中国长白山乌头属5种植物表观结构植纹鉴定研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用植纹专利技术,对长白山地区66科98属248种植物成熟叶片的植纹特征进行研究,将它们在光学显微镜下的叶表皮特征归纳为15种植纹类型,即无规则型、不定型、大小不等型、平列型、横列型、十字交叉型、平列不等型、辐射型、围绕型、双耳型、交叉不规则型、保卫细胞参差不等型、单子叶植物具长短细胞的哑铃型、单子叶植物不具长短细胞的肾型和单子叶植物具长短细胞的肾型。结果表明:结合植纹类型、叶片表皮细胞垂周壁类型以及表皮附属物类型可以对长白山地区药用植物进行有效的鉴别。
     随后运用统计学原理,选取长白山地区6种珍稀药用植物(高山红景天(Rhodiola sachalinensis A. Ber.),黄芩(Scutellaria baicalensis Georgi.),射干(Belamcanda Chinesis (L. ) DC.),长白棘豆(Oxytropis anertii Nakai ex Kitag.),独角莲(Typhonium giganteum Engl.)和防风(Saposhnikovia divaricata (Turcz.) Schischk.))以及乌头属5种植物(北乌头(Aconitum kusnezoffii Reichb.),草地乌头(Aconitum umbrosum (Korsh.) Kom.),黄花乌头(Aconitum coreanum (Lévl.) Rapaics),吉林乌头(Aconitum kirinense Nakai)和细叶黄乌头(Aconitum barbatum Pers.))为研究对象,测量其各项植纹特征参数并进行统计分析。实验结果表明,从3个层次(植纹特征,量化后各植纹特征的平均值,各植纹特征间特有的显著相关性和最优的线性回归方程)应用植纹技术进行鉴别,具有极高的准确性和可信性。
     对上述乌头属5种植物茎和叶的解剖学研究结果表明:北乌头、草地乌头和细叶黄乌头的茎中维管束为拟散生维管束,即不具有束中形成层,具有厚壁组织所围成的鞘状结构;韧皮纤维外侧具有环状分泌道结构;所有维管束排列成内外两轮,星散分布在茎的基本组织当中。而吉林乌头和黄花乌头的茎中维管束为环状排列的外韧无限维管束,具有束中形成层,没有厚壁鞘和分泌组织结构。另外,北乌头的叶片为不具有栅栏组织的等面叶类型;草地乌头和细叶黄乌头叶片的栅栏组织分化不明显。这3种植物的叶片内具有环状分泌道结构,并且分泌道紧邻输导组织和平脉叶肉细胞。黄花乌头叶片的通气组织非常发达,叶肉细胞彼此几乎不联系;吉林乌头的叶片具有非常典型的栅栏组织柱状细胞。此2种乌头属植物不具有环状分泌道结构。
     研究还发现,5种乌头属植物都具有适应湿生环境的解剖结构特征,即茎的表皮细胞外切向壁角质层和机械组织不发达;叶肉通气组织发达且彼此连接成网状;叶片表皮含有大量的异形胞,角质层不发达;有的种类叶片下表皮气孔向外凸出等。实验结果证实,植物的结构与其所处的环境是相适应的。
     此外,本文运用数值分类学原理,选用66个包括植物宏观、解剖以及植纹特征在内的各类性状,对上述5种乌头属植物进行聚类分析。结果表明,草地乌头和细叶黄乌头具有非常近的亲缘关系,而同为牛扁亚属牛扁组的吉林乌头与它们具有明显的差异,因此建议将吉林乌头单列一系。相比之下,北乌头与草地乌头和细叶黄乌头这类植物有着较近的亲缘关系。
     针对乌头属药用植物中多糖成分研究的不足,以乌头属最著名的药用植物川乌(乌头Aconitum carmichaeli Debx.的主根),附子(乌头Aconitum carmichaeli Debx.的侧根)和草乌(北乌头Aconitum Kusnezoffii Reichb.的主根)为实验材料,对其中的多糖成分进行含量、组成以及生物学活性研究。结果表明,3种乌头多糖AWP(川乌),LWP(附子)和KWP(草乌),除了产率上的差别以外,糖含量和单糖组成基本一致,都主要由葡萄糖组成,说明这是一类葡聚糖。
     抗肿瘤和免疫调节作用测定结果表明,高低剂量的3种乌头多糖不仅能够显著抑制小鼠体内肿瘤生长,还能够拮抗化疗药物环磷酰胺(Cy)对机体免疫功能的抑制,提高机体的非特异性免疫,细胞和体液免疫,且都存在一致的剂量依赖关系,因而,推测乌头多糖是通过提高机体免疫能力来抑制体内肿瘤生长的。
     乌头多糖组成和药理学活性研究表明,无论相同乌头属药用植物的主根和侧根,还是不同植物的相同药用部位,所含有的乌头多糖都是组成和活性非常相近的一类活性多糖,是除乌头碱以外另一种重要的活性物质,作为抗肿瘤药物和免疫调节剂具有广阔的应用前景。
In the present study, the abaxial leaf epidermises of 66 families, 98 genera, 248 species medicinal plants in Changbai Mountain were observed with optical microscopy using the Plant Print technology. The characters of the Plant Print were summarized to be 15 types, including anomocytic, indefinite, anisocytic, paracytic, laterocytic, staurocytic, inequipolar, actinocytic, cyclocytic, auritate, decussate irregular, guard cell disparate, dumbbell-shape guard cell monocotyledon with long short epidermis cells, reniform guard cell monocotyledon and reniform guard cell monocotyledon with long short epidermis cells. The results indicated that medicinal plants in Changbai Mountain could be effectively identified according to the types of Plant Print characters, anticlinal wall and appendages of the leaf epidermises.
