强冷工艺生产特厚扁钢锭的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前国内大型水电站闸门、核电站建设等大型钢构件仍依靠进口,在对其进行研制和开发中首要任务是优质大型钢锭的生产。强冷生产特厚扁钢锭是一种改善特厚扁钢锭质量,提高其生产效率的新工艺。本论文采用数学模拟和物理模拟实验相结合的方法,研究了不同强冷条件下钢锭凝固行为,可以为特厚扁钢锭的生产提供理论基础和实践指导。
     根据相似理论,采用硫代硫酸钠纯溶液代替钢液进行了钢的冷态模拟物理实验,实验发现随着冷却强度的改变模型的坯壳厚度、凝固时间、缩孔的凝固位置等都发生了变化,实验结果验证了强冷工艺的可行性。
     用PRO-E建模软件对60T扁钢锭进行了三维实体造型,建立钢锭凝固传热数学模型,利用ProCAST软件对金属充型凝固过程进行了仿真模拟计算。通过对钢锭凝固过程中的温度分布、热流密度分布、疏松缩孔的位置及凝固时间的分析表明,冷却强度增加钢锭的凝固时间减少,缩孔位置提高,但由于钢锭模传热的限制,与风冷相比,水冷增加冷却强度的效果不明显。风冷与空冷相比凝固时间缩短了3.5h,缩孔位置提高但体积没有减小。采用上部空冷、下部风冷的“梯次”强冷比空冷冷却时钢锭的全凝时间减少了2.7h,钢锭中心缩孔的位置上升60cm,缩孔体积减少8000 cm3。
     对硫代硫酸钠的凝固过程进行了数学模拟研究。对比发现数学模拟曲线与物理模拟凝固进程随时间变化曲线拟合较好,两者所体现的凝固进程变化趋势相同,说明数学模拟的参数设定以及模型合理,数值模拟结果可靠。
In this paper, a special method of intensive cooling outside mold has been presented to produce huge rectangular ingot. The solidification and heat transfer of a 60t huge rectangular ingot has been simulated by mathematical simulation and physical simulation experiment combination of methods in this paper.
     Firstly,In a physical model designed by using similitude theory, the steel solidification progress were simulated by using Na2S203.5H20, and the growth of crystal structure, the final solidification location were observed. Physical simulation result verify the feasibility of strong cold process.
     Secondly, establishing the three-dimensional entity mold by pro/e software and ingot solidification heat-transfer mathematic model, and it has been the simulation calculation by ProCAST software. Through the solidification time, the temperature distribution, heat flux distribution and the position of loose and shrinkage show the feasibility of strong cold process.
     The results of the study show that the solidification times of ingot body was shortened by increasing the cooling intensity and the position of loose and shrinkage of ingot was higher by increasing the cooling intensity. Compared with air cooling, the solidification time of wind cooling shorten the 3.5 h, the shrinkage of the position higher but do not reduce the volume; Because of the heat transfer ingot mold restrictions, compared with wind cooling, the effect of water cooling is not obvious. So this paper hold out "gradient" cooling .It is that the upper of ingot mold is air cooling and the bottom of ingot mold is wind cooling .Compared with air cooling, at the "gradient" cooling the solidification times of ingot body reduces 2.7 h, the position of loose and shrinkage of ingot rise 60 cm and shrinkage cavity volume reduces 8000 cm3.
     Mathematical simulation and physical simulation experiment results tell us that by intensive cooling, the solidification time of the can be obviously shortened, internal soundness can be ensured and the surface quality could be improved.
引文
[1]柳百成.我国大型铸钢件生产的现状与关键技术[J],铸造,2007,56(9):899
    [2]臧悦.采用钢锭生产特厚板工艺的探讨[C],第七届中国钢铁年会论文集,2009,3:141~146
    [4]张国伟.特厚扁钢锭凝固过程及结构数值预报[学位论文].鞍山:辽宁科技大学,2003.
    [5]王培心.大型扁钢锭的定向凝固过程的物理模拟[D].鞍山:辽宁科技大学,2006
    [6]En-Gang Wang,Ji—Cheng He.Finite element numerical thermo—mechanical behavior of steel billet in continuous casting mold,Science Technology of Advance Material[J],2001(2):257~263.
