基于3D WebGIS技术的地质灾害监测预警研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地质灾害监测预警是地质灾害风险评价和风险管理的主要内容之一,是提升主动应对地质灾害能力的重要手段。随着社会和经济的高速发展,人类不断向山区寻求发展空间,造成地质灾害的发生越来越频繁,损失也越来越巨大。西南地区地质条件极为复杂,是我国受地质灾害影响最为强烈的地区之一,并且近年来又受到地震的影响(如5.12汶川地震),面临着更多复杂因素作用下的地质灾害问题。WebGIS、三维可视化技术及监测数据实时传输技术等,可极大地促进防灾减灾的信息化水平。因此,结合3D WebGIS等技术,开展地质灾害监测预警研究,具有重要的理论意义和实用价值。本文在这一领域做了有益的探讨,取得了以下主要成果和结论:
     (1)初步建立了较为完善的地质灾害综合监测自动预警方法体系,系统地阐述了地质灾害监测预警的实施步骤。
     地质灾害监测预警以监测为主要手段,以监测数据的实时获取为灾害体稳定性快速评价及动态预警的基础,以综合监测预警方法的建立为核心,最终实现提升主动应对地质灾害的能力。四者组成了一个有机的系统,即地质灾害监测预警可遵循“地质灾害监测预警方法研究→地质灾害多源数据库构建→三维空间展示平台开发→远程监测数据实时传输网络→综合监测预警系统”的流程。围绕上述内容,展开论文关键技术的研究,并开发了相应的系统程序,实现了地质灾害实时动态监测预警等功能。
     (2)通过对实例应用中单点与多点监测数据预处理方法分析的基础上,利用地质灾害常用的预警方法,结合到西南地区的历史数据构建了崩滑流地质灾害的预警判据,特别是建立了泥石流灾害的“雨强-累积雨量基准线”判据条件。以此为基础,选取其主要判据作为综合预警等级评价因子,建立了基于模糊数学原理的崩滑流地质灾害综合监测预警模型。
     (3)研究并开发了基于3D WebGIS技术的地质灾害综合信息管理及展示平台,集空间地理数据与各类属性信息于一体,提供直观、真实的三维实景漫游等功能,实现了地质灾害海量数据的集成与共享。
     ①提出了以OpenGL通用图形接口建立地形三维模型,以高清航片作为纹理数据,快速获取效果逼真的三维实景图的方法,为实现地质灾害海量的遥感影像与大规模地形数据有机融合奠定了基础。
     ②通过利用数据压缩、瓦片金字塔及四叉树检索等技术与方法,实现了地质灾害海量空间数据的有效组织与管理;通过采用视锥体裁剪技术结合到LOD动态生成的空间数据调度方法,加快了大规模空间数据的渲染速度。
     ③通过建立空间数据分布式存储系统,并对集群服务器负载均衡算法(加权最小连接法)进行了修正,根据各个服务器节点动态负载情况的综合评估结果,进行用户请求的合理分配,提高了空间数据的传输效率。通过发布REST服务,实现了地质灾害空间信息共享。
     ④提出了地质灾害多源数据库的构建方法,其可遵循“原始数据采集→数据有效性整理、筛选→确定地质灾害分类标准→地质灾害属性数据项→管理软件及硬件配置→空间与属性数据库设计”的流程,实现了地质灾害空间属性等多源数据的集成。
     ⑤采用UML静态图建立地质灾害隐患点空间属性信息管理的处理方法、约束条件及相关联系,设计了地质灾害多源数据库结构,并探索了基于地质灾害信息多维模型,利用ETL工具设计并实现面向地质灾害主题分析数据仓库的方法。
     (4)研究并建立了基于物联网技术的地质灾害综合监测数据传输网络,实现了由无线监测传感器网络(WSN)、数据远程传输网络及地质灾害监测预警中心网络构成的三网一体的监测数据实时传输体系。
     ①WSN以各种传感器为监测节点,基于无线通信协议建立具有自组织、动态变化特征的局域网络系统,再通过汇聚节点接入监测数据远程传输网络。
     ②综合对比分析GPRS/CDMA、3G网络与北斗卫星通信在远程数据传输上的优劣,得出:GPRS等网络具有实时的高效传输效率、组网方便、且费用较低,但受到基站的限制;北斗卫星无信号盲区,但受到信息容量与时间间隔的限制。为此,建立了以GPRS/CDMA、3G网络通信为主,北斗一号卫星传输为辅的多元、多通道的地质灾害监测数据传输网络。实际应用证明该方案效果最佳。
     ③建立了一套较全面的地质灾害监测数据编码体系,开发了多维异构监测数据集成终端的系统服务,实现了各种监测传感器协同工作,满足地质灾害实时动态预警对监测数据采集、传输及汇聚一体化的要求。
     (5)集成上述研究成果,综合运用GIS技术、数据库技术等,开发了基于网络环境条件下的地质灾害实时动态监测预警系统,实现了地质灾害三维真实地形展示、信息查询、数据分析、实时监测、自动预警等功能。
     (6)以贵州省开阳磷矿区与四川省“三大片区”地质灾害监测示范区为例,对地质灾害监测预警系统进行了试应用。通过2012年雨季的考验,显示系统能够及时反映灾害体的动态变形情况,并成功预警了8月17日暴发的文家沟泥石流与走马岭泥石流,证明了系统功能基本可行。该应用结果亦检验并支持了此项研究的理论性及实用性。
Early warning of geohazard ascts as one of the main contents of hazard riskassessment and management, in addition to its important role in improving theactively responding ability of human beings to control and mitigate geohazards. Withthe rapid economic growth, human beings keep expanding their living space tomountain areas. Geohazards, resultantly, occur more and more frequently in recentyears than ever before, causing catastrophic economic losses and fatalities. TheSouthwest of China is one of the most affected regions by such events, where thecomplicated geological condition exists and gestates earthquakes (e.g., the5.12Wenchuan Earthquake). Geohazards such as debris flow and landslides keep beingbrought to reality with complicated development and failure mechanism. Informationfor disaster prevention and mitigation has been largely promoted by3D visualizationtechnology of WebGIS and real-time transmission of monitoring data. Research intoearly warning of geohazard with3D WebGIS technology, therefore, appears to be ofgreat significance, both theoretical and practical, for mitigating geological disaster. Inthe present research, reasonable analysis, interpretation and discussion have beencarried out in this dependency, and major outcomes are given as follows:
     (1) An integrated methodology for geohazard automatic monitoring and warningsystem has been established.
     Early warning of geohazards takes monitoring as the main approach, and thereal-time monitoring data as the fundamental for stability analysis of geohazardfeatures, and aims to improve the active response of human beings to geohazards. Forachieving a robust geohazard early monitoring system, the workflow below is putforward, methods of early warning→database establishment→3D display platform→remote monitoring data transmission network→early warning system. The PhDstudy is progressed by following this workflow and efforts are put on the keytechnologies, developing the relevant program and system in order to realize earlywarning of geological disaster.