     The Plant Print characters (the length, width, perimeter and area of guard cells, as well as the perimeter and area of subsidiary cells, stomatal index and density) of 6 rare and precious medicinal plants (including Rhodiola sachalinensis A. Ber., Scutellaria baicalensis Georgi., Belamcanda Chinesis (L.) DC., Oxytropis anertii Nakai ex Kitag., Typhonium giganteum Engl. and Saposhnikovia divaricata (Turcz.) Schischk.), which belonging to different families and genus were measured and statistically analyzed, as well as 5 species of Aconitum plants, including A. kusnezoffii Reichb., A.umbrosum (Korsh.) Kom., A. coreanum (Lévl.) Rapaics, A. kirinense Nakai and A. barbatum Pers. The results indicated that based on 3 levels of characters, including Plant Print characteristics, the means of quantitated Plant Print characteristics, and significant correlations and optimal equations of linear regression between the characteristics, the identification of plants by Plant Print technology and statistics analysis had extremely high accuracy and reliability, no matter the plants without any relationships in family and genus or difficult to be discriminated in macroscopy taxonomy.
     The stems and leave of the 5 Aconitum species were applied to do the anatomical studies using optical microscopic technique. The result of anatomical study on stems showed that vasculars of stems of A. kusnezoffii, A.umbrosum and A. barbatum were quasi atactosteles, which did not have fascicular cambium, but contained bundle sheath composed of sclerenchyma. The stems had annular secretory canals outside of phloem fibres. All the vasculars arrayed two rings and dispersively distributed in elementary tissue of stem; vasculars of stems of A. coreanum and A. kirinense were open bundles with intradascicular cambium, but without bundle sheath and bundle sheath.
     The result of anatomical study on leave showed that leave of A. kusnezoffii were isobilateral leave without palisade tissue; palisade tissue of A.umbrosum and A. barbatum did not obviously differentiated. The above 3 species had annular secretory canals, and their mesophyll cells scarcely connected with each other. Aerating tissue of leave of A. coreanum was well developed; leave of A. coreanum had typical palisade tissue. A. coreanum and A. kirinense did not have annular secretory canals.
