-160.
    70.田大伦.樟树幼树光合特性及其对CO_2浓度和温度升高的响应[J].林业科学,2004,40(5):88-92.
    71.童方平,方伟,马履一,等.水分胁迫下湿地松优良半同胞家系光合色素的响应[J].中国农学通报,2006,22(11):97-103.
    72.万素梅,贾志宽,杨宝平.苜蓿光合速率日变化及其与环境因子的关系[J].草地学报,2009,17(1):27-31.
    73.汪月俊,孙国荣,王建波,等.NaCl胁迫下星星草幼苗MDA含量与膜透性及叶绿素荧光参数之间的关系[J].生态学报.2006,26(1):124-132.
    74.王成章,韩锦峰,胡喜峰,张春梅.不同光周期条件下PhyB和ABA对不同苜蓿品种的秋眠性调控[J].草业学报,2006,15(6):56-63.
    75.王萍,郭晓冬,赵鹏.低温弱光对辣椒叶片光合色素含量的影响[J]北方园艺,2007(7):15-17.
    76.王群,李潮海,栾丽敏,等.不同质地土壤夏玉米生育后期光合特性比较研究[J].作物学报,2005,31(5):628-633.
    77.王晓俊,魏臻武.苜蓿品种间抗寒性能及其生产性能评价[D].甘肃农业大学硕士学位论文.2006.
    78.王照兰.苜蓿种质资源评价及优良育种材料的遗传分析[D].呼和浩特;内蒙古农业大学.2003.
    79.王忠.植物生理学[M].北京:中国农业出版社,2002.
    80.魏臻武.苜蓿遗传多样性分子标记及其种质资源评价[D].甘肃农业大学博士学位论文.2003.
    81.文晓鹏,罗充,樊卫国.板栗光合生理的研究-板栗的光合特性[J].贵州农学院报,1995,14(1):4349.
    82.翁晓燕,蒋德安,陆庆,等.影响光合速率日变化的主要因子[J].中国水稻科学,1998,12(2):105-108.
    83.吴彦琼,胡玉佳.外米植物南美螃螟菊、裂叶牵牛和五爪金龙的光合特性[J].生态学报,2004,24(10):2331-2339.
    84.徐程扬.紫椴幼苗、幼树对光的响应与适应研究fD].北京林业大学博士学位论文.1999.
    85.徐春明,贾志宽,韩清芳,等.不同秋眠级数苜蓿品种生物量特性的研究[J].草业学报,2003,12(6):70-73.
    86.徐春明,贾志宽.不同苜蓿品种生长特性分析及评价[D].西北农林科技大学硕士学位论文.2003.
    87.徐克章,曹正菊.人参叶片光合作用和气孔开闭日变化的研究[J].植物生理学通讯,1987,(3):35-36.
    88.徐丽君,王波,孙启忠.科尔沁沙地紫花苜蓿的光合日动态[J].应用生态学报,2008,19(10):2189-2193.
    89.许大全,李德耀,邱国雄.毛竹光合作用的气孔限制研究[J].植物生理与分子生物学,1957,13(2):154-160.
    90.许大全,李德耀,沈允钢,等.田间小麦叶片光合作用“午睡”现象的研究[J]植物生理学报,1984,(10):269-270.
    91.许大全.气孔的不均匀关闭与光合作用的非气孔限制[J].植物生理学通讯,1995,31(4):246-252.
    92.许大全,徐宝基,沈允钢.C_3植物光合效率的日变化[J].植物生理与分子生物学学报,1990, 16(1):1-5.
    93.许大全,张玉忠,张荣铣.植物光合作用的光抑制[J].植物生理学通讯,1992,20(4):237-243.
    94.许大全.光合作用气孔限制分析中的一些问题[J].植物生理学通讯,1997,33(4):241-244.
    95.许娇卉.李树不同品种光合特性的比较研究[D].东北农业大学硕士论文,哈尔滨,东北农业大学,2001.
    96.严秀将,卢欣石,冯长松.北京地区不同秋眠级苜蓿品种生长动态比较分析.草业科学,2008,26(6):15-19.
    97.严秀将:温度对不同秋眠等级苜蓿生长的动态影响[D].北京林业大学硕士学位论文.2009.
    98.杨兴洪,邹琦,赵世杰.遮荫和全光生长的棉花光合作用和叶绿素荧光特征[J].植物生态学报,2005,29(1):8-15.