     (2) Based on analyzing the pre-processing method for data from single/multiplemonitoring points, and the historical data of southwest China, a warning criteria system is established for landslides. An integrated methodology for early warningmodel of geohazards has then been established according to the fuzzy mathematicalprinciples with selection of main criterions as indexes of comprehensive warning.
     (3) The management and display platform for geohazard information has beendeveloped based on3D WebGIS technology, which contains kinds of spatial andattribute data and provides fuctions, real3D roaming for example.
     ①An approach to fast building3D image by taking OpenGL interface and highresolution aerial photo as texture data has been proposed, which makes the foundationof integration of huge number of remote-sensing images and topography data.
     ②Large volume spatial data have been visibly managed by data compression,tile-pyramid and quadtree retrieval. Velocity of displaying huge number of spatial datahas been accelerated by surface culling in the view frustum together with dynamiccreation of Level of Detail (LOD).
     ③Spatial data transmission has been improved by distributed storage systemand the revised load-balancing algorithm of server cluster (weighted least-connectionscheduling). Finally, Sharing of spatial data has been realized by RepresentationalState Transfer (REST) service.
     ④Multi-source database is built according to the following process, datacollection→data sources analysis→landslide type selection→landslideparameters slection→hardware and software→database generation.
     ⑤A static structure of geohazard data is designed using the Unified ModelingLanguage (UML) to establish the forms, methods, restrictions and relationships. Inaddition, the muti-dimentional geohazard model has been discussed and ExtactTransform and Load (ETL) tool has been used to design the data warehouse forgeohazard by means of subject-oriented analysis method.
     (5) An automatic monitoring network for geohazards composed of WirelessSensor Network (WSN), data remote transmission and monitoring center, has beenestablished based on Internet of Things technology.
     ①Based on wireless communication protocol, a local network containingself-organization and changeable features has been established, which is connected toremote network by sink node.
     ②GPRS/CDMA compares favorably with Beidou satellite system in terms ofefficiency, simplicity and expenses, while its usage is restricted by base station. Onthe contrary, Beidou satellite system has no regional restriction, but is limited by data capacity and interval. Geological remote network is finally designed into amuti-channel network, which takes GPRS/CDMA and3G network as the primary andBeidou satellite system as the supplement. This combination has been proved efficientin practice.
     ③An integrated terminal for multi-dimensional data has been developed by thecode system of monitoring data to synchronously realize data collection, transmissionand concentration.
     (5) Based on the findings mentioned above, tnternet-based early warning systemfor geohazards has been developed, which is combined with3D topography display,information query, analysis, real-time monitoring and automatic warning by database,GIS technology and so on.
     (6) The monitoring and early warning system of geohazards was applied in thestudied areas, Kaiyang of Guizhou province and three regions in Sichuan province(Yingxiu, Longchi and Qingping) during the period of rainy season in this year (2012).The result shows that the deformation condition can be obtained in time. It hassuccessfully warned the Wen-jiagou and Zou-maling debris flows on August17,shoing its applicability. This also testifies and supports, theoretically and practically,the methodoly in this study.