     Moreover, the anatomical structures of stems and leave of 5 Aconitum species had wet habitat-structural characters: mechanical tissue and corneous layer in tangential wall of epidermal cell of stems were less developed; aerating tissue of diachyma was developed, and air cavity connected to be reticulated; epidermis of leave had large amount of heterocyst, corneous layer was less developed; stoma in abaxial leaf epidermises of some species were outer projectured. It is confirmed that structure and habitat are unified.
     The 5 Aconitum species were applied to cluster analysis with 11 macroscopy binary characters of plants according to numerical taxonomy theory. The result of numerical taxonomy was consistent with that of traditional taxonomy, indicating the numerical taxonomy method used in the present study had high reliability. So we chose 66 characters, including morphologic characteristics, anatomical characteristics of aerial parts nutritive organ and Plant Print characteristics to do cluster analysis. The result indicated that A. umbrosum and A. barbatum had very close genetic relationships, but A. kirinense, which also belongs to Subgen. Praconitum, Sect. Praconitum, exhibited obvious difference from A. umbrosum and A. barbatum. While A. kusnezoffii showed close genetic relationships with the group of A. umbrosum and A. barbatum. Therefore, morphologic characteristics, anatomical characteristics of aerial parts nutritive organ and Plant Print characteristics were quantized and calculated to generate the quantitative comparison between the 5 Aconitum species according to the mathematic model, which is a scientific, objective and precise taxonomy compared to traditional taxonomy.
     Radix Aconiti (“Chuanwu”, the mother roots of A. carmichaeli Debx.), Radix Aconiti Lateralis (“Fuzi”, the daughter roots of A. carmichaeli) and Radix Aconiti Kusnezoffii (“Caowu”, the mother roots of A. Kusnezoffii) are the most commonly used traditional Chinese medicines (TCM) of Aconitum species. In the present study, the water-soluble polysaccharides of Radix Aconiti, Radix Aconiti Lateralis and Radix Aconiti Kusnezoffii, were extracted, and named as AWP, LWP and KWP, respectively. The chemical analyses indicated the water-soluble polysaccharides of the three materials were all mainly composed of glucose, implying they were glucans.
     The antitumor and immunomodulatory assays showed that AWP, LWP and KWP not only had good antitumor activities, but also could enhance the host’s immunity including nonspecific immunity, cellular immunity and humoral immunity, and restore the antitumor drug-suppressed immune function.
     The composition and pharmacological activity exhibited polysaccharides from Aconitum species, whatever from mother roots or daughter roots of the same plant, or mother roots of different plants, was a sort of bioactive substances. Therefore, the polysaccharides from Aconitum species might be conveniently exploited to be good immune stimulating modifiers and had great potential to be applied in the tumor therapy.
引文
[1]陆静梅,等.植物表观结构植纹鉴定[M].北京:科学出版社,2010.11-42.(待出版)
    [2]陆静梅.刑事侦查植物宏观和微观植纹破案方法[P] .中国专利,2003101158071.2006-03-01.
    [3]周繇.长白山国家级自然保护区观赏植物资源及其多样性[J].东北林业大学学报,2004,32(6):45-50.
    [4]周繇,刘利,张明杰,等.长白山国家级自然保护区药用植物资源及其多样性研究[J].林业科学,2005,14(6):57-64.
    [5]傅立国,等.中国高等植物(第三卷)[M].青岛:青岛出版社,2000.404.
    [6]中国科学院中国植物志编辑委员会.中国植物志(27卷)[M].北京:科学出版社,1979.113-115,174.
    [7] Goris A.The structure of various aconite roots[J].Pharm J Pharm (Ser 4),1901,67:576.
