悬移质泥沙输移的大涡模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
紊流在实验室试验水槽和自然河道中普遍存在。紊流中存在着涡系,对泥沙起动和输移有重要的影响,而传统的雷诺时均模型只能给出时均条件下流速和泥沙浓度分布,不能反映瞬时流动特性以及瞬时流动对泥沙输移的影响,因此需要研究更加精细的模拟技术。随着计算机计算速度和存储能力的提高,大涡模拟技术得到了迅速发展,大涡模型可以计算得出水流和泥沙输运的瞬时规律。
     本文建立了悬移质泥沙输移的大涡模型及边界条件。在大涡模拟中,通过过滤将水沙模型中的变量分解成大尺度量和亚格子量,直接求解大尺度量,引入亚格子应力模型模拟小尺度量。在程序中,基于有限体积法对控制方程进行离散,变量布置在非交错曲线网格上,采用中心差分近似扩散通量,分别采用中心差分和HLPA格式近似水流和泥沙计算中的对流通量,时间推进利用低存储的三步Runge-Kutta法。在Runge-Kutta法的第3步,采用SIP方法求解压强修正方程。
     针对复杂的几何边界问题,本文构建了基于直接强迫力法的浸没边界法,用于模拟复杂边界下的大涡模拟流动;采用直槽流动、方腔流动和丁坝绕流检验了流速分布、紊动强度分布、涡系分布和切应力分布;分析了丁坝绕流中丁坝长度L、丁坝长度与丁坝距离的比值L/D对流速分布、回流区的流动形式、紊动强度分布、涡量分布及涡系结构分布的影响,并研究了涡体的发展变化过程。
     针对自然条件的泥沙床面,建立了粗糙边界处理方法和悬沙计算模式;采用经典的净淤积试验对沿程的流速分布和泥沙浓度分布进行验证,获得与实测数据符合较好的结果;引入不同的对比算例,分析了水流的宽深比B/H对横断面上二次流动和涡体结构的影响,讨论了宽深比B/H和二次流动对主流流速、紊动强度和切应力在横断面上分布的影响,并研究了宽深比B/H和二次流动对泥沙浓度在横断面上的分布以及沿程沉积率的影响。
     针对悬移质泥沙输移的三维特性,建立了悬移质泥沙计算中含有恢复饱和系数的近底部边界条件,用于研究细颗粒悬移质泥沙起动与输移的特性;采用直接模拟结果和Rouse公式分别检验了直槽中的流速分布和泥沙浓度分布;采用循环算例和长槽道算例分析了冲刷平衡的条件下和净冲刷条件下的流速、紊动强度、切应力的分布、泥沙浓度以及垂向泥沙紊动通量的分布,讨论了瞬时流动结构对瞬时泥沙浓度分布的影响,以及猝发与扫射对泥沙浓度分布的影响,给出了紊动扩散系数和Schmidt数的分布,并探讨了近底部泥沙紊动通量的概率分布。
Turbulence is very common both in laboratory channels and natural rivers. Vorticesexist in turbulence and have an important impact on sediment transport. ReynoldsAveraged Navier–Stokes Simulation (RANS) is widely used in numerical simulations ofengineering. It can only give time-averaged velocity and sediment concentration, andcould not reflect the effects of unsteadiness and turbulence anisotropy on sedimenttransport. So it needs to introduce some advanced simulation techniques. With theadvances in computer capabilities and large eddy simulation (LES), LES becomespopular in the simulation of water flow and sediment transport, and it can give theinstant distributions of water flow and sediment transport.
     A LES model, calculating water flow and suspended sediment transport under theconditions of complex topography, has been set up in the thesis. In the model, all thevariables are decomposed into large-scale ones and subgrid ones by filtration. Thelarge-scale variables are solved directly and the subgrid ones simulated by introducingthe subgrid stress (SGS) model. The equations are discretized with the finite volumemethod with no-staggered curvilinear grids. The convective fluxes of momentumequations are estimated by central differences of second order accuracy, while the onesof sediment transport are obtained by HLPA scheme. The diffusive fluxes of momentumand sediment transport equations are approximated using central scheme. Asecond-order accurate Runge-Kutta method is adopted in time discretization. ThePoisson equation for pressure correction is solved via the SIP method.