引文
[1]潘懋、李铁峰.灾害地质学.北京大学出版社,2004.
    [2]周维垣.岩石高边坡的稳定与治理岩土工程的回顾与前瞻[M].北京:人民交通出版社,2001.
    [3]郭希哲,黄学斌,郭满长等.三峡工程库区崩滑地质灾害防治图册[M].北京:中国水利水电出版社,2008.
    [4]唐世雄.三峡水库运行条件下的电厂滑坡稳定性分析及防治研究[D].中国地质大学(北京)硕士学位论文,2008.
    [5]邬伦、刘瑜、张晶、马修军、韦中亚、田原.地理信息系统--原理、方法和应用[M].科学出版社,2004.
    [6]韩伟明.基于2D/3D GIS技术的地质勘查项目管理系统的研究与实现[D].北京:中国地质大学(北京)博士学位论文,2010.
    [7]赵欣.3D GIS中三维地形模拟与树木实体造型的研究[D].吉林:东北师范大学硕士学位论文,2002.
    [8]韩伟民.基于2D/3D GIS技术的地质勘查项目管理系统的研究与实现[D].北京:中国地质大学(北京)博士学位论文,2010.
    [9]李青元,曹代勇,高文泰.基于体划分的二维矢量结构GIS拓扑关系[M].北京:测绘出版社,1996.
    [10]夏炎.三维矢量结构地质模型及其微机可视化图形显示系统研究[D].北京:中国矿业大学博士学位论文,2000.
    [11]尚敏.基于GIS的三峡库区忠县岸段塌岸研究[D].吉林:吉林大学博士学位论文,2007.
    [12] Breunig M., Bode T., Cremers A. B. Implementation of Elementary Geometric DatabaseOperations of A3D-GIS, Advances in GIS Research[A]. Proceedings of the6thInternational Symposium on Spatial Data Handling,1994,604-617.
    [13] Tomlin C. D. Geographic Information Systems and Cartographic Modeling[J]. EnglewoodCliffs, NJ: Prentice-Hall,1990.
    [14]阿尔.戈尔(美).数字地球--认识21世纪我们这颗星球(译)[J].世界科学,1998,(10):2-4.
    [15]陈晟.GIS空间数据库基础技术研究[D].湖南:国防科技大学博士学位论文,1998.
    [16]禄丰年,宋新龙,邓学锋.河南省遥感影像DTM的研制[J].测绘通报,2000,9:21-22.
    [17] Zlatanova S. VRML for3D GIS, Proc. of15th Spring Congerence on Computer Graphics,Budmerice,1999,74-82.
    [18] C. J. van Westen, N. Rengers, M. T. J. Terlien. Prediction of the occurrence of slopeinstability phenomena through GIS-based hazard zonation[J]. Geol Rundsch,1997,86:404-414.
    [19] Carrara A, Guzzetti F., M. cardinali. Use of GIS Technology in the Prediction andMonitoring of Landslide Hazard[J]. Natural hazards,1999,(20):117-135.
    [20] Saro Lee, Kyuanduck Min. Statistical analysis of landslide susceptibility at Yongin,Korea[J]. Environmental Geology,2001,40:1095-1113.
    [21]姜云,王兰生.地理信息系统在山区城市地面岩体稳定性管理与控制中的应用[J].地质灾害与环境保护,1994,5(1):32-38.
    [22]向喜琼.区域滑坡地质灾害危险性评价与风险管理[D].成都:成都理工大学博士学位论文,2005.
    [23]柴贺军,黄地龙,黄润秋等.岩体结构三维可视化及其工程应用研究[J].岩土工程学报,2001(2):217-222.
    [24]贺怀建,赵新华等.三维地层模型中地层划分的探讨[J].岩土力学,2001,2(35):637-639.
    [25]贺怀建,白世伟.三维地层信息系统在金山店铁矿中的应用[J].土工基础,2002,16(3):15-17.
    [26]刘军旗,毛小平,孙秀萍.基于GeoView三维地质建模的一般过程[J].工程地质计算机应用,2006,44(4):1-3.
    [27] S. Brooks, J. L. Whalley. Multilayer hybrid visualizations to support3D GIS[J]. Computers,Environment and Urban Systems,2008,(32):278-292.
    [28]张立强.构建三维数字地球的关键技术研究[D].北京:中国科学院遥感应用研究所,2004.
    [29]唐桂文.基于数字地球平台的地理信息服务[D].北京:首都师范大学博士学位论文,2008.
    [30] R. L. Schuster&R. J. Krized. Landslides Analysis and Control[M]. National Academy ofSciences Washington, D.C.,1978:165-184.
    [31]李迪,马水山,张保军等.工程岩体变形与安全监测[M].北京:长江出版社,2006.
    [32]唐然.监测技术及其在滑坡防治过程中的应用研究--以丹巴县城建设街后山滑坡为例[D].成都理工大学硕士学位论文,2007.