    [8] Kumazawa M.Developmental history of the abnormal structure in the geophilous organ of Aconitum[J].Bot Mag (Tokyo),1937,51:9l4-925.
    [9] Datta SC,Mukerji B.Pharmacognosy of Indian root and rhizome drugs[M].Delbi:Manager of Publications,1950.14-23.
    [10] Tamura M.Morphology,ecology and phylogeny of the Ranunculaceae III[R]. Sci Rep,1964,13(1):25-38.
    [11]難波恒雄,Aconitum属植物の生薬学的研究1.中国産附子?鳥頭類について(キンポウゲ科植物の生薬学的研究,第3報) [J].生薬学雑誌,1960,14(2):57-90.
    [12]難波恒雄,Aconitum属植物の生薬学的研究2.日本産附子?鳥頭類について(キンポウゲ科植物の生薬学的研究第4報) [J].生薬学雑誌,1961,15(1) : 197-238.
    [13]童玉懿,肖培根,楼之岑.国产乌头类生药的形态组织特征初步探索[J].药学学报,1984,19(9):701-705.
    [14]李鸣,冯毓秀.乌头属根部导管群的异常结构[J].植物学报,1990,32(9):670-673.
    [15]李鸣,冯毓秀,肖培根.中国乌头属药用植物比较解剖学研究[J].植物分类学报,1991,29(2):97-112.
    [16]包海鹰,图力古尔,黄瑛,等.东北地区几种乌头属药用植物根的形态及其显微结构的初步研究[J].吉林农业大学学报,1996(18):20-23.
    [17]图力古尔,包海鹰,张恕茗,等.乌头属植物花粉形态及其分类学意义[J].吉林农业大学学报,1997,19(1):59-64.
    [18]矢志诚,等.中国草地重要有毒植物[M].北京:中国农业出版社,1997.208-213.
    [19] Bisset NG.Arrow poisons in China. Part I[J].Journal of Ethnopharmacology,1979,1:325-384.
    [20] Bisset NG.Arrow poisons in China. Part II[J].Journal of Ethnopharmacology,1981,4:247-336.
    [21]肖培根,王文采.中国毛茛科药用植物的研究Ⅱ.乌头属的药用植物[J].药学学报,1965,12(10):683-703.
    [22]杨广民,张志国.川乌草乌附子[M].北京:中国中医药出版社,2001.22-25.
    [23]李德中,徐克学,肖培根.中国乌头属属下等级数量分类的初步研究[J].武汉植物学研究,1992,10(3):226-234.
    [24]张继有,严仲铠,李海日,等.长白山植物药志[M].长春:吉林人民出版社,1982.350-365.
    [25]何顺志,陈龙珠.贵州唐松草属和乌头属药用植物的种类与分布[J].中国药学杂志,1995,30(9):527-529.
    [26]胡文言.河北省乌头属植物资源[J].中药材,1998,21(1):7-8.
    [27]金伟,陈辰,王恩波.辽宁地区产6种乌头(Aconitum)的细胞分类学研究[J].植物研究,1998,18(2):163-172.
    [28]郭捍忠.山西省乌头属植物资源[J].实用医技,2001,8(1):28-29.
    [29]杨长花,王凤,顾国强,等.陕西乌头属药用植物资源调查研究[J].现代中医药,2006,26(1):64-65.
    [30]罗艳,杨亲二.四川乌头属的修订[J].植物分类学报,2005,43(4): 289-386.
    [31]郭选政,赵德云,李捷,等.新疆乌头属(Aconitum)毒草的分布、危害及防除[J].新疆畜牧业,1998(1):2-4.
    [32]杨廉玺.云南昭通地区乌头属植物的品种调查[J].中国中药杂志,2000,25(2):79-80.
    [33]胡兆勇,赵汝能.甘肃乌头属药用植物资源[J].兰州医学院学报,1990,16(2):90-92.
    [34]高文韬,王旭东,黄云峰,等.吉林省乌头属植物资源调查研究[J].安徽农业科学, 2008,36(31):13668-13669.