     As for the simultions under complex boundaries, an immersed boundary modulebased on the direct forcing method is introduced into the LES model. Firstly the modelis calibrated using channel flow, duct flow and groin flow. And accurate results areobtained including distributions of velocities, turbulence intensities, vortices and shearstresses. A series of cases for flow past rounded-head groins are set up to investigateflow characteristics, involving flow patterns, turbulent intensities, vorticity distributionand vortex dynamics. Groin aspect ratio L/D and groin length L are defined to study theimpact of groin parameters on the flow properties.
     As for natural boundary in the channel, a module dealing with rough boundary anda module of suspended sediment calculation are added into the LES model, in order to study the impact of the secondary flow on the deposition and transport of fine sedimentin rough channel flow. After validating the model use a classic experiment of netdeposition, different cases are set up to explore the effect of the width to depth ratio B/Hon secondary flow and vortex structures at the cross sections. The influences of thesecondary flow on flow properties like the mainstream velocities, turbulence intensitiesand shear stress distribution at the cross section, are discussed. The results of thedistribution of sediment concentration at the cross sections and deposition ratio alongthe channel are also studied.
     As for the3D characteristics of suspended sediment transport, a boundary with arestoring saturation coefficient near the bottom is presented, to study the characteristicsof fine sediment entrainment and transport in channel flow. The velocities and sedimentconcentration are validated by Direct Numerical Simulation (DNS) and Rouse equationsseparately. A case with cyclic boundary and a long case with inlet-outlet boundary arecalculated to study the flow and fine sediment transport in the equilibrium andnet-erosion conditions. The results are given out such as velocities, turbulenceintensities, the distribution of shear stresses, sediment concentration, as well asturbulence flux of sediment. The strong relations between instantaneous flow andsediment concentration, and contribution of bursts and sweeps are analyzed throughstatistics. According to the study, turbulent Schmidt number is not constant along thevertical direction. The turbulence flux of sediment near the bottom is discussed at theend.
引文
[1] Sutherland A J. Proposed machanism for sediment entrainment by turbulent flows. Journalof Geophysical Research,1967,72(24):6183-6194.
    [2]钱宁,万兆惠.泥沙运动力学.北京:科学出版杜,1983.
    [3] Reynolds O. On the dynamical theory of incompressible viscous fluids and the determinationof the criterion. Philosophical Transactions of the Royal Society of London. A,1895,186:123-164.
    [4] Boussinesq J. Théorie de l’écoulement tourbillant. Mem. Présentés par Divers Savants Acad.Sci. Inst. Fr,1877,23(46-50).
    [5] Harlow F H, Nakayama P I. Transport of turbulence energy decay rate. University ofCalifornia. Los Alamos Scientific Lab.,1968.
    [6]崔桂香,许春晓,张兆顺.湍流大涡数值模拟进展.空气动力学学报,2004,(02):121-129.
    [7] Rodriguez I, Borell R, Lehmkuhl O, et al. Direct numerical simulation of the flow over asphere at Re=3700. J. Fluid Mech.,2011,679:263-287.
    [8] Kolmogorov A N. The local structure of turbulence in incompressible viscous fluid for verylarge Reynolds numbers. Proceedings of the Royal Society of London. Series A:Mathematical and Physical Sciences,1991,434(1890):9-13.
    [9] Smagorinsky J. General circulation experiments with the primitive equations. Mon. WeatherRev.,1963,91(3):99-164.
    [10] Deardorff J W. A numerical study of three-dimensional turbulent channel flow at largeReynolds numbers. J. Fluid Mech.,1970,41:453-480.