    [33]宫清华,黄光庆,郭敏,张月巧.地质灾害预报预警的研究现状及发展趋势[J].世界地质,2006,25(3):296-299.
    [34]于远忠.崩塌滑坡地质灾害宏观前兆机理研究[J].中国地质灾害与防治学报,1996,(增刊):27-30.
    [35]任幼蓉,陈鹏,张军,等.重庆南川市甄子岩W12#危岩崩塌预警分析[J].中国地质灾害与防治学报,2005,16(2):28-31,37.
    [36]王念秦,王永锋,罗东海,姚勇.中国滑坡预测预报研究综述[J].地质评论:2008,54(3):355-360.
    [37]聂忠权,盛丽君,范文.基于GlS技术的地质灾害易发程度分区评价系统[J].公路交通科技,2005,22(6):156-159.
    [38]杨建军,谢振乾,郑宁平.模糊聚类分析在西安市区域地壳稳定性评价中的应用[J].地质力学学报,2004,10(1):57-64.
    [39]殷坤龙,宴同珍.滑坡预测及相关模型[J].岩石力学与工程学报,1996,15(1):1-8.
    [40]闫满存,王光谦,李保生,李华梅.基于模糊数学的广东沿海陆地地质环境区划[J].地理学与国土研究,2000,16(4):41-45.
    [41]刘传正,温铭生,唐灿.中国地质灾害气象预警初步研[J].地质通报,2004,23(4):303-309.
    [42]刘传正,李铁锋,程凌鹏,温铭生,王晓朋.区域地质灾害评价预警的递进分析理论与方法[J].水文地质工程地质,2004(4):1-8.
    [43]张骏,杜东菊,苏生瑞,彭建兵,卢玉东.区域地质灾害环境系统综合评价的基本思想与模型[J].中国地质灾害与防治学报,1994,5(4):26-32.
    [44]秦四清,张倬元,王士天,黄润秋.非线性工程地质学导引[M].成都:西南交大出版社,1993.
    [45]黄润秋,许强.斜坡失稳时间的协同预测模型[J].山地研究,1997,15(1).
    [46]彭继兵.信息融合技术在滑坡预报纵的应用研究[D].成都:成都理工大学硕士学位论文,2005.
    [47]成都理工大学地质灾害防治与地质环境保护国家重点实验室,三峡库区地质灾害防治工作指挥部.三峡库区常见多发型滑坡预报模型建立及预报判据研究[R].成都:成都理工大学地质灾害防治与地质环境保护国家重点实验室:三峡库区地质灾害防治工作指挥部,2004.
    [48]许强,黄润秋,李秀珍.滑坡时间预测预报研究进展[J].地球科学进展,2004,19(3):478-483.
    [49]胡高社,门玉明,刘玉海,王尚庆.新滩滑坡预报判据研究[J].中国地质灾害与防治学报:1996,7(增刊):69-72.
    [50]王思敬.地球内外动力祸合作用与重大地质灾害的成因初探[J].工程地质学报,2002,10(2):115-117.
    [51]张桂荣,殷坤龙,陈丽霞,布克明.滑坡预测预报的地质—气象祸合模型研究[J].水利水电技术,2005,36(3):15-18.
    [52]兰恒星,周成虎,王苓涓,伍法权,王思敬.地理信息系统支持下的滑坡—水文耦合模型研究[J].岩土力学与工程学报,2003,22(8):1309-1314.
    [53]管群,刘浩吾.地质灾害特征的可视化模拟研究[J].岩石力学与工程学报,2002,21(4):513-516.
    [54]乔彦肖,李密文.浅谈区域地质灾害调查的遥感技术方法及应用效果一以张家口市为例[J].中国地质灾害与防治学报,2002,12(4):91-93.
    [55]刘传正,张明霞,孟晖.论地质灾害群测群防体系[J].防灾减灾工程学报,2006,26(2):175-179.
    [56]徐开祥,黄学斌,付小林,彭光泽,伍岳,程温鸣.三峡水库区地质灾害群测群防监测预警系统[J].中国地质灾害与防治学报,2007,18(3):88-91.
    [57]方苗、祁元、张金龙.基于WebGIS的兰州市地质灾害群测群防信息化[J].遥感技术与应用,2011,26(2):137-146.
    [58] Glade T. The temporal and spatial occurrence of rainstorm-triggered landslide events inNew Zealand. School of Earth Science Institute of Geography, Victoria University ofWellington, New Zealand,1997.
    [59] F.C. Dai,C.F. Lee, L.G. Tham etc. Logistic regression modelling of storm-induced shallowlandsliding in time and space on natural terrain of Lantau Island,Hong Kong. Earth andEnvironmental Science and Engineering.2004,Dec,23(4):315-327.
    [60] Yu Fan-Chieh, Chen Chien-Yuan, Lin Sheng-Chi et al. A web-based decision supportsystem for slopeland hazard warning[J].Environ Monit Assess,2007,127:419-428.