    [35]孙文基,沙振方.铁棒锤化学成分研究[J].药学学报,1989,24(1):71-74.
    [36]李洪刚,杨建萍.伏毛铁棒锤地上部分生物碱成分研究[J].中草药,1997,28(5):265-266.
    [37]张继,王一峰.高乌头资源的开发利用研究[J].中国野生植物资源,1998,17(1):10-12.
    [38]丁立生,陈耀祖.露蕊乌头的二萜生物碱[J].药学学报,1993,28(3):188-191.
    [39]张嘉岷,吴凤锷.深裂黄草乌二萜生物碱研究[J].植物学报,1997,39(6):582-584.
    [40]董锦艳,李良.宣威草乌根的二萜生物碱[J].植物资源与环境学报,2000,9(1):1-3.
    [41]陈永康,刘茂坤.家种与野生雪上一枝蒿总生物碱毒性及药理的比较研究[J].中国民族民间医药杂志,1997(1):38-42.
    [42]符华林.我国乌头属药用植物的研究概况[J].中药材,2004,27(2):149-152.
    [43]陈善墉,肖小河.乌头属牛扁亚属中药原植物种类资源的初步研究[J].中药材,1989,12(9):13-15.
    [44]杨姝,金振辉,羊晓东,等.乌头属植物的化学成分及药理作用研究进展[J].云南农业大学学报,2007,22(2):293-295,298.
    [45]李娅萍,田颂九,王国荣.乌头类药物的化学成分及分析方法概况[J].中国中药杂志, 2001,26(10):659-662.
    [46]师海波,周重楚.川乌总碱的抗炎作用[J].中国中药杂志,1990,15(3):46-49.
    [47]王雅贤,贾宽.乌头碱对小鼠免疫功能影响的实验研究[J].中医药信息,1989(5):40-41.
    [48]胡学军,钟燕珠.乌头类中药及其制剂的镇痛作用[J].中医药研究,2001,17(4):56-58.
    [49]黄永融.乌头抗癌研究概述[J].福建中医药,1991,22(1):54-56.
    [50]彭波,杨华元.乌头、附子及其主要生物碱的研究进展[J].华西药学杂志,1993, 8(3):158-162.
    [51]陈信义,李峨,侯丽,等.乌头类生物碱研究进展与应用前景评述[J].中国中医药信息杂志,2004,11(10):922-923.
    [52]沈映君.中药药理学[M].北京:人民卫生出版社,2000.382,490.
    [53]赛汉其其格.紫花高乌头药理作用的研究[J].中国民族医药杂志,1997,3(增刊):148-149.
    [54]刘静涵,后徳辉,王秋娟,等.抗心律失砇┭嗡峁馗郊姿氐难芯縖J].中国科技奖励,2008(3):58-59.
    [55]肖培根,王锋鹏,高峰,等.中国乌头属植物药用亲缘学研究[J].植物分类学报,2006,44(1):1-46.
    [56]郝小江,杨崇仁,陈泗英,等.国产乌头属的化学分类[J].植物分类学报,1985,23(5):32l-335.
    [57]孙莹,张群书,董丽丹,等.乌头属中药中主要生物碱在不同性别家兔尿中的代谢产物[J].吉林大学学报(理学版),2007,45(6):1132-1134.
    [58]央金卓嘎,李晖,土艳丽,等.藏药船盔乌头的染色体数目和核型分析[J].西藏科技,2007(3):71-72.
    [59]李鸣,冯毓秀,高光跃,等.中国西南地区乌头类中草药的生药学研究[J].天然产物研究与开发,1994,6(3):63-73.
    [60] Tamura M. Aconitum L. In: Hiepko P ed. Die Natürlichen Pflanzenfamilien, zweite Auflage[M]. Berlin: Dunker & Humblot. 1995.17a (4): 274-291.