    [7]沈厚发,张涛,方大成.大钢锭A型偏析的模拟研究[J].铸造,1993(12):9-13。
    [8]师江伟,杨涤心,倪峰.电渣重熔的发展及其趋势[J].特钢技术,2004,(3):2-4
    [9]李正邦.21世纪电渣冶金的新进展[J].特殊钢,2004,25(5):1-3
    [10]藏喜民,姜周华等.电渣连铸技术的开发.中国冶金,2006,16(3):1—2
    [11]陈海清,李华基,曹阳.铸件凝固过程数值模拟[M].重庆:重庆大学出版社,1991.15~18
    [12]臧悦.采用钢锭生产特厚板工艺的探讨[C],第七届中国钢铁年会论文集,2009,3:141~146
    [13]柳百成.铸造技术与计算机模拟发展趋势[C],北京:中国铸造协会论文集,2005
    [14]熊守美,许庆彦,康进武.铸造过程模拟仿真技术[M].北京:机械工业出版社,2004.28~29
    [15]A.S.Sabau.Numerical Simulation of the Investment Casting Procc.ASS 2005(04):1-11
    [16]张国志,冯妍卉,张欣欣.氯化铵水溶液定向凝固实验的传热分析[J].热2007(6)
    [17]CHEN J,SUNG P K,TEWARI S N,POIRIER D R,de GROHIII H C.Directional solidification and convection in small diameter crucibles[J].Mate Sci Eng A,2003,357:397-405.
    [18]Haida O,Okano S,Emi T,Kasai G.Estimating the Formation of A-Segregation in a Steein Terms of the Chemical Composition of the Steel[J].Tetsu-to-Hagane(Journal of the ISteel Institute of Japan),1981,67(7):954~958.
    [19]沈厚发,张涛,方大成.大钢锭A型偏析的模拟研究[J].铸造,1993(12):9-13。
    [20]方大成.糊状区内浮力驱动对流与流道形成机构的研究[J].大连理工大学学报,1991,411-417.
    [21]Mori T,LiM.The effect of convectional flow in vertical directional solidificati Solidification and Gravity,2000,329(4):87-92
    [22]Ohno.The Solidification of metals.London:The Iron and Steel Institute.1967.
    [30]介万奇,周尧和.铸锭凝固过程中的对流及液相区成分变化的模拟实验研究[J].金属学报,1988,24B(6):379-384.
    [23]Witusiewicz V T,Sturz L,Hecht U,et al.Acta Mater,2004,52:4561.
    [24]Van Braak J,Lopez D O,Salud J,er al.J Crystal Growth,1997,180:315.
    [25]陈列等,实时观察法在金属凝固中的研究进展.材料导报:2008,22(7):2-3
    [26]张国伟,大型扁钢锭凝固过程及结构数值预报:[学位论文].鞍山:辽宁科技大学,2007.
    [27]杨海文,汽车铝合金轮毂压铸过程数值模拟及工艺参数优化:[学位论文].广州:广东工业大学:2008.
    [28]亓俊杰.大型钢锭凝固过程的数值模拟与实验装置研究[D].重庆:重庆大学,2010
    [29]史小辉.铸造凝固过程数值模拟及可视化[学位论文].西安:西安建筑科技大学,2006.
    [30]王培心.特厚扁钢锭的定向凝固过程的物理模拟[学位论文].鞍山:辽宁科技大学,2006.
    [31]沙明红,李娜,宋波,刘海啸,李胜利.硫代硫酸钠模拟液态金属凝固实验[J] .实验技术与管理.2010(2):27-30.
    [32]高娟.基于ProCAST的活塞浇注机模具研究. [学位论文].南京:南京林业大学.2009
    [33] S.M.Xiong,W.B.Lee.An efficient the rmalanalysis system for diecasting progress Technology[J].2002(128):19~24
    [34]大中逸雄.计算机传热凝同解析入门[M].北京:机械工业出版社,1998:16~29
    [35]柳百成等.铸造工程的模拟仿真与质量控制[J].北京:机械工业出版社,2001:15~16
    [36] M.Rappaz. Int. MaterialsR eviews,1989,34: 93
    [37]张世辉.铸件凝固过程计算机数值模拟软件在生产中的应用,铸造,1999
    [38]荆涛.凝固过程数值模拟[M],北京:电子工业出版社,2002.45~56
    [39]张毅.铸造工艺CAD及其应用[M].北京:机械工业出版社,1994.18~25
    [40]王廷浦.轧钢工艺学.北京:冶金工业出版社,1981,1:2-4.
    [41]成田贵一等.铁ど钢.1979(65),No,11:650.
    [42]蔡开科,程士富.连续铸钢原理与工艺.北京:冶金工业出版社,1999:277-281.
    [43]李强.铸件充型过程三维流场数值模拟[D].哈尔滨:哈尔滨工业大学,2002:5~9
    [44]杨莉.复杂结构铸件凝固过程温度场数值模拟技术的研究[J].北京航空航天大学硕士学位论文,2000
    [45] ]San Diego.Proceedings of International Conference on Modeling of Casting.Welding and Advanced Solidification ProcessesVⅢ,1998(6):7~12
    [46] W.Treiber.Designing thin wall,highly cosmetic die casting challenge and opportunity[J].Die Casting Engineer,1996(4):24~30
    [47] R.Rosch,S.Kluge,H.H.Becher.Simulation aided designing and process development for diecasting[J].Die Casting Engineer,2003(5):56~59

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700