    [11] Rodi W. Comparison of LES and RANS calculations of the flow around bluff bodies.Journal of Wind Engineering and Industrial Aerodynamics,1997,71:55-75.
    [12] Breuer M. Large eddy simulation of the subcritical flow past a circular cylinder: numericaland modeling aspects. Int. J. Numer. Meth. Fluids,1998,28(9):1281-1302.
    [13] Breuer M. A challenging test case for large eddy simulation: high Reynolds number circularcylinder flow. International Journal of Heat and Fluid Flow,2000,21(5):648-654.
    [14] Kirkil G, Asce S M, Constantinescu S G, et al. Coherent structures in the flow field around acircular cylinder with scour hole. J. Hydraul. Eng.-ASCE,2008,134(5):572-587.
    [15] Stoesser T, Kim S J, Diplas P. Turbulent Flow through Idealized Emergent Vegetation. J.Hydraul. Eng.-ASCE,2010,136(12):1003-1017.
    [16] Hinterberger C, Froehlich J, Rodi W. Three-dimensional and depth-averaged large-eddysimulations of some shallow water flows. J. Hydraul. Eng.-ASCE,2007,133(8):857-872.
    [17] Koken M, Constantinescu G. An investigation of the flow and scour mechanisms aroundisolated spur dikes in a shallow open channel:1. Conditions corresponding to the initiationof the erosion and deposition process. Water Resour. Res.,2008,44(8).
    [18] Koken M, Constantinescu G. An investigation of the flow and scour mechanisms aroundisolated spur dikes in a shallow open channel:2. Conditions corresponding to the final stagesof the erosion and deposition process. Water Resour. Res.,2008,44(8).
    [19] Constantinescu G, Sukhodolov A, McCoy A. Mass exchange in a shallow channel flow witha series of groynes: LES study and comparison with laboratory and field experiments.Environ. Fluid Mech.,2009,9(6):587-615.
    [20] McCoy A, Weber L J, Constantinescu G. Numerical investigation of flow hydrodynamics ina channel with a series of groynes. J. Hydraul. Eng.-ASCE,2008,134(2):157-172.
    [21] Booij R. Measurements and large eddy simulations of the flows in some curved flumes. J.Turbul.,2003,4.
    [22] van Balen W, Uijttewaal W S J, Blanckaert K. Large-eddy simulation of a mildly curvedopen-channel flow. J. Fluid Mech.,2009,630:413-442.
    [23] van Balen W, Blanckaert K, Uijttewaal W S J. Analysis of the role of turbulence in curvedopen-channel flow at different water depths by means of experiments, LES and RANS. J.Turbul.,2010,11: N12.
    [24] van Balen W, Uijttewaal W S J, Blanckaert K. Large-eddy simulation of a curvedopen-channel flow over topography. Phys. Fluids,2010,22(7).
    [25] Stoesser T, Ruether N, Olsen N R B. Calculation of primary and secondary flow andboundary shear stresses in a meandering channel. Adv. Water Resour.,2010,33(2):158-170.
    [26] Kang S, Lightbody A, Hill C, et al. High-resolution numerical simulation of turbulence innatural waterways. Adv. Water Resour.,2011,34(1):98-113.
    [27] Peskin C S. Flow patterns around heart valves: A numerical method. J. Comput. Phys.,1972,10(2):252-271.
    [28] Goldstein D, Handler R, Sirovich L. Modeling a no-slip flow boundary with an externalforce field. J. Comput. Phys.,1993,105(2):354-366.
    [29] Saiki E, Biringen S. Numerical simulation of a cylinder in uniform flow: application of avirtual boundary method. J. Comput. Phys.,1996,123(2):450-465.
    [30] Fadlun E A, Verzicco R, Orlandi P, et al. Combined immersed-boundary finite-differencemethods for three-dimensional complex flow simulations. J. Comput. Phys.,2000,161(1):35-60.