    99.易鹏,杨晓光,冯利平,等.北京地区引种国外紫花苜蓿品种生态适应性的研究[J].中国生态农业学报,2004,12(4):15-19.
    100.于林清,王照兰,萨佳,等.中国新疆野生种群秋眠性的研究[J].中国草地,2001,23(3):13-16.
    101.余叔文,汤章钧.植物生理与分子生物学[M].北京:科学出版社,1998.
    102.詹少华,林毅,张倩.天然棕、绿彩色棉叶片光合色素分析[J].安徽农业大学学报,2005,32(2):174-177.
    103.张放,张良城.柑橘开花、幼果期的异常高温胁迫对叶片光合作用的影响[J].园艺学报,1995,22(1):11-15.
    104.张国芳,王北洪,孟林,等.四种偃麦草光合特性日变化分析[J].草地学报,2005,13(4):344-348.
    105.张健行,李鸿祥[A].中国首届苜蓿发展大会论文集,2001.
    106.张绍玲,杨庆山,马香莲等.苹果短枝品种光合特性研究[J].果树科学,1991,8(3):129-134.
    107.张世君.紫花苜蓿的秋眠级及其应用[J].草业科学,2002,19(4):19-20.
    108.张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(4):444-448.
    109.张卫强.黄土半干旱区主要树种光合生理与耗水特性研究[D].北京,北京林业大学,2006.
    110.张志平.天目杜鹃引种栽培及生理生态特性研究[D].安徽农业大学硕士学位论文.2007.
    111.张治安,杨福,陈展宇,等.菰叶片净光合速率日变化及其与环境因子的相互关系[J].中国农业科学,2006,39(3):502-509.
    112.赵会杰,邹琦,于振文.叶绿素荧光分析技术在植物光合机理研究中的应用[J].河南农业大学学报,2000,34(3):248-251.
    113.周丽霞,王朝凌,卢欣石.盐分含量对不同秋眠性苜蓿出苗与生长的影响[J].草业科学,1998,15(2):55-61.
    114.宗会,温华东,张燕,等.氮肥形态、用量和种植密度对香料烟光合作用的影响.烟草科技[J].2004,(1):33-35.
    115.邹琦,孙广玉,程炳嵩,等.小粒大豆与普通大豆光合对光、温度、CO_2响应特性的比较研究[J].山东农业大学学报,1991,22(4):311-316.
    116.邹琦.植物生理学实验指导[D].北京:中国农业出版社,2000.
    117.Alan K K.Gas exchange dynamics in C_3 and C_4 grasses consequences of differences in stomatal conductance[J].Ecology,1993,(74):113-123.
    118.Allen,J.R.,L.H.Valle and R.R.Mishoe et al.1994 Soybean leaf gas exchange responses carbon dioxide and water stress.[J].Agron.J.86:625-636.
    119.Barnes D K,Bingham E T,M urphy R P,et al.Alfalfa germplasm in the United States:Geneticvul nerability,use,improvement,and maintenance[A].USDA Tech.Bull[C].Washington,DC:U.S.Gov.Print.Office,1997.1571.
    120.Barnes D K,Smith D M,Strucker R E,et al.Fall dormancy in alfalfa:a valuable predictive tool[A].Agricultural Reviews and Manuals,Science and Education Administration[C].washington,D.C:U.S.Gov.print.office,1979.34.Brouwer D J,Duke S H Osborn.Comparison of seeding and cuttings for evaluating winter hardiness in alfalfa[J].Crop Sci.,1998,38:1704-1707.
    121.Brown R H and Radcliffe D E.A comparison of apparent photosynthesis in sericea lespedeza.and alfalfa[J].Crop Science.1986,26(6):1208-1211.
    122.Carter,G.A.and W.K.Smith.1985.Influence of shoot structure on light interception and photosynthesis in conifers.Plant physiol.79:1038-1043.
    123.Chapin Ⅲ,F.S.,A.J.Bloom and C.B.Field et al.1987.Plant responses to multiple environmental factors.BioScience,37(1):49-57.
    124.Chazdon,R.L.1992 photosynthetic plasticity of two rain forest shrub across natural gap transeets.Oecologia 92:586-595.
    125.Chazdon,R.L.and S.Kaufmann.1993.Plasticity of leaf anatomy of two rainforest shrubs in relation to photosynthetic light acclimation.Funct.Ecol.7:385-394.