    [61]王禄.三峡库区地质灾害监测系统[D].重庆大学硕士学位论文,2009.
    [62] Rex L. Baum, Jonathan W. Godt.Early warning of rainfall-induced shallow landslides anddebris flows in the USA[J].Landslides,2010,7:259-272.
    [63]李铁峰.灾害地质学[M].北京大学出版社,2002.
    [64]徐卫亚,孙广忠,许兵.论地质灾害监测预报[J].中国地质灾害与防治学报,1991,2(4):18-25.
    [65]刘传正.地质灾害预警工程体系探讨[J].水文地质工程地质,2000,4:1-4.
    [66] Dikau R, Weichselgartner J. Der unruhige Planet. Der Mensch und die Naturgewalten.1sted. Primus Verlag, Darmstadt,2005.
    [67] Alexander D. Principles of emergency planning and management,1st edn. OxfordUniversity Press, Oxford,2002.
    [68] John Krahn. Stability Modeling With SLOPE/W An Engineering Methodology[J].GEO-SLOPE/W International Ltd. Canada,2004.
    [69] Janbu,N. Earth pressures and bearing capacity calculations by generalized procedure ofslices[C]. Proceedings of the fourth international conference on soil mechanics andfoundation engineering,Vol.2,1957.
    [70] Bishop,A.W. The use of the slip circle in the stability analysis of slopes[J]. Geotechnique.London,Vo1.5(1),1955.
    [71] Sarma,S.K Div.,ASCE Stability analysis of embankments and slopes[J]. Geotech.Engrg.105(12),1979.
    [72] Anderson MG, Richards K. Modelling slope stability: the complementary nature ofgeotechnical and geomorphological approaches. In: Anderson MG (ed) Slope stability:geotechnical engineering and geomorphology. Wiley, New York,1987, pp1-9.
    [73] Anderson H, Bengtsson P-E, Berglund C, Larsson C, Larsson R, Sallfors G, Oberg-HogstaA-L. The landslide at Vagnharad in Sweden. In: Bromhead E, Dixon N, Ibsen M-L (eds)Landslides in research, theory and practice. Eighth international symposium on landslides.T. Telford, London,2000, pp65-70.
    [74] Cascini L, Cuomo S, Pastor M. The role played by mountain tracks on rainfall-inducedshallow landslides: a case study. In: Proceedings of the iEMSs fourth biennial meeting:International congress on environmental modelling and software (iEMSs2008).7-10July2008, Barcelona, Spain,2008, pp1484-1491.
    [75] Navarro V, Yustres A, Candel M, López J, Castillo E. Sensitivity analysis applied to slopestabilization at failure. Comput Geotech,2010,37(7-8):837-845.
    [76]许强等.滑坡预报模型及预报判据总结及滑坡预测预报系统开发:国土资源部2000年科技专项计划长江三峡地质灾害监测与预报研究报告:成都理工大学:2001年.
    [77] Soeters R, Van Westen CJ. Slope instability recognition, analysis, and zonation. In:TurnerAK, Schuster RL (eds) Landslides: investigation and mitigation (Special Report).NationalResearch Council, Transportation and Research Board Special Report247,Washington, DC,USA,1996, pp129-177.
    [78] Armbruster V. Grundwasserneubildung in Baden-Württemberg. University of Tübingen,Germany,2002.
    [79] Bell R. Lokale und regionale Gefahren-und Risikoanalyse gravitativerMassenbewegungen an der Schwabischen Alb. University of Bonn, Germany,2007.
    [80] Carrara A, Cardinali M, Guzzetti F. Uncertainty in accessing landslide hazard risk. ITC J2,1992:172-183.
    [81] Van Westen CJ, Rengers N, Terlien MTJ, Soeters R. Prediction of the occurrence of slopeinstability phenomenal through GIS-based hazard zonation. Geologische Rundschau,1997,86(2):404-414.
    [82] Deb SK, El-Kadi AI. Susceptibility assessment of shallow landslides on Oahu, Hawaii,under extreme-rainfall events. Eomorphology,2009,108(3-4):219-233. Accessed10Sep2010.
    [83] Zschau J, Merz B, Plate EJ, Goldammer JG. Vorhersage und Frühwarnung. In: PlateEJ,Merz B (eds) Naturkatastrophen. Schweizerbart'Sche Verlagsbuchhandlung,2001, pp273-350.
    [84] Wong HN, Ho KKS. Learning from slope failures in Hong Kong. In: Bromhead E, DixonN, Ibsen M-L (eds) Landslides in research, theory and practice. Proceedings of the eighthinternational symposium on landslides. Thomas Telford, London,2000.
    [85] Die Zeit H. Erdbeben in Italien:"Trinken Sie lieber einen!". http://www.zeit.de/2010/37/T-Erdbeben,2010. Accessed13Sep2010.
    [86] Cartlidge E. Scientists face trial over L'Aquila quake. http://physicsworld.com/cws/article/news/43001,2010. Accessed13Sep2010.