    [31] Mohd-Yusof J. Combined immersed-boundary/B-spline methods for simulations of flow incomplex geometries. CTR Annual Research Briefs,1997:317-327.
    [32] Kim J, Kim D, Choi H. An immersed-boundary finite-volume method for simulations offlow in complex geometries. J. Comput. Phys.,2001,171(1):132-150.
    [33] Balaras E. Modeling complex boundaries using an external force field on fixed Cartesiangrids in large-eddy simulations. Computers&Fluids,2004,33(3):375-404.
    [34] Tremblay F. Direct and large-eddy simulation of flow around a circular cylinder atsubcritical Reynolds numbers. Technische Universit t München, Universit tsbibliothek,2002.
    [35] Tseng Y H, Ferziger J H. A ghost-cell immersed boundary method for flow in complexgeometry. J. Comput. Phys.,2003,192(2):593-623.
    [36] Marchioli C, Soldati A. Mechanisms for particle transfer and segregation in a turbulentboundary layer. J. Fluid Mech.,2002,468:283-315.
    [37] Chang Y S, Scotti A. Entrainment and suspension of sediments into a turbulent flow overripples. J. Turbul.,2003,4.
    [38]谢鉴衡.河流模拟.北京:水利电力出版社,1990.
    [39]何国建.三维水沙水环境数学模型研究与应用[博士论文].清华大学,2007.
    [40] van Rijn L C. Sediment transport, Part II: Suspended load transport. J. Hydraul. Eng.-ASCE,1984,110(11):1613-1641.
    [41] van Rijn L C. Sediment pick-up functions. J. Hydraul. Eng.-ASCE,1984,110(10):1494-1502.
    [42] van Rijn L C. Applications of sediment pick-up function. J. Hydraul. Eng.-ASCE,1986,112(9):867-874.
    [43] van Rijn L C. Mathematical modeling of suspended sediment in nonuniform flow. J.Hydraul. Eng.-ASCE,1986,112(6):433-455.
    [44] Lin B L, Falconer R A. Numerical modelling of three-dimensional suspended sediment forestuarine and coastal waters. J. Hydraul. Res.,1996,34(4):435-456.
    [45] Celik I, Rodi W. Modeling suspended sediment transport in nonequilibrium situations. J.Hydraul. Eng.-ASCE,1988,114(10):1157-1191.
    [46] Wu W M, Rodi W, Wenka T.3D numerical modeling of flow and sediment transport inopen channels. J. Hydraul. Eng.-ASCE,2000,126(1):4-15.
    [47] van Rijn L C. Mathematical modelling of morphological processes in the case of suspendedsediment transport. Delft Hydraulics Laboratory,1987.
    [48] van Rijn L C. Entrainment of fine sediment particles; development of concentration profilesin a steady, uniform flow without initial sediment load. Rep. No M1531, Part II, DelftHydraulic Lab., Delft, The Netherlands,1981.
    [49] Wang Z B, Ribberink J S. The validity of a depth-integrated model for suspended sedimenttransport. J. Hydraul. Res.,1986,24(1):53-67.
    [50] Odgaard A J, Bergs M A. Flow processes in a curved channel. Water Resour. Res.,1988,24(1):45-56.
    [51] Fang H W, Wang G Q. Three-dimensional mathematical model of suspended-sedimenttransport. J. Hydraul. Eng.-ASCE,2000,126(8):578-592.
    [52]张瑞瑾,谢鉴衡,王明甫.河流泥沙动力学.北京:水利水电出版社,1989.
    [53]陆永军.三维紊流泥沙数学模型及其应用[博士论文].南京水利科学研究院,2002.
    [54]夏云峰.感潮河道三维水流泥沙数值模型研究与应用[博士论文].河海大学,2002.
    [55]假冬冬,邵学军,王虹, et al.考虑河岸变形的三维水沙数值模拟研究.水科学进展,2009,(03):311-317.