    [61] Yang QE, Gu ZJ, Wu ZY, et al. A karyomorphological study of some Yunnan species of Aconitum L. (Ranunculaceae) [J].La Kromosomo,1989,Ⅱ-55-56: 1838-1860.
    [62]杨亲二.云南乌头属一些种类的修订[J].植物分类学报,1999,37(6): 545-590.
    [63]杨亲二.国产12种乌头属和18种翠雀属植物的细胞学研究[J].植物分类学报,2001,39(6):502-514.
    [64]杨亲二,顾志建,吴征镒,等.云南乌头属牛扁亚属的核形态研究[J].云南植物研究,1994,16(1):61-74.
    [65]杨亲二,汪小全,洪德元.国产7种乌头属植物的核型研究[J].植物资源与环境,1993,2(2):33-38.
    [66]肖培根,王立为,童玉懿.中国27种乌头属植物的根部形态与亲缘、成分和毒性间的关系[J].药物分析杂志,1983,3(5):276-280.
    [67]孙萌,等.药用植物学[M].苏州:苏州大学出版社,2004.1-2.
    [68]李媛.中药名称规范化研究[D]:[硕士学位论文].福州:福建中医学院,2009.
    [69]刘淑兰,曹蕴红,刘艳,等.中药鉴定技术的发展及文献研究分析[J].2008,25(2):78-79.
    [70]周文斌,刘萍.中药鉴定中DNA分子遗传标记技术的应用与展望[J].2006(1):17-20.
    [71] Dickison WC.Integrative plant anatomy[M].San Diego:Academic Press.2000.
    [72] Rost T L,Barbour C R,Stocking C R,et al.Plant Biology (2nd edn.)[M]. Canada:Thomson Brooks\Cole,2006.
    [73]刘穆.种子植物形态解剖学导论[M].北京:科学出版社,2008.71,204-206,216-220,251.
    [74]中国科学院中国植物志编辑委员会.中国植物志(34卷第1分册)[M].北京:科学出版社,1984.161 -220.
    [75]中国科学院中国植物志编辑委员会.中国植物志(16卷第1分册)[M].北京:科学出版社,1984.131.
    [76]中国科学院中国植物志编辑委员会.中国植物志(第55卷第3分册)[M].北京:科学出版社,1984.222.
    [77]中国科学院中国植物志编辑委员会.中国植物志(第65卷第2分册)[M].北京:科学出版社,1984.194-198.
    [78]中国科学院中国植物志编辑委员会.中国植物志(第42卷第2分册)[M].北京:科学出版社,1984.109.
    [79]中国科学院中国植物志编辑委员会.中国植物志(第13卷第2分册)[M].北京:科学出版社,1984.102.
    [80]周繇.长白山区野生珍稀濒危药用植物资源评价体系的初步研究[J].西北植物学报, 2006,26(3):599-605.
    [81]张力.SPSS在生物统计中的应用[M].厦门:厦门大学出版社,2008.108-123,p133-137.
    [82]孙多,沈洁.复杂性研究与简单性研究——数据挖掘与统计学的关系探析[J].福建电脑,2008,(3):52-55.
    [83] Conover MV.Epidermal patterns of the reticulate-veined Liliiflorae and their parallel-veined allies[J].Botanical journal of the Linnean Society,1991(107):295-312.
    [84]魏云洁,孔祥义.黄花乌头种质资源与规范化栽培[J].特种经济动植物,2008(10):35-37.
    [85] Niklas KA.The evolutionary biology of plants[M].Chicago and London:The University of Chicago Press,1997.
    [86]胡正海,张泓.植物异常结构解剖学[M].北京:高等教育出版社,1993.1,8-10,16,27-29.
    [87] Balfour E.The development of the vascular system Macropiper excelsum Forst.ⅡThe mature stem[J].Phytomorphology,1958(8):224-233.