    [87]何友,王国宏,陆大金,彭应宁.多传感器信息融合及应用[M].电子工业出版社,2007.
    [88]胡上序,陈德钊.观测数据的分析与处理[M].浙江大学出版社,2002.
    [89]李秀珍.滑坡灾害的时间预测预报研究[D].成都:成都理工大学硕士学位论文,2004.
    [90]许东俊,陈从新,刘小巍,史永胜.岩质边坡滑坡预报研究[J].岩石力学与工程报:1999,18(4):369-372.
    [91]伍法权,王年生.一种滑坡位移动力学预报方法探讨[J].中国地质灾害与防治学报,1996,7(增刊):38-41.
    [92]阳吉宝.堆积层滑坡临滑预报的新判据[J].工程地质学报,1995,3(2):70-73.
    [93]张倬元,王士天,王兰生.工程地质分析原理[M].北京:地质出版社,1994.
    [94]林孝松.滑坡与降雨研究[J].地质灾害与环境保护,2001,12(3):1-7.
    [95]何友,王国宏,陆大琻,彭应宁.多传感器信息融合及应用[M].电子工业出版社,北京,2007.
    [96]李明华.四川盆地降雨滑坡崩塌灾害研究报告[J].地球科学进展,1992,7(5):79-81.
    [97]王思敬等.地下工程岩体稳定分析[M].北京:科学出版社,1984.
    [98]李天斌,陈明东等.滑坡实时跟踪预报[M].成都科技大学出版社:1999年.
    [99]曾裕平.重大突发性滑坡灾害预测预报研究[D].成都理工大学博士研究生论文,2009.
    [100]任幼蓉、陈鹏、张军、谢强.重庆南川市甑子岩W12#危岩崩塌预警分析[J].中国地质灾害与防治学报,2005,16(2):28-37.
    [101] Cannon, S.H. and S.D. Ellen. Rainfall Conditions for Abundant Debris Avalanches in SanFrancisco Bay Region California, California Geology,1985, Vol.38, No.12, pp.267-272.
    [102]谢正伦、陆源忠、游保杉、陈礼仁.土石流发生临界降雨线设定方法之研究[J].中华水土保持学报,1995,26(3):167-172.
    [103]范正成、吴明峰、彭光宗.丰丘土石流发生降雨临界线之研究[J].地工技术,1999,74:39-46.
    [104]刘传正.区域滑坡泥石流灾害预警理论与方法研究[J].水文地质工程地质,2004,3:1-6.
    [105]陈伟,许强.地质灾害降雨预警基准研究[J].地球与环境,2011,39(3):393-398.
    [106]吴积善.云南蒋家沟泥石流观测研究[M].科学出版社,1990.
    [107] Wilson, R. C. Normalizing rainfall/debris-flow thresholds along U. S. pacific coast forlong-term variation in precipitation climate, Proceedings of the First InternationalConference on Debris-Flow Hazards Mitigation, ed. Chen, C-L, Hydraulic Division,American Society of Civil Engineers,1997, August7-9,1997, San Francisco, pp.32-43.
    [108] T.L. Saaty. The analytic hierarchy process[J]. Strategic Management Journal,1980,(9):22-71.
    [109]王巨川,章前,王刚.多指标模糊综合评判[J].昆明理工大学学报,1998,23(4):69-71.
    [110]韩中庚.数学建模方法及其应用(第2版)[M].高等教育出版社,2009.
    [111]《重庆市地质灾害防治条例》,重庆市人民代表大会常务委员会公告,2007,第23号.
    [112]《中华人民共和国突发事件应对法》,中华人民共和国第十届全国人民代表大会常务委员会第二十九次会议,2007.
    [113]陈永华.WebGIS三维可视化的研究[D].解放军信息工程大学工学博士论文,2000.
    [114]徐青.地形三维可视化技术[M].北京:测绘出版社,2000.
    [115]罗振东、料先裕.计算机图形学原理和方法[M].上海:复旦大学出版社,1993.
    [116]张剑清,张祖勋,汪治宏.数学影像中角点与直线的高精度定位算子[J].测绘学报,1994,23(2).
    [117]孙仲康,沈振康.数字图像处理及其应用[M].北京:国防工业出版社,1985.
    [118]宋国民.地理信息共享的理论研究框架[J].测绘科学技术学报,2006,23(6):404-407.
    [119]颜辉武,吴涛,王方雄.网络地理信息系统[M].北京:测绘出版社,2007.
    [120]唐桂文.基于数字地球平台的地理信息服务[D].首都师范大学博士研究生论文,北京,2008.
    [121] Open GIS Consortium. Web Feature Service Implementation Specification[R].2004.
    [122] Roy Thomas Fielding. Architectural Styles and the Design of Network-based SoftwareArchitectures,2000.
    [123]廖炳棋.基于REST风格的数据中心管理平台的研究和实现[D].北京:北京邮电大学,2009.