    [56] Osman A M, Thorne C R. Riverbank stability analysis. I: Theory. Journal of HydraulicEngineering,1988,114(2):134-150.
    [57] Nagata N, Hosoda T, Muramoto Y. Numerical analysis of river channel processes with bankerosion. Journal of Hydraulic Engineering,2000,126(4):243-252.
    [58] Zeng J, Constantinescu G, Weber L. A3D non-hydrostatic model to predict flow andsediment transport in loose-bed channel bends. J. Hydraul. Res.,2008,46(3):356-372.
    [59] Olesen K. Experiments with graded sediment in the DHL curved flume. Report R657-XXIIM,1985.
    [60] Blanckaert K. Flow and turbulence in sharp open-channel bends[Ph.D. Thesis]. UniversiteitGent,2002.
    [61]王兴奎,邵学军,李丹勋.河流动力学基础.中国水利水电出版社,2002.
    [62] Jackson R G. Sedimentological and fluid-dynamic implications of the turbulent burstingphenomenon in geophysical flows. J. Fluid Mech.,1976,77(03):531-560.
    [63] Sumer B M, Oguz B. Particle motions near the bottom in turbulent flow in an open channel.J. Fluid Mech,1978,86:109-127.
    [64] Sumer B M, Deigaard R. Experimental investigation of motions of suspended heavyparticles and the bursting process. Institute of Hydrodynamics Hydraulic Engineering.Technical University of Denmark,1979.
    [65] Kaftori D, Hetsroni G, Banerjee S. Particle behavior in the turbulent boundary layer. I.Motion, deposition, and entrainment. Phys. Fluids,1995,7(5):1095-1106.
    [66] Nino Y, Garcia M H. Experiments on particle-turbulence interactions in the near-wall regionof an open channel flow: Implications for sediment transport. J. Fluid Mech.,1996,326:285-319.
    [67] Nezu I, Kadota A, Nakagawa H. Turbulent structure in unsteady depth-varying open-channelflows. J. Hydraul. Eng.-ASCE,1997,123(9):752-763.
    [68]蒋昌波,白玉川,赵子丹, et al.明渠沙纹形成的试验研究.长沙交通学院学报,2002,(03):45-48.
    [69]王兴奎.悬移质泥沙运动及其对水流结构的影响[博士论文].清华大学,1985.
    [70] Rashidi M, Hetsroni G, Banerjee S. Particle-turbulence interaction in a boundary layer.International journal of multiphase flow,1990,16(6):935-949.
    [71] Kaftori D, Hetsroni G, Banerjee S. Particle behavior in the turbulent boundary layer. II.Velocity and distribution profiles. Phys. Fluids,1995,7(5):1107-1121.
    [72]刘春嵘,呼和敖德.各向同性均匀湍流近壁结构及泥沙起动.海洋工程,2003,(03):50-55.
    [73] Phillips M. A force balance model for particle entrainment into a fluid stream. Journal ofPhysics D-Applied Physics,1980,13(2):221-233.
    [74]曹志先,张效先,习和忠.基于湍流猝发的明渠流悬沙浓度分布.水利学报,1997,(02):53-58+52.
    [75] Keylock C J, Hardy R J, Parsons D R, et al. The theoretical foundations and potential forlarge-eddy simulation (LES) in fluvial geomorphic and sedimentological research. Earth-Sci.Rev.,2005,71(3-4):271-304.
    [76] Zedler E A, Street R L. Large-eddy simulation of sediment transport: Currents over ripples. J.Hydraul. Eng.-ASCE,2001,127(6):444-452.
    [77] Zedler E A, Street R L. Sediment transport over ripples in oscillatory flow. J. Hydraul.Eng.-ASCE,2006,132(2):180-193.
    [78] Chou Y J, Fringer O B. Modeling dilute sediment suspension using large-eddy simulationwith a dynamic mixed model. Phys. Fluids,2008,20(11).
