乐东22-1/15-1油气管线路由区工程地质灾害研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2l世纪是“海洋开发的时代”,随着社会的发展与进步,人类将工程建设的中心转移到了海洋。浅海石油的勘探开发,通讯电(光)缆、油气管线的铺设等项目都要求对工程场址或路由进行细致的地质灾害研究,预防可能发生的各种海洋灾害。
     乐东22-1/15-1预定路由管线位于北部湾南部陆架,该区油气资源丰富,海上平台、海底管线数量众多,许多学者都对该区的地质灾害进行过大量的研究工作,但将各种灾害性地质现象同海底管道稳定性结合起来的研究较少。本文在各种工程报告、论文、资料的基础上,分析预定管线路由区的工程环境和底质特征,研究了可能影响管线稳定性的不良的工程地质现象,包括活动性沙波,海底滑坡等,同时对海底管线铺设后可能发生的管线冲刷和悬跨问题进行了预测。本文的研究内容对未来海底管道的规划和施工具有一定的指导意义。
     按照地形地貌、底质和沉积环境特征将研究区由陆向海方向依次划分为近岸平坦区,中部强冲刷剥蚀区和平台平坦区。在中部强冲刷剥蚀区,距岸12km-15km的区域广泛分布大型沙丘和小型沙波,前期调查报告定义该区为沙波区,由测年资料可知该区大型沙丘为残留地貌,形成时代大约在距今8000年;距岸40km-42km和68km-75km两处区域发育走向大致垂直于管线的硬脊,前期调查报告定义该区为硬质海底区,由测年资料可知其为晚更新世河湖沉积粘性土在第四纪海侵过程中的侵蚀残余。沙波区和硬质海底区地形变化复杂,为不良的工程地质区域。硬质海底区由于分布规模较小,管线可考虑在底形平稳处绕过该区,但沙波区分布规模较大,管线无法避让,因此沙波区是本文研究的重点区域。
     由沙波区沙波的形态和浅部地层特征分析可知,该区沙波活动性较强。在常态条件下,研究区以小型沙波的迁移为主,迁移速率较慢,约为0.2m/a,对海底管线影响不大。在台风等极端气候影响下,中小型沙波移动速率骤增,最大可达1m/h~5m/h;大型沙丘表面松散砂层(活动层)的移动性增强,在活动砂体发生迁移的部位则可能出现冲蚀凹坑或沟槽,通过计算与类比研究表明,沙波区底床冲刷深度约为0.4m,在台风等极端气候影响下可达1.0m。小型沙波的快速移动与冲蚀凹坑的出现都可能产生管线悬跨,威胁管线安全。海底冲刷与沙波移动造成的海底管线悬跨长度在15m~40m之间,在沙波区预定路由的少数区段大于海管容许悬跨值,海管可能发生位置错动、破裂、折断的危险。特别在极端天气影响下,这种危险性增大。为了管线安全,设计路由最好选在沙丘背水坡侧沟槽内穿过,且铺设过程中加大挖沟深度。
     研究表明在研究区斜坡带(距岸10km-12km)海底土体比较稳定,但不排除在地震或极端气候影响下发生滑坡的可能。
The 21 century is the most development time of the exploitation of the ocean. The focus of the construct has been transferred on the ocean, going with the development and advancement of the society. More and more project in the ocean to be explored need research on the engineering geology and hazardous geology environments, in order to prevent all kinds of the ocean hazards.
     The proposed pipeline of the LD22-1/15-1 lies on the shelf in the Beibu Gulf. In the Yinggehai, oil and gas resource development area were made. Many scholars have carried through lots of the scientific research in this area. But the research is lack, which combine the hazardous geology with the stability of the pipeline. Based on lots of engineering reports paper and data, according to dynamic condition and sediment characteristics, the influencing factors such as transferred sand waves, submarine landslide, burial channel and shallow gas, are discussed in the paper. At the same time, the forecast is made about the erosion and suspended span of the pipeline. The research contents and conclusions in the paper are important to the programming and construction of future pipeline.
     Based on the side scan sonar records, the Export Pipeline route could be divided into three sections, from land to sea they are offshore flat section; eroded section of the middle route; flat section near platform. In the second section, the area which is 12km-15km off shore is called sand wave zone, where sand dunes and sand waves are bestrewed. The area which is 40km-42km and 68km-75km off shore is called hard seabed zone, where stiff ridges are bestrewed. According to the age dating, the stiff ridges are remnant of the clay soil with river facies which deposit in the Late Pleistocene epoch. The landform is complex on the sand wave and hard seabed zone, which is bad engineering. The pipeline will traverse the hard seabed zone because it is a small area, and the pipeline can’t traverse the sand wave zone because the dimension is lager. So the emphases are made on the sand wave zone.
     Basis on the configuration and the shallow stratum layer character, the conclusion which the activity of the sand waves is intensive is made. In the usual state, the motion of the little sand wave is dominated, and the migration rate is about 0.2m/a. In typhoon state, the motion of the loose sand is strengthen, and the movement speed increased fast, which will be from 1m/h to 5m/h. the movement of the loose sand will induce the form of the erosion rut and trough. The rut and trough ,and also the transferred sand waves will induce the suspended span of the pipeline. By calculating with the equation and analogy analysis, the depth of the erosion is about 0.4m, and will be 1.0m when the bad weather influences the area. the length of the suspended span will be 15m~35m, that less than the length which the pipeline can endure . In order to recede the influence of the bad weather, the suggested pipeline routing needs to choose the sand dune trench, on the other hand it is suitable to choose the steep slope side in the sand dune. The deeper the trench is the higher safety of the pipeline. As long as the depth of the trench is less than the height of the sand wave, it will not be able to produce the pipeline free span in the near future.