    [88]陆时万,徐祥生,沈敏健.植物学[M].北京:高等教育出版社,1991.174-175.
    [89] Takhtajan A.Outline of the classification of flowering plants (Magnoliophya) [J].Botanical Review,1980(46):225-359.
    [90] Hutchinson J.Clematopsis,a primitive genus of Clematidae[J].Bulletin of Miscellaneous Information (Royal Gardens, Kew),1920(1):12-22.
    [91]吴国芳,冯志坚,马炜梁,等.植物学[M].1992.363,390.
    [92]杨崇仁,周俊.从植物化学成份的比较看单子叶植物的起源问题[J].植物分类学报,1978,16(1):1-9.
    [93]王勋陵,王静.植物形态结构与环境[M].兰州:兰州大学出版社,1989.
    [94] Esau K.Anatomy of seed plants [M].2nd edn.New York:John Wiley and Sons,Inc,1977.
    [95] Metcalfe CR,Chalk L.Anatomy of the dicotyledons [M].2nd Vol 1.Oxford:Clarendon Press,1979.
    [96] Metcalfe CR,Chalk L.Anatomy of the dicotyledons [M].2nd Vol 2. Oxford:Clarendon Press,1983.
    [97]王光野.盐生植物耐盐结构特性及植物晶体生物学特征与功能研究[D]:[博士学位论文].长春:东北师范大学,2009.
    [98]李广毅,高国雄,尹忠东.灰毛滨黎叶解剖结构与抗逆性研究[J].西北林学院学报,1995,10(1):48-51.
    [99]山宝琴,贺学礼.毛乌素沙地12种蒿属植物叶的解剖特征[J].西北农林科技大学学报(自然科学版),2007,35(6):211-217.
    [100] Cronquist A.The evolution and classification of flowering plants [M].2nd edn.New York:New York Botanical Garden Press,1988.
    [101]谷安根,陆静梅,王立军.维管植物演化形态学[M].长春:吉林科学技术出版社,1993.120-127.
    [102]叶创兴,朱念德,廖文波,等.植物学[M].北京:高等教育出版社,2007.55-59.
    [103]陈薇,刘克明,丛义艳,等.草酸钙结晶在几种凤仙花属植物中的特征及其分类学意义[J].生命科学研究,2006,10(4):328-332.
    [104]严巧娣,苏培玺.植物含晶细胞的结构与功能[J].植物生理学通讯,2006,42(4):761-766.
    [105] Choi YE,Harada E,Wada M,et al.Detoxification of cadmium in tobacco plants: formation and active excretion of crystals containing cadmium and calcium through trichomes [J].Planta,2001,213(1):45-50.
    [106] Beck CB.An introduction to plant structure and development [M].Cambridge:Cambridge University Press,2005.
    [107] Volk GM,Lynch-Holm VJ,Kostman TA,et al.The role of druse and raphide calcium oxalate crystals in tissue calcium regulation in Pistia stratiotes leaves[J].Plant Biology,2002,4(1):34-45.
    [108]李正理,李荣敖.我国甘肃九种旱生植物同化枝的解剖观察[J].Journal of Integrative Plant Biology,1981(3):181-185.
    [109]刘家琼.我国荒漠不同生态类型植物的旱生结构[J].植物生态学与地植物学丛刊, 1982(4):314-319.
    [110]苏培玺,安黎哲,马瑞君,等.荒漠植物梭梭和沙拐枣的花环结构及C4光合特征[J].植物生态学报,2005,29(1):1-7.
    [111]严巧娣,苏培玺,陈宏彬,等.五种C4荒漠植物光合器官中含晶细胞的比较分析[J].植物生态学报,2008,32(4):873-882.
    [112] Ruiz N,Ward D,Saltz S.Calcium oxalate crystals in leaves of Pancratium sickenbergeri:Constitutive or induced defence? [J].Functional Ecology,2002,16(1):99-105.
