辽西低凸起中北段沙河街组油气输导特征及成藏期次
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辽西低凸起中北段目前已发现JZ20-2、JZ25-1/S等油气田,是辽东湾重要的油气产区,其含油气层位主要有东营组、沙河街组和太古界潜山,本次研究的重点是沙河街组。长期以来,影响该地区沙河街组成藏的烃源不清楚,对其输导格架、成藏动力、成藏期次等认识模糊,这极大制约了该地区的进一步勘探。
     本文选取辽西低凸起中北段及其相邻凹陷为研究对象,力图通过地球化学、现代石油地质学的理论和三维地震解释以及流体包裹体分析和盆地模拟分析等方法和手段来解决该地区所存在的问题。在上述理论的指导下通过油气源分析、输导系统研究以及成藏期次的综合研究确定了辽西低凸起中北部沙河街组油气的成藏机理。这对于进一步认识辽西低凸起油气的成藏过程,挖掘辽东湾地区油气勘探的巨大潜力具有重要的现实意义,同时对于丰富和发展油气成藏理论研究具有积极的作用。
     通过对辽西低凸起中北段沙河街组原油与辽西凹陷、辽中凹陷烃源岩甾萜烷对比分析,表明JZ25-1/S油气田原油具有与辽西凹陷烃源岩相似的甾、萜烷特征,均具有伽马蜡烷含量中等到高、4-甲基甾烷含量较高,规则甾烷呈C27>>C28>C28C28>C29的偏“L”字形分布特征,证实其具有双向油源,分别来自辽西和辽中凹陷。总结来看,辽西低凸起沙河街组原油具有辽西凹陷和辽中凹陷双向油源的不对称供烃特征。
     对辽西低凸起中北段输导系统综合研究证实断层、砂岩输导层及不整合面共同构成了辽西低凸起沙河街组成藏的主要输导系统。该区多条断层组合成顺向屋脊断阶带、“Y”字型断层组合、边界断层下降盘断阶带和负花状构造等构造样式,断层组合的构造样式对油气的二次运移及油气再分配起到了决定性作用。砂体和不整合面为油气侧向输导提供了重要通道。根据三者的耦合关系,该地区输导系统可分为三类:①断层输导系统,进一步划分“Z”型和“T”型输导系统;②阶梯型断层-砂岩输导系统;③不整合-断层-砂岩输导系统。三类输导系统不仅为油气运移提供了通道,而且对油气藏类型也有直接影响。
     通过对JZ25-1/S油气田和JZ20-2油气田的输导系统及油气藏类型的综合分析,总结了输导系统类型与油气藏类型的匹配关系:①“Z”型输导系统往往形成块状油气藏;②“T”型输导系统可以形成块状或层状油气藏;③阶梯状断层-砂岩输导系统控制的油气藏类型多变,既可以形成层状油气藏,还可以形成构造岩性油气藏;④不整合-断层-砂岩输导系统往往形成层状或块状油气藏。
     通过对辽西低凸起JZ25-1S油气田的部分钻井进行了热史和埋藏史模拟,并结合流体包裹体均一化温度,确定了该区沙河街组成藏期在20~24Ma之间,时代上对应东一段沉积末期,且具有一次充注形成的特征。
Many oilfields have been found such as JZ20-2, JZ25-1/S in mid-north Liaoxi low uplift, where was one of the most important places of oil-gas production. The Dongying formation, Shahejie formation and Archaean buried hill are the main petroliferous formations. The Shahejie formation is chosed as the priority in this paper.However, there are some primary petroleum geological problems in this region, such as the source of the existing hydrocarbon, the hydrocarbon filling periods and accumulation process still leaving unsolved. And these problems restrain the exploration steps, and more they have become the restrictions to the hydrocarbon exploration.
     For this reason, this paper choose Liaoxi low uplift and its adjacent sags as the target,and try to settle these puzzles mentioned above with the assistance of modern theories of geochemical and petroleum geology, strategies of 3D seismic interpretation, basin molding as well as fluid inclusions analysis. Under the direction of these theories, integrated analysis that consist of hydrocarbon-source correlation, transporting-conducting system analysis, reservoir-forming dynamic analysis and reservoir-forming periods analysis are conducted, and based on which the mechanism of hydrocarbon transportation in Liaoxi low uplift region is constructed. This study is of great practical significance to the understanding of the hydrocarbon accumulation process of the uplift as well as to taping its great exploration potential, at the same time, it has positive effect to enrich and develop the theories of the petroleum generation, migration and accumulation.
     This paper contrasts, oil of mid-north part of Liaoxi low uplift and hydrocarbon source rocks of adjacent sags are analyzed synthetically, the result indicates that the oil of JZ25-1/S oilfields has the same kinds of sterane and terpane as the hydrocarbon source rocks in Liaoxi sag, which has the characteristics of mid-high content of gammacerane, high content of 4-methylsterane, regular sterane C27, C28, C29 has the bias-V characteristics of C27>>C28at the oil of JZ25-1/S oilfield is from Liaoxi sag. While the oil JZ20-2 oilfield has two kinds of sterane and terpane, regular sterane C27, C28, C29 has the bias-V characteristics and bias-L of C27>C28>C29, all these confirm JZ20-2 oilfields accumulated hydrocarbon from two different directions. As a whole, hydrocarbon in Liaoxi low uplift is accumulated from two different directions and the quantities come from each direction are of great difference.