    [79] Widera P, Ghorbaniasl G, Lacor C. Study of the sediment transport over flat and wavybottom using large-eddy simulation. J. Turbul.,2009,10(33):1-20.
    [80] Widera P, Toorman E, Lacor C. Large eddy simulation of sediment transport inopen-channel flow. J. Hydraul. Res.,2009,47(3):291-298.
    [81] Chou Y J, Fringer O B. A model for the simulation of coupled flow-bed form evolution inturbulent flows. Journal of Geophysical Research,2010,115.
    [82] Moin P, Kim J. Numerical investigation of turbulent channel flow. J. Fluid Mech.,1982,118:341-377.
    [83] Cai X M, Steyn D. The von Kármán constant determined by large eddy simulation.Boundary-Layer Meteorology,1996,78(1):143-164.
    [84] Rogallo R S, Moin P. Numerical simulation of turbulent flows. Annual Review of FluidMechanics,1984,16(1):99-137.
    [85] Canuto V, Cheng Y. Determination of the Smagorinsky–Lilly constant C. Phys. Fluids,1997,9:1368.
    [86] Van Driest E R. On turbulent flow near a wall. J. Aerospace Sci.,1956,23:1007-1011.
    [87] Germano M, Piomelli U, Moin P, et al. A dynamic subgrid-scale eddy viscosity model. Phys.Fluids,1991,3(7):1760-1765.
    [88] Lilly D K. A proposed modification of the Germano subgrid-scale closure method. Physicsof Fluids A-Fluid Dynamics,1992,4(3):633-635.
    [89] Pope S B. Turbulent flows. Cambridge University Press, bre2000.
    [90] Bardina J, Ferziger J, Reynolds W. Improved subgrid models for large eddy simulation.American Institute of Aeronautics and Astronautics,1980.
    [91] Spalding D. A novel finite difference formulation for differential expressions involving bothfirst and second derivatives. International Journal for Numerical Methods in Engineering,1972,4(4):551-559.
    [92] Leonard B. A stable and accurate convective modelling procedure based on quadraticupstream interpolation. Computer methods in applied mechanics and engineering,1979,19(1):59-98.
    [93] Zhu J. A low-diffusive and oscillation-free convection scheme. Communications in AppliedNumerical Methods,1991,7(3):225-232.
    [94]陶文铨.数值传热学.西安:西安交通大学出版社,2001.
    [95] Rhie C, Chow W. Numerical study of the turbulent flow past an airfoil with trailing edgeseparation. Aiaa Journal,1983,21(11):1525-1532.
    [96] Stone H L. Iterative solution of implicit approximations of multidimensional partialdifferential equations. SIAM J. Numer. Anal.,1968,5(3):530-558.
    [97] Rodi W. Large-eddy simulations of the flow past bluff bodies: State of the art. JsmeInternational Journal Series B-Fluids and Thermal Engineering,1998,41(2):361-374.
    [98] Frohlich J, Rodi W. Introduction to large eddy simulation of turbulent flows. Cambridge:Cambridge Univ Press,2002.
    [99] Frohlich J, Mellen C P, Rodi W, et al. Highly resolved large-eddy simulation of separatedflow in a channel with streamwise periodic constrictions. J. Fluid Mech.,2005,526:19-66.
    [100] Spalart P, Jou W, Strelets M, et al. Comments of feasibility of LES for wings, and on ahybrid {RANS/LES} approach.1997.
    [101] Schumann U. Subgrid scale model for finite difference simulations of turbulent flows inplane channels and annuli. J. Comput. Phys.,1975,18(4):376-404.
    [102] Werner H, Wengle H. Large-eddy simulation of turbulent flow over and around a cube in aplate channel.8th symposium on turbulent shear flows,155-168.