     In study area which is 10km-12km off shore, There is deposited loose-saturated mucilage fine sand in the steep slope belt it also exist the possibility of the landslide of unconsolidated sediment. The investigation reveals that the soil body is stability, but we can’t eliminate the possibility of the submarine landslide. In addition, the burial channels and shallow gases distribute near the platform area, which may affect the stability of pipeline. Sediments infill within burial channel is clay-silt-fine sand while that around channel is stiff clay, differential settlement may happen because of the different engineering properties between the sediments in and around the channels. Because the depth of burial is deeper, they can’t influence the pipeline in the near future. But the series-detection should be made in the area where the burial channels and shallow gases distribute in coincidence.
引文
[1]刘乐军,李培英,杜军,李萍,徐小薇.莺歌海油气资源开发区工程地质和灾害地质特征.海洋科学进展,2004,22(4):455-457
    [2]中国科学院海洋研究所等.涠西南石油开发区水文环境条件的数值模拟和统计分析报告.1988
    [3]中国海湾志编纂委员会.中国海湾志(海南省海湾).海洋出版社.1999.190-193
    [4]詹文欢,孙宗勋,朱俊江,孙龙涛.莺歌海盆地断裂活动与地质灾害分析.水文地质工程地质.2004.4:41-42
    [5]中海油田服务股份有限公司油田技术事业部勘察服务中心.乐东22-1/15-1气田管线路由工程地质调查最终报告书. 2005
    [6]刘昭蜀,赵焕庭,范时清等.南海地质[M].北京:科学出版社.2002.
    [7]中海油田服务股份有限公司油田技术事业部勘察服务中心.乐东22-1/15-1气田海底管线路由沙丘区及硬质突起区调查报告.2005
    [8]李凤业,宋金明,李学刚,汪亚平,齐君.胶州湾现代沉积速率和沉积通量研究[J].海洋地质与第四纪地质.2003,23(4):29~33
    [9]范德江,杨作升,郭志刚.中国陆架210Pb测年应用现状与思考.地球科学进展.2000,15(3):298
    [10]董志华等.台风对东方岸外沙波沙脊和海底地貌的影响.中国海洋大学.2004
    [11]刘振夏,夏东兴著.中国近海潮流沉积沙体.北京.海洋出版社.2004
    [12]冯文科,黎维峰.南海北部海底沙波地貌.热带海洋.1994.13(3)
    [13]夏东兴等.海南东方岸外海底沙波活动性研究[J].黄渤海海洋.2001.19(1)
    [14]钱宁等,1983,泥沙运动力学,科学出版社。
    [15]Rubin, D.M. and R.E.Hunter. Bedform climbing in theory and nature. Sedimentology .1982,29:121~138。
    [16]高抒等,2001,沉积物输运对砂质海底稳定性影响的评估方法及应用实例,海洋科学集刊,43:25-37。
    [17]乐东22-1/15-1气田场址、路由水文气象环境条件研究.国家海洋局第一海洋研究所.2005
    [18]中国海洋大学.DF1-1海底管线后调查技术报告.2003
    [19]John B. Herbich, offshore pipeline design elements, Marcel dekker Inc.,New York, 1981
    [20]浦群,李坤.管线振荡绕流对砂床的冲蚀.力学学报,1999, 31(6) : 677-681
    [21]李振林,东朝莉,袁亚雷等.流动显示技术用于胜利埋岛油田海底管道淘空对策的研究.流体力学实验与测量. 2003,17(3):49-52
    [22]马良.波浪作用下海底管道的水动力和在位稳定性研究的近代进展.水动力学研究与进展.1995,10(2):135-145
    [23]挪威船级社.海洋管道规程(1981)[M].石油工业出版社,1985
    [24]罗延生.海底管线管跨段涡激振动下模糊疲劳可靠性评估的研究[D].石油大学,1999
    [25]梁政,海洋油气管道极限冲刷长度的进一步研究。中国海上油气(工程).1990,2(3),31~41
    [26]王维确定海底埋设输油管线允限冲刷长度的一种实用方法.西南石油学院学报,1996,18(3),94~97
    [27]竺艳蓉,海洋工程波浪力学.天津大学出版社.1991,69~71
    [28]郭振邦,姚铁.海底管跨极限跨长的确定及其振动中同向横向的耦合作用.2004
    [29]Chen Guoming,Assessment of fuzzy Uncertainties in fatigue load modeling for offshore structures. OMAE, VolumeII,1991;
    [30]郭书详,吕震宙,基于非概率模型的结构可靠性优化设计,计算力学学报,2002年5月,第19卷第2期,198~201
    [31]Denys Brunsden and D.B.Prior,Slope Instability.1984,176
    [32]叶银灿、陈俊仁等,海底浅层气的成因、赋存特征及其对工程的危害,东海海洋,2003, 21(1) :27-36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700