    126.Chen H.Y.,K.Klinka,Light availability and Photosynthesis of Pseudotsuga menziesii seedlings grow in the open and in the forest understory,Tree Physiology,17:23-29,1997.
    127.Chow W S.Photoprotection and Photoinhibitory Damage[J].Advance in Molecular and Cell Biology,199410:151-196.
    128.Cuningham S M,Volenee J J,Tenber L R.Plant survival and root and bud composition of alfalfa populations selected for contrasting fall dormancy[J].Grop Sci.,1998,38:962-969.
    129.Dai,XB.1996.Influence of light conditions in canopy gaps on forest regeneration:a new gap light index and its application in a boreal forest in east-central Sweden.For.Ecol.Manage.84:187-197.
    130.Demmig Adams B,Adams Ⅲ WW.Photoprotection and other responses of plants to high light stress[J].Annu Rev Plant Physiol PlantMol.1992,43:599-626.
    131.Douglas J.Brouwer,Stanley H.Duke,Thomas C.Os-born.2000.Seeding-year cutting affects winter survialand its assocation with fall growth score in alfalfa.CropSci,2001,32:225-231.
    132.Duan Laza.Chlorophyll a fluorescence induction[J].Acta Biochimica et Biophysica Sinica,1999,1421:1-28.
    133.E.Charles Brummer,M.Maroof Shah,Diane Luth.Reexamining the relationship between fall dormancy and winter hardiness in alfalfa.Crop Sci,2000,40:971-977
    134.Edward J G,Dacies B,Hussain S.Ecological economics:an introduction[M].Oxford:Blackwell Science Limited,2000:232.
    135.El-Sharkawy,J.Heskerth.Photosynthesis among species in relation to characteristics of lesf anatomy and CO_2 diffusion resistance[J].Crop Sci.,1965,5:517-521.
    136.Farquhar G D,Sharkey T D.Stomatal conductance and photosynthesis[J].Rev.Plant Physiol.,1982,33:317-345.
    137.Foord,K.E.Physiological,environmental,and genetic determinants of seedling growth in Medicagosativa.Ph.D.thesis.Univ.ofCalifornia,Davis(Diss.Abstr.DA8521203).1984,(2):12-23
    138.Foote K&Schaedle M.Seasonal field rates of photosynthesis and respiration in stems of Populus tremuloides[J].Plant Physiology.Suppl,1974,53:352-359.
    139.Garver S.Alfalfa in South Dakota-twenty-one years research at the Redfield station[A].South DakotaAgric.Exp.Stu.Bull[C].Brooking south DakotaState College,1946.383.
    140.Genty B,Bmintais J M,Baker N R.The relationship between the quantum yield of photosynthetic electron transportand quenching of chlorophyll fluorescence[J].Biochim Biophys Acta,1989,990: 87-92.
    141.Gross,K,A.Homlicher and A Weinreich et al.1996.Effect of shade on stomatal conductance,net photosynthesis,photochemical efficiency and growth of oak saplings.Ann.Sci.For.53:279-290.
    142.Heinrichs D H,Troelsen J E,Clark K W.Winter hardiness evaluation in alfalfa[J].Can.J.Plant.Sci.,1960,40:638-644.
    143.Hih S C,Jung G A,Shelton D C.Effect s of temperature and photoperiod on metabolic changes in alfalfa in relation to coldhardiness[J].Crop Science,1967,7:385-389.
    144.Intrieri,C.,GZerbi,L.Marchiol and T.Caiado.1995.Physiological response of grapevine leaves to lightflecks.Sci.Horic.61:47-59.
    145.Kamaluddin M,Grace J.Photoinhibition and Light Acclimation in Seedlings of Bischofia Javanica,a Tropical Forest Forest Tress from Asia[J].Ann.Bot,1992,69:47-52.
    146.Kitajima,K.1994.Relative importance of photosynthetic traits and allocation arerns as correlates of seedling shade tolerance of 13 tropical trees.Oecologia.98:419-428.
    147.Kuppers M,Wheeler A M,Kuppers B I L,et al.Carbon dioxide fixation in eucalypts in field analysis of diurnal variationsin photosynthetic capacity[J].Ecologia,1986,70:273-282.
    148.Larson K L,Smith D.Association of various morphological characters and seed germination with thewinter hardiness of alfalfa[J].Crop SCi.,1963,(3):234-237.
    149.Letho,T.and J.Grace.1994.Carbon balance of tropical trees seedlings:acomparison of two species.New Phytol.127:455-463.