    [103] Breuer M, Rodi W. Large-Eddy Simulation of Turbulent Flow through a Straight SquareDuct and a180°Bend. Direct and Large-Eddy Simulation I, Peter R. Voke, LeonhardKleiser,&Jean Pierre Chollet, eds., Springer Netherlands,1994.273-285.
    [104] Spalart P, Deck S, Shur M, et al. A New Version of Detached-eddy Simulation, Resistant toAmbiguous Grid Densities. Theoretical and Computational Fluid Dynamics,2006,20(3):181-195.
    [105] Peller N, Le Duc A, Tremblay F, et al. High-order stable interpolations for immersedboundary methods. Int. J. Numer. Meth. Fluids,2006,52(11):1175-1193.
    [106] Moser R D, Kim J, Mansour N N. Direct numerical simulation of turbulent channel flow upto Reτ=590. Phys. Fluids,1999,11:943.
    [107] Gavrilakis S. Numerical simulation of low-Reynolds-number turbulent flow through astraight square duct. J. Fluid Mech.,1992,244(1):101-129.
    [108] Cheesewright R, McGrath G, Petty D. LDA measurements of turbulent flow in a duct ofsquare cross section at low Reynolds number. Report No. Aeronautical EngineeringDept. Rep. ER1011, Queen May Westfield College, University of London,1990.
    [109] Nezu I, Rodi W. Experimental study on secondary currents in open channel flow.Proceedings of21st IAHR Congress,115-119.
    [110] Przedwojski B. Bed topography and local scour in rivers with banks protected by groynes. J.Hydraul. Res.,1995,33(2):257-273.
    [111] Hood W G. Indirect environmental effects of dikes on estuarine tidal channels: Thinkingoutside of the dike for habitat restoration and monitoring. Estuaries,2004,27(2):273-282.
    [112] Wu B S, Wang G Q, Ma J M, et al. Case study: River training and its effects on fluvialprocesses in the Lower Yellow River, China. J. Hydraul. Eng.-ASCE,2005,131(2):85-96.
    [113] Huang W, Yang Q, Xiao H. CFD modeling of scale effects on turbulence flow and scouraround bridge piers. Computers&Fluids,2009,38(5):1050-1058.
    [114] Pinter N, Thomas R, Wlosinski J H. Assessing flood hazard on dynamic rivers. Eos,Transactions American Geophysical Union,2001,82(31):333-339.
    [115] Nagata N, Hosoda T, Nakato T, et al. Three-dimensional numerical model for flow and beddeformation around river hydraulic structures. J. Hydraul. Eng.-ASCE,2005,131(12):1074-1087.
    [116] Zhang H, Nakagawa H, Kawaike K, et al. Experiment and simulation of turbulent flow inlocal scour around a spur dyke. International Journal of Sediment Research,2009,24(1):33-45.
    [117] Weitbrecht V. Influence of dead-water zones on the dispersive mass transport in rivers.Karlsruhe Institute of Technology,2004.
    [118] Kraus N C, Hanson H, Blomgren S H. Modern functional design of groin systems. CoastalEngineering Proceedings,1994,1(24).
    [119] Uijttewaal W, Lehmann D, Mazijk A. Exchange Processes between a River and Its GroyneFields: Model Experiments. Journal of Hydraulic Engineering,2001,127(11):928-936.
    [120] Alfrink B J, Van Rijn L C. Two-equation turbulence model for flow in trenches. Journal ofHydraulic Engineering,1983,109(7):941-958.
    [121] Alfonsi G. Coherent structures of turbulence: methods of eduction and results. AppliedMechanics Reviews,2006,59:307.
    [122] McCoy A, Constantinescu G, Weber L. A numerical investigation of coherent structures andmass exchange processes in channel flow with two lateral submerged groynes. Water Resour.Res.,2007,43(5).
    [123] Packman A I, MacKay J S. Interplay of stream-subsurface exchange, clay particle deposition,and streambed evolution. Water Resour. Res.,2003,39(4):1097.