    [124]孙敏等.基于格网划分的大数据集DEM的三维可视化[J],计算机辅助设计与图形学报,2002,6(6),pp.566-570.
    [125] Clark James. Hierarehieal Geometric Models for Visible Surface Algorithms[J].Communieations of the ACM (S0001-0782).1976,19(10):547-554.
    [126]姚慧敏,崔铁军,邵世新等.基于四叉树的LOD地形模型及其数据组织方法研究[J].地理信息世界,2007,5(6):0056-0059.
    [127]李云岭,靳奉祥,季民等.GIS多比例尺空间数据组织体系构建研究[J].地理与地理信息科学,2003,19(6):7-1.
    [128]卢峰,刘翰,胡少华.基于分布式空间数据库的WebGIS系统[J].计算机时代,2003(9).
    [129]罗显刚.数字地球三维空间信息服务关键技术研究[D].中国地质大学(武汉)博士研究生论文,2010.
    [130]艾明.面向海量数据的云存储系统实现与应用研究[D].南京理工大学工程硕士学位论文,2012.
    [131]田绍亮,左明,吴绍伟.一种改进的基于动态反馈的负载均衡算法[J].计算机工程与设计,2007,28(3):572-573,728.
    [132] http://help.arcgis.com/zh-cn/arcgisserver/10.0/help/arcgis_server_dotnet_help/index.html#/na/009300001575000000/
    [133] P.C. Cosman,R.M,Gray,and M.Vetterli. Vector quantization of image subbands: Asurvey,IEEE Trans Image Process5,1996, pp.202-225.
    [134] R.D. Dony and S.Haykin. Neural networks approaches to image compression,Proc IEEE83,1995, pp.288-303.
    [135] Shapiro J.M. Embedded image coding using zerotree of wavelet coefficients. IEEE Trans.Signal Processing,1993,41(12),pp.3445-3462.
    [136] Y.C.Chen,C.C.Chang. A new lossless compression scheme based on Huffman codingscheme for image compression.Signal Proeessing: Image Communication16,2000,pp.367-372.
    [137] Weinberger,M.J.,G. Seroussi,and G. Spapiro. A Low Complexity,Context一Based,Lossless Image ComPression Algorithm. In Proceedings of Data CompressionConference,J. Storer,editor, Los Alamitos,CA,IEEE Computer Society Press,1996,pp.140-149.
    [138] M. Das and S. Burgett. Lossless compression of medical image using two-dimensionalmultiplicative autoregressive models,IEEE Trans Med Imaging12,1993, pp.721-726.
    [139] Shantanu D. Rane and Guillemo Sapiro. Evaluation of JPEG-LS,the New Lossless andControlled-Lossy Still image Compression Standard,for Compression of High-ResolutionElevation Data. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,200l, VOL,39,NO.10,pp.2298-2306.
    [140] Kumler M P. An intensive comparison of triangulated irregular networks (TINs) anddigital elevation models (DEMs)[J]. Cartographica,1994,31(2):1-99.
    [141]陈刚.虚拟地形环境的层次描述与实时渲染技术的研究[D].解放军信息工程大学博士研究生论文,2000.
    [142] Runqiu Huang, Jian Huang, Nengpan Ju, Chaoyang He, Weile Li.WebGIS-basedinformation management system for landslides triggered by Wenchuan earthquake,NaturalHazards,2012, DOI:10.1007/s11069-012-0424-x.
    [143]黄润秋、许强等.中国典型灾难性滑坡[M].科技出版社,北京,2008.
    [144]黄润秋,李为乐."5.12"汶川大地震触发地质灾害的发育分布规律研究[J].岩石力学与工程学报,2008,27(12):2585-2592.
    [145]魏成阶,刘亚岚,王世新,张立福,黄晓霞.四川汶川大地震震害遥感调查与评估.遥感学报,2008,12(5):673-682.
    [146]许领,戴福初,陈剑.ETM+与SPOT-5Pan融合影像在地质灾害调查中的应用.地质科技情报,2008,27(2):21-24.
    [147]邓辉.高精度卫星遥感技术在地质灾害调查与评价中的应用[D].成都理工大学博士研究生学位论文,2007.
    [148]黄润秋,向喜琼.2002.GIS技术在生态环境地质调查与评价中的应用.地质通报,2002,21(2):98-101.
    [149]吴力新,史文中.地理信息系统原理与算法.北京:科学出版社,2003.56-73.
    [150]萨师煊,王珊.数据库系统概论[M].北京:高等教育出版社,2003.
    [151]李福建.基于GIS的我国海岸带地质灾害基础信息管理系统的设计与实现[D].中国海洋大学硕士学位论文,2010.
    [152]谢昆青,马修军,杨冬青.空间数据库.北京:机械工业出版社,2004.22-35.
    [153] Michael Zeiler.Modeling our world.USA:ESRI.1999.32-36.
    [154]黄健,巨能攀,何朝阳,李为乐,刘汉湖.基于WebGIS的汶川地震次生地质灾害信息管理系统[J].山地学报,2012,30(3):355-360.