     The transporting-conducting systems are composed of faults, sandbody and unconformity. Multi faults composed several structural styles such as dip fastigium terrace, Y-type faults group, downthrown terrace caused by boundary faults and positive flower structure. The structure styles of faults group made a critical function to secondary oil migration and oil redistribution. Sandbody and unconformity provide an important pathway for oil lateral transporting-conduction. Based on the coupling relationship of faults, sandbody and unconformity, the transporting-conducting system can be divided into three different types:①fault conducting system,②cascade conducting system,③fault-unconformity-sandbody compounded conducting system. Three kinds of conducting systems provides pathway for oil migration, also they influence the types of oil-gas accumulation.
     Based on the analysis of transporting-conducting systems and types of oil-gas accumulation in JZ25-1/S and JZ20-2 oilfield, we conclude 4 kinds of matching relationship of them:①Z-type transporting-conducting systems form massive oil-gas reservoir,②T-type transporting-conducting systems form massive or layered reservoir,③cascade conducting systems form layered reservoir or lithologic oil reservoir,④fault-unconformity-sandbody transporting-conducting systems form layered or massive reservoir.
     The burial history and geothermal history of some wells in JZ25-1S oilfields are reconstructed firstly and then with the combination of homogeneous temperature analysis of fluid inclusions from productive reservoir formations, periods of hydrocarbon charging are determined. The analysis of hydrocarbon accumulation period indicated that the oil of JZ25-1S oilfield has a single and relatively earlier hydrocarbon charging and accumulation period. The accumulation period of the Shahejie formation in JZ25-1S oilfield is formed between 20-24Ma which corresponds to the end of 1st menber of dongying formation sedimentary period.
引文
[1]王启军,陈建渝.石油地球化学.武汉地质学院,1984.
    [2]张照录,王华,杨红.含油气盆地的输导体系研究.石油与天然气地质,2000,21(2):133-135.
    [3]付广,薛永超,付晓飞.油气运移输导系统及其对成藏的控制.新疆石油地质,2001,22(1):24-26.
    [4]张卫海,查明,曲江秀.油气输导体系的类型及配置关系.新疆石油地质,2003,24(2):118-120.
    [5]谢泰俊,潘祖荫.南海北部大陆边缘陆坡区含油气远景.勘探家:石油与天然气,1997,2(2):24-30.
    [6] Galeazzi J S.Structural and stratigraphic evolution of the western Malvinas basin,Argentina.AAPG Bulletin,1998,82(4):596-636.
    [7]赵忠新,王华,郭齐军,等.油气输导体系的类型及其输导性能在时空上的演化分析.石油实验地质,2002,24(6):527-536.
    [8]张卫海,查明,曲江秀.油气输导体系的类型及配置关系.新疆石油地质,2003,24(2):118-120.
    [9]柳广弟,高志先.油气运聚单元分析:油气勘探评价的有效途径.地质科学,2003,38(3):307-314.
    [10]李丕龙.济阳坳陷油气复式聚集模式.北京:石油工业出版社,2004.
    [11]付广,薛永超,付晓飞.油气运移输导系统及其对成藏的控制.新疆石油地质,2001,22(1):24-26.
    [12] Houseknecht D W.Assessing the relative importance of compaction process and cementation to reduction of porosity in sandstones.AAPG Bulletin,1987,71(6):633-642.
    [13]刘泽容,信荃麟,邓俊国等.断块群油气藏形成机制和构造模式.北京:石油工业出版社,1998.
    [14] Allen U S . Model for hydrocarbon migration and entrapment within faulted structures.AAPG Bulletin,1989,73:803-811.
    [15] Weber K J,Manfl G,Pilaar W F,et al.The role of faults in hydrocarbon migration and trapping in Nigeria growth fault structures.Offshore Technology Conference 10,1978:2643-2653.
    [16] Bouvier J D,Kaars-Sijpesteijn C H,Kluesner D F,et al.Three-dimensiona lseismic interpretation and fault sealing investigation,Nun River Field,Nigeria.AAPG Bulletin,1989,73:1397-1414.
    [17] Lindsay N G,MurPhy F C,Walsh J J,et a1.Outcrop studies of shale smears on fault surface.International Association of Sedimentologists Special Publication,1993,15:113-123.
    [18] Yielding G,Freeman B,Needham D T.Quantitative fault seal prediction.AAPG Bulletin,1997,81(6):987-997.
    [19] Knott S D.Fault seal analysis in the North Sea.AAPG Bulletin,1993,77:778-792.