    [124] Baxter C V, Hauer F R. Geomorphology, hyporheic exchange, and selection of spawninghabitat by bull trout (Salvelinus confluentus). Canadian Journal of Fisheries and AquaticSciences,2000,57(7):1470-1481.
    [125] Ward J, Bretschko G, Brunke M, et al. The boundaries of river systems: the metazoanperspective. Freshwater Biology,2002,40(3):531-569.
    [126] Madej M A, Ozaki V. Channel response to sediment wave propagation and movement,Redwood Creek, California, USA. Earth Surface Processes and Landforms,1996,21(10):911-927.
    [127] Wohl E E, Cenderelli D A. Sediment deposition and transport patterns following a reservoirsediment release. Water Resour. Res.,2000,36(1):319-333.
    [128] Rathburn S, Wohl E. Predicting fine sediment dynamics along a pool-riffle mountainchannel. Geomorphology,2003,55(1):111-124.
    [129] Prandtl L. Essentials of fluid dynamics.1952.
    [130] Stearns P. On the Current-Meter: Together with A Reason Why the Maximum Velocity ofWater Flowing In Open Channels Is Below the Surface. Transactions of the AmericanSociety of Civil Engineers,1883,12(1):301-338.
    [131] Vanoni V A. Transportation of suspended sediment by water. Transactions of the AmericanSociety of Civil Engineers,1946,111:67-102.
    [132] Nezu I, Nakagawa H. Self forming mechanism of longitudinal sand ridges and troughs influvial open-channel flows. Proceedings of21st IAHR Congress,65-72.
    [133] Nezu I, Nakagawa H. Turbulence in open-channel flows. Rotterdam: A. A. BalkemaPublishers,1993.
    [134] McLelland S J, Ashworth P J, Best J L, et al. Turbulence and secondary flow over sedimentstripes in weakly bimodal bed material. J. Hydraul. Eng.-ASCE,1999,125(5):463-473.
    [135] van Rijn L C. Unified view of sediment transport by currents and waves. II: Suspendedtransport. J. Hydraul. Eng.-ASCE,2007,133(6):668-689.
    [136] Scotti A. Direct numerical simulation of turbulent channel flows with boundary roughenedwith virtual sandpaper. Phys. Fluids,2006,18(3):031701.
    [137] Jiménez J. Turbulent flows over rough walls. Annu. Rev. Fluid Mech.,2004,36:173-196.
    [138] Nikora V, Goring D, McEwan I, et al. Spatially averaged open-channel flow over rough bed.Journal of Hydraulic Engineering,2001,127(2):123-133.
    [139] Aberle J, Nikora V. Statistical properties of armored gravel bed surfaces. Water Resour. Res.,2006,42(11).
    [140] Aberle J. Measurements of armour layer roughness geometry function and porosity. ActaGeophysica,2007,55(1):23-32.
    [141] Stoesser T. Physically Realistic Roughness Closure Scheme to Simulate Turbulent ChannelFlow over Rough Beds within the Framework of LES. J. Hydraul. Eng.-ASCE,2010,136(10):812-819.
    [142] Marsaglia G, Bray T A. A convenient method for generating normal variables. Siam Review,1964,6(3):260-264.
    [143] van Rijn L C. Mathematical modeling of suspended sediment in nonuniform flows. J.Hydraul. Eng.-ASCE,1986,112(6):433-455.
    [144] Bomminayuni S, Stoesser T. Turbulence Statistics in an Open-Channel Flow over a RoughBed. J. Hydraul. Eng.-ASCE,2011,137(11):1347-1358.
    [145] Del Alamo J C, Jiménez J, Zandonade P, et al. Scaling of the energy spectra of turbulentchannels. J. Fluid Mech.,2004,500:135-144.
    [146] Cellino M, Lemmin U. Influence of coherent flow structures on the dynamics of suspendedsediment transport in open-channel flow. Journal of Hydraulic Engineering,2004,130(11):1077-1088.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700