    150.Leverenz,J.W.and P.G.Jarvis.1979.Photosynthesis in Sitka spruce.Ⅷ.The effects of light flux density and direction on the rate of net photosynthesis and stomatal conductance of needles.J.Appl.Ecol.16:919-932.
    151.Lindroth,A.,T.E.Verwijst and S.Halldin.1994.WUE of willow:variation with season,humidity and biomass allocation.J.Hydrol.156:1-19.
    152.Morley F H W,Daday H,Peak JW.Quantitative in heritance in lucerne,Medicago sativaL.I.Inheritance and selection for winter yield[J].Aust.J.Agric.REs,1957,(8):635-651.
    153.Murata Y.,Iyama J.and Honma T.Influence of air temperature upon the photosynthesis and respiration of alfalfa and several southern-type forage crops[J].Proc Crop Sci Soc(Japan),1965,34:154-158.
    154.Nelson,C J.et al.Advanees in physiology and molecular biology discussion.International Crop Science Congress[J].Ames,lowa,USA,14-22 July 1992,Pp,713-714.
    155.OH S A,Park J H,Leegi,e tal.Identification of three genetic loci controlling leaf senescence in Arabidopsis thaliana[J].J Plant,1997,12(3):527-533.
    156.Oh-Sungdo.Effect of Different Light Conditions within Canopy on Growth and Photosynthesis in Apple Tree[J].Journal of the Korean Society for Horticultural Science,1997,38(4):391-395.
    157.Oker-Blom,P.1988.The ratio of shoot silhouette area to total needle area in Scots pine.For.Sci.34:894-906.
    158.Osmond C B.What Is Photoinhibition?Some Insights from Comparisons of Shade and Sun Plants[A].In:Baker NR,Bowyer JR(eds.),Photoinhibition of photosynthesis[M].Oxford:Bios Scentific Publishers,1994,1-19.
    159.Pearcy R W,Ehleringer J.Comparative eco-physiology of C_3 and C_4 plants[J].Plant,Cell Environ.1984,(7):1-13.
    160.R.L.Kallenbach.Estimation of fall dormancy in alfalfa bynear infrared reflectance spectroscopy.Crop Sci,2000;3:774-777.
    161.S.M.Cuningham,J.J.Volenee,L.R.Teuber.Plant survial and root and bud composition of alfalfa populations selected for contrasting fall dormancy.Grop Sci,1998;38:962-969.
    162.Safaa AlHamdania and Glenn W Todd.Effect of temperature regimes on photosynthesis,respiration, and growth in alfalfa[J].Proc Okla Acad Sci.1990,70:1-4.
    163.Schwab P M,Baunes D K,Sheaffer C C.The relationship between field winter injury and fall dorman-ey score for 251 alfalfa cultivars[J].Crop Sci.,1961,38:418-426.
    164.Sheaffer,C.C,D.K.Barnes,D.D.Warnes,W.E.Lueschen,H.J.Ford,and D.R.Swanson.Seeding-year cutting affects winter survival and its association with fall growth score in alfalfa.Crop Sci.1992,32:23-25.
    165.Smith D.Association of fall growth habit and winter survival in alfalfa[J].Can.J.Plant Sci.,1961,41:224-251.
    166.Tenber L R,Marble V L,Lehman W F,et al.Climatic and dormancy data reduces need for many regional alfalfa trials[J].Calif.Agric.,1984,38:12-14.
    167.Tysdal H.M.Influence of light,temperature and soil moisture on the hardening process in alfalfa.Agric.Res.1970,(46:483-515.
    168.Winter K,Schromm M J.Analysis of stomatal and nonstomatal components in the environmental control of CO_2 exchanges in leaves of welwitschia mirabilis[J].Plant Physiol,1986,82:173-178.
    169.Wise R R,Sparrow D H,Ortiz Lopez,etal.Biochemical regulation during the midday decline of photosynthesis in field grown sunflower[J].Plant Sci.,1991,74:45-52.
    170.Yang J D,Liu Z M.Study on field-grown maize introduced into Tibetan plateau:some characteristics of diurnal variation of photosynthesis[J].ActaAgronomica Sinica,2002,28:475-479.
    171.Zackary Johnson,Richard T.The low-light reduction in the quantum yield of photo-synthesis:potential errors and biases when calculating the maximum quantum yield[J].Photosynthesis Research,2003,75:85-95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700