    [20]鲁兵,陈章明,关德范等.断面活动特征及其对油气的封闭作用.石油学报,1996,17(3):33-37.
    [21]鲁兵,孔宪政,黎冰等.断块结构与断块封闭性间的关系.石油勘探与开发,1999,26(6):14-17.
    [22]吕延防,李国会,王跃文等.断层封闭性的定量研究方法.石油学报,1996,17(3):39-45.
    [23]高先志.焉耆盆地博湖坳陷断层封闭性与油气藏形成.新疆石油地质,2003,24(1):35-37.
    [24]曹瑞成,陈章明.早期探区断层封闭性评价方法.石油学报,1992,13(1):33-37.
    [25]吕延防,陈章明.非线性映射分析判断断层封闭性.石油学报,1995,16(2):36-41.
    [26]刘泽容,张晋仁.油藏评价和预测.北京:石油工业出版社,1993.
    [27]潘钟祥.基岩油藏.武汉地质学院北京研究生部,1980.
    [28]张厚福,方朝亮,高先志等.石油地质学.北京:石油工业出版社,1999.
    [29]朱扬明.流体包裹体在油气勘探中的应用.勘探家,1999,4(4),29-32.
    [30] Emery D,Robinson A,et al,王铁冠等译.无机地球化学在石油地质学中的应用.北京:石油工业出版社,1999.
    [31]王国纯.郯庐断裂与渤海海域反转构造及花状构造.中国海上油气(地质),1998,12(5),289-295.
    [32]候贵廷,钱祥麟,宋新民.渤海湾盆地形成机制研究.北京大学学报(自然科学版),1998,34(4):503-509.
    [33]钱祥麟,李江海.华北克拉通新太古代不整合事件的确定及其大陆克拉通构造演化意义.北京大学学报(自然科学版),1999,29(1):1-8.
    [34] Montgomery C W.Physical geology.Dubuque:W C Brown Publishers, 1990,555.
    [35]巩福生,王军芝.渤海北域早白垩世地层及介形虫化石组合.地质论评,1989,35(5):430-437.
    [36]赵澄林,杨丛笑,刘孟慧.渤海湾盆地早第三纪陆源碎屑岩相古地理学.北京:石油工业出版社,1996.
    [37]常之瑞.渤海湾地区下第三系沉积特征.北京:武汉研究生院北京研究生部,1981.
    [38] Hirsch L M,Thompson A H.Minimum saturations and buoyancy in secondary migration.AAPG Bulletin,1995,79(4):696-710.
    [39] Carruthers D,Ringose P.Secondary oil migration:Oil-rock contact volumes,flow behavior and rates.In:Parnell J.Dating and duration of fluid flow and fluid-rock interaction.Geological Society Special Publication,1998,144(1):205-220.
    [40]赵忠新,王华,郭齐军等.油气输导体系的类型及其输导性能在时空上的演化分析[J].石油实验地质,2002,24(6):527-536.
    [41] Galeazzi J S.Structural and stratigraphic evolution of the western Malvinas basin,Argentina.AAPG Bulletin,1998,82(4):596-636.
    [42]张照录,王华,杨红.含油气盆地的输导体系研究.石油与天然气地质,2000,21(2):133-135.
    [43]付广,薛永超,付晓飞.油气运移输导系统及其对成藏的控制.新疆石油地质,2001,22(1):24-26.
    [44]张卫海,查明,曲江秀.油气输导体系的类型及配置关系.新疆石油地质,2003,24(2):118-120.
    [45]蔡希源,刘传虎.准噶尔盆地腹部地区油气成藏的主控因素.石油学报,2005,26(5):1-4.
    [46]张建林.地层不整合对油气运移和封堵的作用.油气地质与采收率,2005,12(2):26-29.
    [47]陈建平,查明.准噶尔盆地环玛湖凹陷二叠系不整合特征及其在油气运移中的意义.石油勘探与开发,2002,29(4):29-31.
    [48]吴孔友,查明,洪梅.准噶尔盆地不整合结构的地球物理响应及油气成藏意义.石油实验地质,2003,25(4):328-332.
    [49]卢华复,丁幼文.试论郯庐断裂带中段新构造期构造应力场的演化.北京:地质出版社,1984.
    [50]陈荣书,许浚远.辽东湾地区地层压力及控压机制研究.武汉:中国地质大学石油及天然气研究所,1994.
    [51]陈斌,邹华耀,于水等.渤中凹陷油气晚期快速成藏机理研究—以黄河口凹陷BZ34断裂带为例.石油天然气学报(江汉石油学院学报),2005,27(16):821-824.
    [52]祝厚勤,庞雄奇.东营凹陷岩性油藏成藏期次与成藏过程.地质科技情报,2007,26(1):65-70.
    [53]朱光有,金强,戴金星等.东营凹陷油气成藏期次及其分布规律分析.石油与天然气地质,2004,25(2),209~215.
    [54]邹丙方,张凤莲,沈渭洲.辽河滩海东部地区油气多期次成藏玉分布.2005,27(3):265-268.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700