    [113] Finley DS.Patterns of calcium oxalate crystals in young tropical leaves:A possible role as an anti-herbivory defense[J].Revista de Biologia Tropical,1999,47(1-2):27-31.
    [114] Tillman-Sutela E,Kaiuppi A.Calcium oxalate crystals in the mature seeds of Norway spruce, Picea abies (L.) Karst[J].Trees - Structure and Function,1999,13 (3):131-137.
    [115] Ward D,Spiegel M,Saltz D.Gazelle herbivory and interpopulation differences in calcium oxalate content of leaves of a desert lily[J].Journal of Chemical Ecology,1997,23(2):333-346.
    [116]李德华,黄升谋,贺立源,等.植物根系有机酸的分泌和解铝毒作用[J].植物生理学通讯,2004,40(4):505-510.
    [117]龙新宪,杨肖娥,叶正钱.超积累植物的金属配位体及其在植物修复中的应用[J].植物生理学通讯,2003,39(1):71-77.
    [118]殷彩霞,彭莉,周纪勤,等.云南药用菊科植物微量元素含量聚类分析[J].广东微量元素科学,1998,5(7):61-65.
    [119]郝瑞芳,景浩.真菌多糖的研究进展[J].中国食物与营养,2008,(4):19-22.
    [120]符华林,樊琴.川西北高原露蕊乌头的乌头碱分离及定量测定技术[J].江苏农业科学,2007,(3):207-215.
    [121]刘芳,于向红,李飞等. HPLC测定附子及其炮制品中3种双酯型生物碱的含量[J].中国中药杂志.2006,14(31):1160-1162.
    [122] Sevag MG,Lackman DB,Smolens J.The isolation of the components of streptococcal nucleoproteins in serologically active form[J].Journal of Biological Chemistry,1938,124:425-436.
    [123] Dubois M,Gilles KA,Hamilton JK,et al.Colorimetric method for determination of sugars and related substances[J].Analytical Chemistry,1956,28:350-356.
    [124] Honda S,Akao E,Suzuki S,et al.High-performance liquid chromatography of reducing carbohydrates as strongly ultraviolet-absorbing and electrochemically sensitive 1-phenyl-3-methyl-5-pyrazolone derivatives[J]. Analytical Biochemistry,1989,180:351-357.
    [125] Yang X,Zhao Y,Wang Q,et al. Analysis of the monosaccharide components on Angelica polysaccharides by high performance liquid chromatography[J].Analytical Sciences,2005,21:1177-1180.
    [126] Pang X, Chen Z, Gao X, et al.Potential of a Novel polysaccharide preparation (GLPP) from Anhui-Grown Ganoderma lucidum in tumor treatment and immunostimulation[J].Journal of Food Science,2007,72,435-442.
    [127] Lee SJ, Saiki I, Hayakawa Y, et al.Antimetastatic and immunomodulating properties of a new herbal prescription, Bojung-bangam-tang[J].International Immunopharmacology,2003,3:147-157.
    [128] Bin-Hafeez B, Haque R, Parvez S, et al.Immunomodulatory effects of fenugreek (Trigonella foenum-graecum L.) extract in mice[J].International Immunopharmacology,2003,3:257-265.
    [129] Chen H, Tsai Y, Lin S, et al.Studies on the immuno-modulating and anti-tumor activities of Ganoderma lucidum (Reishi) polysaccharides[J].Bioorganic & Medicinal Chemistry,2004,12:5595-5601.
    [130] Konjevic G,Jurisic V,Spuzic I.Corrections to the original lactate dehydrogenase (LDH) release assay for the evaluation of NK cell cytotoxicity[J].Journal of Immunological Methods,1997(200):199-201.
    [131] Ruan Z,Su J,Dai H,et al.Characterization and immunomodulating activities of polysaccharide from Lentinus edodes[J].International Immunopharmacology,2005(5):811-820.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700