    [155]李福建.基于GIS的我国海岸带地质灾害基础信息管理系统的设计与实现[D].中国海洋大学硕士研究生学位论文,2010.
    [156]王泳嘉,邢纪波.离散单元法及其在岩土力学中的应用[M].东北工学院出版社,1991.
    [157]邓聚龙.灰色控制系统[J].华中工学院学报,1982,9-18.
    [158] Hitoshi Saito, Daichi Nakayama, Hiroshi Matsuyama.2010.Relationship between theinitiation of a shallow landslide and rainfall intensity-duration thresholds inJapan. Geomorphology,118:167-175.
    [159]李长江,麻土华,孙乐玲.2011.降雨型滑坡预报中计算前期有效降雨量的一种新方法.山地学报,29(1):81-86.
    [160]许强,曾裕平,钱江澎,王承俊,何成江.一种改进的切线角及对应的滑坡预警判据[J].地质通报,2009,28(4):501-505.
    [161]徐奴文,唐春安,周钟,李宏,沙椿,马天辉.岩石边坡潜在失稳区域微震识别方法[J].岩石力学与工程学报,2011,30(5):893-900.
    [162]田卿燕.块裂岩质边坡崩塌监测预报理论及应用研究[D].中南大学博士研究生学位论文,2008.
    [163]何政伟,黄润秋,许强,姜琪文,赵银兵,刘少军.基于ARCGIS的地质灾害防治信息与决策支持系统的研制[J].吉林大学学报(地球科学版),2004,34(4):601-606.
    [164]朱传华.三峡库区地质灾害数据仓库与数据挖掘应用研究[D].中国地质大学博士研究生学位论文,武汉,2010.
    [165]胡光道,李振华,梅红波,吴湘宁,肖敦辉,于炳飞,丁露薇,江山,谭照华.三峡库区地质灾害数据仓库的设计与实现[J].地球科学———中国地质大学学报,36(2):255-261.
    [166] W.H. Inmon.数据仓库(第3版)[M].北京:机械工业出版社,2003.
    [167] Oracle.Oracle OLAP Application Developer's Guide10g Release2[M]. Redwood:OracleUSA.InC.2006.9.29-32.
    [168]韩家炜, Micheline Kamber.数据挖掘:概念与技术(英文版.第2版)[M].北京:机械工业出版社.2006.4.
    [169]汤九斌.基于数据挖掘技术的决策支持系统及其关键技术研究[D].南京理工大学博士学位论文,2009.
    [170]刘光,唐大仕.2009. Web GIS开发:ArcGIS Server与.NET[M].清华大学出版社.
    [171]王轩.基于物联网技术的森林火灾监测研究[D].中南林业科技大学硕士学位论文,2011.
    [172]关振忠.基于ZigBee的家庭控制网络的应用研究[D].江苏大学硕士学位论文,2008.
    [173]薛瑞.基于北斗的预警信息传输关键技术研究[D].河北工业大学硕士学位论文,2011.
    [174]李颖.基于北斗卫星通信的铁路防灾监测系统的抗干扰性能分析及相关电路技术研究
    [D].北京交通大学硕士学位论文,2012.
    [175]朱永辉.基于北斗卫星的地质灾害实时监测系统研究与应用[D].清华大学硕士学位论文,2010.
    [176]成方林,张翼飞,刘佳佳.基于"北斗"卫星导航系统的长报文通信协议.海洋技术,2008,27(1):26-31.
    [177] UIT. ITU Internet Reports2005.The Internet of Things[R].2005.
    [178]杨鹏,张翔.物联网研究概述[J].数字通信,2010(10):27-30.
    [179] YAN B,HUANG G W. Application of RFID and internet of things in monitoring andanti-counterfeiting for products[C].2008International Seminar on Business andInformation Management,2008:392-395.
    [180]王轩.基于物联网技术的森林火灾监测研究[D].中南林业科技大学硕士研究生学位论文,2011.
    [181]马寅.物联网技术特点与应用[J].评论综述,2012,231:7-12.
    [182]范本尧,李祖洪,刘天雄.北斗卫星导航系统在汶川地震中的应用及建议.航天器工程,2008,17(4):6-13.
    [183]朱永辉,白征东,罗腾,过静珺,陈群策.“北斗一号”导航卫星系统在青藏高原地应力监测中的应用.工程勘察,2009,37(5):76-79.
    [184]刘传正,张明霞,孟晖.2006.论地质灾害群测群防体系.防灾减灾工程学报,26(2):175-179.
    [185]徐绍史.2010.今年中国1/3地质灾害发生在发现的隐患点之外[OL].[2011-10-01]http://www.chinanews.com/gn/2010/08-10/2456635. shtml.
    [186]唐亚明,张茂省,薛强,毕俊擘.滑坡监测预警国内外研究现状及评述[J].地质评论,2012,58(3):533-541.
    [187]张智毅,温才燚.Visual Basic.NET+SQL Server数据库开发[M].北京:电子工业出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700